Arrow’s Pricing Formula for Securities

Let S be a finite set of states of the world and let N be the index set for a finite set of consumers. Generic elements of S and N are denoted by $s \in S$ and $i \in N$. In a slight abuse of notation, we also use S and N to denote the number of elements in S and N. We assume that there is only one good; each consumer $i \in N$ is endowed with \tilde{x}_0^i units of the good today and with \tilde{x}_s^i units in state s tomorrow. It’s convenient to think of the good as dollars. Let $\tilde{x}^i = (\tilde{x}_0^i, \ldots, \tilde{x}_S^i)$. A consumption plan for consumer i is a $(1 + S)$-tuple $(x_0^i, x^i) \in \mathbb{R}_+^{1+S}$, and an allocation is an N-tuple of plans, $(x_0^i, x^i)_{i \in N}$. Each consumer evaluates consumption plans according to a utility function $u^i : \mathbb{R}_+^{1+S} \to \mathbb{R}$. The economy is fully described by the set S of states and by the N-tuple $(u^i, \tilde{x}_0^i, \tilde{x}^i)_{i \in N}$ of consumers.

A set of securities for this economy is an $S \times K$ matrix D. Each column of D is the $S \times 1$ returns vector or dividends vector of one of the securities: the element d_{sk} specifies how many dollars one unit of security k will return tomorrow if state s occurs. Note that d_{sk} may be positive, zero, or negative. The K columns of D are thus the K securities. Consumers purchase or sell units of the securities today and hold them until tomorrow, when one of the states $s \in S$ is realized and each security k returns d_{sk} dollars for every unit of the security a consumer owns. We denote by y_k^i the number of units of security k purchased by consumer i; y_k^i may be positive, zero, or negative. Consumer i’s portfolio is the K-tuple (y_1^i, \ldots, y_K^i), which we denote by y^i. Note that if consumer i purchases the portfolio y^i, then his vector of state-contingent returns will be the S-tuple Dy^i. (It’s most convenient here to write y^i and Dy^i as $K \times 1$ and $S \times 1$ column vectors.) We denote the price of security k by q_k, and we write $q = (q_1, \ldots, q_K)$.

Definition: An equilibrium of the securities markets defined by the matrix D is a $(K + NK + N(1 + S))$-tuple $(q, (y^i)_{i \in N}, (x_0^i, x^i)_{i \in N}) \in \mathbb{R}_+^K \times \mathbb{R}^{NK} \times \mathbb{R}_+^{N(1+S)}$ that satisfies the utility-maximization and market-clearing conditions:

(U-M) \quad $\forall i \in N : (y^i, x_0^i, x^i)$ maximizes $u^i(x_0^i, x^i)$ subject to the constraints

\begin{align*}
x_0^i + q \cdot y^i & \leq \tilde{x}_0^i \quad \text{and} \\
x_s^i & \leq \tilde{x}_s^i + \sum_{k=1}^K d_{sk} y_k^i, \quad \forall s \in S, \quad \text{i.e.,} \quad x^i \leq \tilde{x}^i + Dy^i
\end{align*}

(M-C) \quad $\sum_{i=1}^N x_0^i = \sum_{i=1}^N \tilde{x}_0^i$ and $\sum_{i=1}^N y_k^i = 0, \quad k = 1, \ldots, K$.

Examples: Our “Extended Example of Equilibrium Under Uncertainty” contains several examples of securities markets using this model. Part 3 of the example is a market with a single security, a credit instrument such as a saving account or a bond. Part 4 adds a second security, an insurance contract.
Example: Suppose there are only two states, \(s = H \) and \(s = L \), and one security, which returns \(a \) in state \(H \) and \(b \) in state \(L \). By choosing \(y \), the number of units of the security he will buy at today’s security price \(q \), a consumer can vary \(x_H \) and \(x_L \), but not independently:

\[
\begin{bmatrix}
 x_H - \hat{x}_H \\
 x_L - \hat{x}_L
\end{bmatrix} =
\begin{bmatrix}
a \\
b
\end{bmatrix} y \quad \text{and} \quad x_0 = \hat{x}_0 - qy.
\]

Thus, giving up \(y \) units of consumption today will only allow him to augment his consumption tomorrow by multiples of \((a, b)\) across the two states.

