This theorem tells us how a decision-maker's choice (behavior) respond to changes in the decision-making environment.

Theorem: Let $X \subseteq \mathbb{R}^n$ be the actions, $E \subseteq \mathbb{R}^m$ be the environments/parameters, $u : X \times E \rightarrow \mathbb{R}$ be the objective function, and $\phi : E \rightarrow X$ be the feasible set correspondence. We define

$$\mu : E \rightarrow X \text{ by } \mu(e) = \{ x \in \phi(e) \mid \text{max } u(x, e) \text{ in } \phi(e) \}$$

$$= \arg \max_{x \in \phi(e)} u(x, e) \quad \text{Behavioral (solution) correspondence}$$

and $v : E \rightarrow \mathbb{R} \text{ by } v(e) = \max_{x \in \phi(e)} u(x, e). \quad \text{Value function}$

If u is continuous, and ϕ is continuous and compact-valued, then

μ is UHC and nonempty-valued, and v is continuous.

Since μ is closed-valued and UHC,

Remark: μ has a closed graph.

Remark: If μ is singleton valued (a function), it is continuous.
The Maximum Theorem in Demand Theory

Maximum Theorem

\[x \in X \subseteq \mathbb{R}^k \]

\[e \in E \subseteq \mathbb{R}^m \]

\[u : X \times E \rightarrow \mathbb{R} \]

\[\varphi : E \rightarrow X \]

Demand Theory

\[x \in \mathbb{R}^k_+, \text{ consumption bundles} \]

\[p \in \mathbb{R}^k_+, \text{ price lists} \]

\[u : \mathbb{R}^k_+ \times \mathbb{R}^m_+ \rightarrow \mathbb{R}, \text{ utility function} \]

\[\beta(p, m) = \{ x \in \mathbb{R}^k_+ | p \cdot x \leq m \}, \text{ m must be p \cdot x} \]

Consumer's budget set

\[\mu : E \rightarrow X \]

\[\mu : \mathbb{R}^k_+ \rightarrow \mathbb{R}^k_+, \text{ consumer's demand correspondence} \]

\[v : E \rightarrow \mathbb{R} \]

\[v : \mathbb{R}^k_+ \rightarrow \mathbb{R}, \text{ indirect utility function} \]

The Maximum Theorem tells us that the consumer's demand correspondence \(\mu : \mathbb{R}^k_+ \rightarrow \mathbb{R}^k_+ \) is nonempty-valued, compact-valued, closed, and UHC if the budget correspondence is continuous and compact-valued. Since the budget correspondence is typically not compact-valued for price lists that have some \(p_k = 0 \), we need to either restrict prices to be in a subset \(\mathfrak{S} \) of \(\mathbb{R}^k_+ \), or else restrict the consumption set \(X \) to a compact subset of \(\mathbb{R}^k_+ \).

We also obtain:

The indirect utility function is continuous, and

If demand \(\mu(p) \) is singleton-valued then

The demand function is continuous.
Theory of the Firm:

A firm's technology (its technologically feasible production plans) is represented by its production set $T \subseteq \mathbb{R}^d$:

- $x_k > 0$: good k is an output at x
- $x_k < 0$: good k is an input at x

T is the set of all technologically feasible production plans.

Profit at plan x (at price list $p \in \mathbb{R}^d^+$):

$$\pi(x; p) = p \cdot x = \sum_{k \in T} p \cdot x_k + \sum_{k \in I} p \cdot x_k$$

$T = \{k \mid x_k > 0\}$, $I = \{k \mid x_k \leq 0\}$

$$\pi(x; p) = \text{REVENUE} - \text{COST}.$$

Constant Returns to Scale:

- $x_2 = y$
- $x_2 = f(-x_1)$
- $y = f(x)$

$T = \{x \mid \text{PRODUCTION FUNCTION}\}$

$-x_1 = x_2$

$-x_1 = -x_2$

$\pi = 0$, multiple max. points
The Firm's Behavioral Correspondence

\textbf{Maximum Theorem}

\begin{align*}
\text{Max} & \quad x \in \mathbb{R}^n \quad \text{subject to} \quad e \in \mathbb{R}^m \\
\text{Min} & \quad x \in \mathbb{R}^n \quad \text{subject to} \quad e \in \mathbb{R}^m \\
\text{Max} & \quad x \in \mathbb{R}^n \\
\text{Min} & \quad x \in \mathbb{R}^n \\
\end{align*}

\textbf{Theory of the Firm}

\begin{align*}
x \in X & \subseteq \mathbb{R}^n, \text{ input-output plans} \\
\mathbf{p} & \in \mathbb{R}_+^k, \text{ price-lists} \\
\pi(x, p) & = p \cdot x, \text{ firm's profit} \\
\phi(p) & = x, \text{ a constant correspondence; production set isn't affected by prices.} \\
\mu(p) & = \{ x \in X \mid x \text{ max's } \pi \text{ on } X \} \\
V(p) & = \max_{x \in X} \pi(x, p) = \max_{x \in X} p \cdot x, \text{ firm's profit as function of } p.
\end{align*}

