Cauchy Sequences and Complete Metric Spaces

Definition: A sequence \(\{x_n\} \) in a metric space \((X, d)\) is **Cauchy** if
\[
\forall \epsilon > 0 : \exists n \in \mathbb{N} : m, n > n \Rightarrow d(x_m, x_n) < \epsilon.
\]

Remark: Every convergent sequence is Cauchy.

Proof: Let \(\{x_n\} \to \bar{x} \), let \(\epsilon > 0 \), let \(n \) be such that \(n > n \Rightarrow d(x_n, \bar{x}) < \epsilon/2 \), and let \(m, n > n \). Then
\[
d(x_m, \bar{x}) < \frac{\epsilon}{2} \quad \text{and} \quad d(x_n, \bar{x}) < \frac{\epsilon}{2},
\]
and the Triangle Inequality yields
\[
d(x_m, x_n) \leq d(x_m, \bar{x}) + d(x_n, \bar{x}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \quad \square
\]

Exercise: The real sequence \(\{x_n\} \) defined by \(x_n = \frac{1}{n} \) converges, so it is Cauchy. Prove directly that it is Cauchy, by showing how the \(n \) depends upon \(\epsilon \).

Example 1: Let \(x_n = \frac{1}{n} \sqrt{2} \) for each \(n \in \mathbb{N} \). Note that each \(x_n \) is an irrational number (\(i.e., \ x_n \in \mathbb{Q}^c \)) and that \(\{x_n\} \) converges to 0. Thus, \(\{x_n\} \) converges in \(\mathbb{R} \) (\(i.e., \), to an element of \(\mathbb{R} \)). But 0 is a rational number (thus, \(0 \not\in \mathbb{Q}^c \)), so although the sequence \(\{x_n\} \) is entirely in \(\mathbb{Q}^c \), it does not converge in \(\mathbb{Q}^c \). Note, however, that \(\{x_n\} \) is Cauchy.

Example 2: Let \(\bar{x} \) be an irrational number, and for each \(n \in \mathbb{N} \) let \(\{x_n\} \) be a rational number in the interval \((\bar{x} - \frac{1}{n}, \bar{x} + \frac{1}{n})\). Then \(\{x_n\} \) is a sequence of rational numbers that converges to the irrational number \(\bar{x} \) — \(i.e., \), each \(x_n \) is in \(\mathbb{Q} \) and \(\{x_n\} \to \bar{x} \not\in \mathbb{Q} \). Thus, in a parallel to Example 1, \(\{x_n\} \) here is a Cauchy sequence in \(\mathbb{Q} \) that does not converge in \(\mathbb{Q} \).

Examples 1 and 2 demonstrate that both the irrational numbers, \(\mathbb{Q}^c \), and the rational numbers, \(\mathbb{Q} \), are not entirely well-behaved metric spaces — they are not complete in that there are Cauchy sequences in each space that don’t converge to an element of the space.

Definition: A metric space \((X, d)\) is **complete** if every Cauchy sequence in \(X \) converges in \(X \) (\(i.e., \), to a limit that’s in \(X \)).

Example 3: The real interval \((0, 1)\) with the usual metric is not a complete space: the sequence \(x_n = \frac{1}{n} \) is Cauchy but does not converge to an element of \((0, 1)\).

Example 4: The space \(\mathbb{R}^n \) with the usual (Euclidean) metric is complete. We haven’t shown this before, but we’ll do so momentarily.
Remark 1: Every Cauchy sequence in a metric space is bounded.

Proof: Exercise.

Remark 2: If a Cauchy sequence has a subsequence that converges to \(\overline{x} \), then the sequence converges to \(\overline{x} \).

Proof: Exercise.

In proving that \(\mathbb{R} \) is a complete metric space, we’ll make use of the following result:

Proposition: Every sequence of real numbers has a monotone subsequence.

Proof: Suppose the sequence \(\{x_n\} \) has no monotone increasing subsequence; we show that then it must have a monotone decreasing subsequence. The sequence \(\{x_n\} \) must have a first term, say \(x_{n_1} \), such that all subsequent terms are smaller (i.e., \(n > n_1 \Rightarrow x_n < x_{n_1} \)); otherwise \(\{x_n\} \) would have a monotone increasing subsequence. Similarly, the subsequence \(\{x_{n_1+1}, x_{n_1+2}, \ldots\} \) must have a first term \(x_{n_2} \) such that all subsequent terms are smaller; note that \(x_{n_1} > x_{n_2} \). Continuing for \(n_1, n_2, n_3, \ldots \), we have a subsequence \(\{x_{n_k}\} \) such that \(x_{n_1} > x_{n_2} > x_{n_3} > \ldots \), a monotone decreasing subsequence. \(\square \)

Now we’ll prove that \(\mathbb{R} \) is a complete metric space, and then use that fact to prove that the Euclidean space \(\mathbb{R}^n \) is complete.