Now suppose there’s a second security, which returns \(c \) in state \(H \) and \(d \) in state \(L \). If \((c, d)\) is a multiple of \((a, b)\), then nothing is gained by the introduction of the second security: choosing amounts \(y_1 \) and \(y_2 \) of the two securities still augments one’s consumption tomorrow only by multiples of \((a, b)\). But if \((a, b)\) and \((c, d)\) are not multiples of one another — i.e., if they’re linearly independent — then for any state-contingent consumptions \(x_H \) and \(x_L \) tomorrow, the equation

\[
\begin{bmatrix}
 x_H - \hat{x}_H \\
 x_L - \hat{x}_L
\end{bmatrix} =
\begin{bmatrix}
a & c \\
b & d
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
\]

has a solution \((y_1, y_2)\). Thus, in this case, state-contingent consumption tomorrow can be augmented by any amounts \(x_H - \hat{x}_H \) and \(x_L - \hat{x}_L \) by giving up some amount of consumption today in order to purchase some amounts \(y_1 \) and \(y_2 \) of the two securities. More securities would not add anything, but would not hurt either: as long as the securities returns matrix has two linearly independent columns (securities), any state-contingent consumptions can be achieved. More generally, with \(S \) states, the securities returns matrix \(D \) must have \(S \) linearly independent columns — i.e., we must have \(\text{rank} \ D = S \). We could equivalently say that the securities must \text{span} \ the space \(\mathbb{R}^S \).

It seems intuitive that this spanning condition will be necessary and sufficient to ensure that the securities markets achieve the same outcome as with complete Arrow-Debreu contingent claims markets — that an equilibrium allocation attained via securities markets will coincide with an Arrow-Debreu allocation. We now verify this intuition.

To simplify notation, let’s temporarily substitute \(z_0 \) for \(x_0 - \hat{x}_0 \) and \(z_s \) for each \(x_s - \hat{x}_s \). The key to establishing the equivalence of equilibrium outcomes is the individual consumer’s budget constraints: we show that if the securities span \(\mathbb{R}^S \), then both market structures present the consumer with exactly the same budget sets at their respective equilibrium prices. In our \(z \)-notation, the consumer’s Arrow-Debreu budget constraint is \(z_0 + p \cdot z = 0 \). We wish to be able to show that at some security prices \(q \) the constraint \(z_0 + q \cdot y = 0 \), together with the fact that \(z = Dy \), makes exactly the same set of \((z_0, z)\)’s available as the constraint \(z_0 + p \cdot z = 0 \) does.
The following proposition establishes that this is so if the securities span \(\mathbb{R}^S \) and if their prices are related to the contingent claims prices \(\mathbf{p} \) according to \(\mathbf{q} = \mathbf{p}D \). The proposition then leads to the subsequent theorem which establishes the equivalence between the securities markets equilibrium and the Arrow-Debreu equilibrium.

Proposition: Let \(\mathbf{p} \in \mathbb{R}^S \); let \(D \) be an \(S \times K \) matrix; let \(\mathbf{q} = \mathbf{p}D \in \mathbb{R}^K \); and let

\[
A = \{(z_0, \mathbf{z}) \in \mathbb{R}^{1+S} \mid z_0 + \mathbf{p} \cdot \mathbf{z} = 0\} \quad \text{and} \\
B = \{(z_0, \mathbf{z}) \in \mathbb{R}^{1+S} \mid \exists \mathbf{y} \in \mathbb{R}^K : z_0 + \mathbf{q} \cdot \mathbf{y} = 0 \text{ and } \mathbf{z} = D\mathbf{y}\}.
\]

If \(\text{rank } D = S \), then \(A = B \).