The Maximum Theorem tells us that the firm's supply/demand correspondence \(\mu \) is nonempty-valued, compact-valued, UHC, and closed if the production set \(X \) is compact. Since it typically isn't, we need to restrict it to a compact set when applying the Maximum Theorem.
The Maximum Theorem

In Our Growth Theory Example

Recall that we wanted to establish the existence of a function $v: \mathbb{R}^+ \to \mathbb{R}^+$ that satisfies

(*) $\forall x \in \mathbb{R}^+: v(x) = \max_{2 \in \mathbb{R}^+} \left[u(f(x) - 2) + \beta v(2) \right] \text{ s.t. } 0 \leq 2 \leq f(x)$.

Note that v — the same function v — is on both sides of this (functional) equation. For any $x \in \mathbb{R}^+$, $v(x)$ was the value, at an arbitrary time t, of having capital stock x — the present value at t of the current and future stream of period-by-period values.

In order to show that there is such a v, we described $v(\cdot)$ as the fixed point of a transformation $T: F \to F$ that maps functions $v \in F$ (where F is a set of functions $v: \mathbb{R}^+ \to \mathbb{R}^+$) into other functions, say $\tilde{v} \in F$. We defined the transformation T (or equivalently, the function \tilde{v} for a given v) as follows:

\[\tilde{v}(x) = \max_{2 \in \mathbb{R}^+} \left[u(f(x) - 2) + \beta v(2) \right] \text{ s.t. } 0 \leq 2 \leq f(x). \]

Clearly, a function $v: \mathbb{R}^+ \to \mathbb{R}^+$ satisfies (*) if and only if it's a fixed point of T, if and only if $\tilde{v} = v$.
We want to establish that \(T: F \rightarrow F \) has a fixed point, where \(F \) is the set of all functions \(v: \mathbb{R^+} \rightarrow \mathbb{R} \). We want to show there is some function \(v: \mathbb{R^+} \rightarrow \mathbb{R} \) for which \(\tilde{v} = v \). We'll use a fixed point theorem to establish this, but we don't have a theorem that applies to the set \(F \) of all functions from \(\mathbb{R^+} \) into \(\mathbb{R} \). So we need to narrow down the set \(F \). If we can narrow it down to a set \(F' \subseteq F \) for which a fixed point theorem does apply, we'll have established that \(F' \) (and therefore \(F \)) does have a fixed point.

What set \(F' \) should we use? If we want to use the Banach fixed point theorem, for example, \(F' \) will have to satisfy the following conditions:

1. \(F' \) is a complete metric space (in some metric)
2. if \(v, w \in F' \), then \(v, w \in F' \) — i.e., \(T \) maps \(F' \) into \(F' \).
3. \(T \) is a contraction on \(F' \) — i.e., in the metric \(d \):
 \[d(\tilde{v}, \tilde{w}) \leq \beta d(v, w) \]

We use \(C_b(\mathbb{R}^+) \), the set of all bounded continuous functions on \(\mathbb{R}^+ \), and the sup-metric on \(C_b(\mathbb{R}^+) \):

1. is easy to show.
2. is relatively straightforward. (We won't do it here.)
3. \(\tilde{v} \) is bounded is easy to show.
4. \(\tilde{v} \) is continuous: we'll do this here.
We show that

\((***)\) \(\forall \mathbf{g} \in C_b(\mathbb{R}^+), \tilde{\mathbf{v}} \text{ is continuous.} \)

Maximum Theorem

\[
x \in \mathbb{R}^l, \quad z \in \mathbb{R}^n
\]

Growth Theory Application

\[
e \in \mathbb{R}^m, \quad x \in \mathbb{R}^n
\]

\[
u : X \times E \to \mathbb{R}, \quad \tilde{u}(z, x) = u(f(x), z) + \varphi(v(z))
\]

\[
\Phi : E \to X, \quad \Phi(x) = [0, f(x)]
\]

\[
\mu : E \to X, \quad \mu(x) = \left\{ z \in \mathbb{R}^n \mid \tilde{u} \text{ is a solution} \right\}
\]

\[
\nabla : E \to \mathbb{R}, \quad \nabla(x)
\]

\[
\mu(x) = \arg\max_{z \in \Phi(x)} \tilde{u}(z, x)
\]

\[
(\text{we assume } \forall \mathbf{g} \in C(\mathbb{R}^+))
\]

\(\tilde{u}\) is clearly continuous if \(\tilde{f}\) and \(\tilde{u}\) are continuous.

Easy to show that \(\Phi\) is continuous (UHC & LHC).

\(\Phi\) is obviously compact-valued.

\[
\mu \text{ is UHC and } \tilde{v} \text{ is continuous.}
\]

Thus is what \((***)\)

we need: \((***)\) is satisfied

Therefore the contraction mapping theorem applies, and there is a fixed point of \(T\)

A \(v : \mathbb{R}^+ \to \mathbb{R}^n\) that satisfies \((*)\).