Theorem: \(\mathbb{R} \) is a complete metric space — i.e., every Cauchy sequence of real numbers converges.

Proof: Let \(\{x_n\} \) be a Cauchy sequence. Remark 1 ensures that the sequence is bounded, and therefore that every subsequence is bounded. The proposition we just proved ensures that the sequence has a monotone subsequence. The Monotone Convergence Theorem ensures that this subsequence converges. And therefore Remark 2 ensures that the original sequence converges. \(\square \)

This proof used the Completeness Axiom of the real numbers — that \(\mathbb{R} \) has the LUB Property — via the Monotone Convergence Theorem. We could have gone instead in the other direction: taking “every Cauchy sequence of real numbers converges” to be the Completeness Axiom, and then proving that \(\mathbb{R} \) has the LUB Property.

Theorem: The normed vector space \(\mathbb{R}^n \) is a complete metric space.

Proof: Exercise.

Example 5: The closed unit interval \([0, 1]\) is a complete metric space (under the absolute-value metric). This is easy to prove, using the fact that \(\mathbb{R} \) is complete.
Example 6: The space $C[0,1]$ is complete. (We haven’t shown this yet.)

Exercise: In a previous exercise set we worked with a sequence of distribution functions F_n defined by

$$F_n(x) = \begin{cases} nx, & \text{if } x \leq \frac{1}{n} \\ 1, & \text{if } x \geq \frac{1}{n}. \end{cases}$$

on the unit interval $[0,1]$ in \mathbb{R}. We showed that $\{F_n\}$ does not converge in $C[0,1]$. Therefore, if $\{F_n\}$ were Cauchy, $C[0,1]$ would not be complete. Verify that $\{F_n\}$ is not Cauchy.

Example 7: (Obtaining \mathbb{R} as the completion of \mathbb{Q}.)

Let S be the set of Cauchy sequences in \mathbb{Q} — i.e., the set of Cauchy sequences of rational numbers — with the usual metric. Define a relation \sim on S as follows:

$$\{x_n\} \sim \{x'_n\} \text{ if } \forall \epsilon > 0 : \exists \bar{n} \in \mathbb{N} : m, n > \bar{n} \Rightarrow d(x_m, x'_n) < \epsilon$$

Let $\mathbb{Q}^* = S/\sim$, the partition of S consisting of equivalence classes of Cauchy sequences. Define the distance function d^* for \mathbb{Q}^* as follows:

For any $x, x' \in \mathbb{Q}^*$, let $\{x_n\} \in x$ and $\{x'_n\} \in x'$ (i.e., $x = [\{x_n\}]$ and $x' = [\{x'_n\}]$).

Then define $d^*(x, x')$ by $d^*(x, x') = \lim_{n \to \infty} d(x_n, x'_n)$.

It’s pretty straightforward to show that d^* is well-defined and is a metric for \mathbb{Q}^*. The metric space (\mathbb{Q}^*, d^*) can be placed into one-to-one correspondence with $(\mathbb{R}, |\cdot|)$, each constant sequence $\{r, r, r, \ldots\}$ of rationals corresponding to the rational number $r \in \mathbb{Q} \subseteq \mathbb{R}$. The set \mathbb{Q}^* is one way of defining \mathbb{R}.

Exercise: Verify that the relation \sim defined in Example 7 is an equivalence relation.

Example 8: (The Completion of a Metric Space)

Let (X, d) be a metric space that is not complete. Just as in Example 7, let S be the set of Cauchy sequences in X; define the equivalence relation \sim in the same way, and let X^* be the quotient space S/\sim; and define d^* on the quotient space X^* in the same way as in Example 7. Then we can show, just as in Example 7, that d^* is well-defined and is a metric for X^*; that (X^*, d^*) is a complete metric space; and that X corresponds to a subset of X^* — we say that X is embedded in X^*. The complete metric space (X^*, d^*) is called the completion of (X, d).

Example 9: The open unit interval $(0,1)$ in \mathbb{R}, with the usual metric, is an incomplete metric space. What is its completion, $((0,1)^*, d^*))$?

Theorem: A subset of a complete metric space is itself a complete metric space if and only if it is closed.

Proof: Exercise.
Recall that every normed vector space is a metric space, with the metric \(d(x, x') = \|x - x'\| \). Therefore our definition of a complete metric space applies to normed vector spaces: an n.v.s. is complete if it’s complete as a metric space, \(i.e.\), if all Cauchy sequences converge to elements of the n.v.s.

Definition: A complete normed vector space is called a **Banach space**.

Example 4 revisited: \(\mathbb{R}^n \) with the Euclidean norm is a Banach space.

Example 6 revisited: \(C[0, 1] \) is a Banach space.

Example 5 revisited: The unit interval \([0, 1]\) is a complete metric space, but it’s not a Banach space because it’s not a vector space.