Proof:

Note that if \(\mathbf{z} = D\mathbf{y} \) then \(\mathbf{p} \cdot \mathbf{z} = \mathbf{p} \cdot (D\mathbf{y}) = (\mathbf{p}D) \cdot \mathbf{y} = \mathbf{q} \cdot \mathbf{y} \). We show that \(A \subseteq B \) and \(B \subseteq A \).

(i) Let \((z_0, \mathbf{z}) \in A \). Since \(\text{rank } D = S \), there is a \(\mathbf{y} \in \mathbb{R}^K \) that satisfies \(\mathbf{z} = D\mathbf{y} \). Since \(z_0 + \mathbf{p} \cdot \mathbf{z} = 0 \) (because \((z_0, \mathbf{z}) \in A \) and \(\mathbf{p} \cdot \mathbf{z} = \mathbf{q} \cdot \mathbf{y} \) (because \(\mathbf{z} = D\mathbf{y} \)), we have \(z_0 + \mathbf{q} \cdot \mathbf{y} = 0 \), and therefore \((z_0, \mathbf{z}) \in B \).

(ii) Let \((z_0, \mathbf{z}) \in B \). Then, according to the definition of \(B \), there is a \(\mathbf{y} \in \mathbb{R}^K \) that satisfies both \(z_0 + \mathbf{q} \cdot \mathbf{y} = 0 \) and \(\mathbf{z} = D\mathbf{y} \). Therefore \(\mathbf{p} \cdot \mathbf{z} = \mathbf{q} \cdot \mathbf{y} \), and it follows that \(z_0 + \mathbf{p} \cdot \mathbf{z} = 0 \), and therefore \((z_0, \mathbf{z}) \in A \).

Theorem: Let \(D \) be an \(S \times K \) securities returns matrix that satisfies \(\text{rank } D = S \), and let \(\mathbf{q} = \mathbf{p}D \). If \((\mathbf{p}, (x_{i0}^i, \mathbf{x}^i)_{i \in N}) \) is an Arrow-Debreu equilibrium for the economy \(E = (S, (u^i, (\hat{x}_0^i, \mathbf{\hat{x}}^i)_{i \in N})) \), then there is a profile \((\mathbf{y}^i)_{i \in N} \) of portfolios for which \((\mathbf{q}, (\mathbf{y}^i)_{i \in N}, (x_{i0}^i, \mathbf{x}^i)_{i \in N}) \) is an equilibrium of the securities markets defined by \(D \) for the economy \(E \). Conversely, if \((\mathbf{q}, (\mathbf{y}^i)_{i \in N}, (x_{i0}^i, \mathbf{x}^i)_{i \in N}) \) is a securities-markets equilibrium, then \((\mathbf{p}, (x_{i0}^i, \mathbf{x}^i)_{i \in N}) \) is an Arrow-Debreu equilibrium for \(E \).

Remark: Note that the allocation \((x_{i0}^i, \mathbf{x}^i)_{i \in N} \) is the same in both equilibria — i.e., everyone’s state-contingent consumption is the same in both equilibria.

Proof of the Theorem: This is a simple corollary of the preceding proposition. For each \(i \in N \), we let \(x_{i0}^i - \hat{x}_0^i \) and \(\mathbf{x}^i - \mathbf{\hat{x}}^i \) play the roles of \(z_0 \) and \(\mathbf{z} \) in the proposition. The set \(A \) in the proposition is therefore the set of plans \((x_{i0}^i, \mathbf{x}^i) \) available to consumer \(i \) — consumer \(i \)’s budget constraint — at the equilibrium price-list \(\mathbf{p} \) in the Arrow-Debreu equilibrium, and the set \(B \) is the set of plans available to him at the securities prices \(\mathbf{q} = \mathbf{p}D \) in the corresponding securities markets. If \(\text{rank } D = S \), then the two sets of available plans \((x_{i0}^i, \mathbf{x}^i) \) are identical, and the consumer will therefore choose the same plan when facing either price-list. Therefore the utility-maximization and market-clearing conditions are satisfied in one case if and only if they are satisfied in the other case.