The following homework will help you get acquainted with the R statistical software package. It will seem unfamiliar and awkward at first, but stick with it, soon it will be easy. Don’t get frustrated if this HW seems difficult; this is as hard as it gets. I will never expect you to memorize R commands for exams, the quick reference sheet on the website will be provided. During the second half of the course you will find R to be an extremely helpful resource.

If you get stuck with the HW, then take a look at the R help page: http://tanbakuchi.com/Resources/R_Statistics/RBasics.html. If that doesn’t help, then send an email to me explaining the problem you are having. Be sure to copy and paste the your R work (and output with errors) into the email.

Some helpful notes:

Implicit multiplication signs Make sure you include all implicit multiplication signs. If you get either of the following errors: `syntax error` or `attempt to apply non-function`, you probably forgot to include the multiplication sign *. You will get an error if you type `2a` or `3(4-2)`, you should type `2*a` or `3*(4-2)`.

Order of operations be sure to enter parenthesis when needed. R observes the normal order of operations. Thus \(\frac{2+6}{3}\) should be entered as `(2+6)/3`.

Powers in R use the carrot symbol, ie. \(2^4\) is entered as `2^4`.

Square Root To find the square root in R, use the `sqrt(x)` function, ie. \(\sqrt{16}\) is entered as `sqrt(16)`.

Closing parenthesis Make sure you include closing parenthesis and quotations. Typing `sqrt((2+4)*3` won’t work since the closing parenthesis for the square root function is missing. The correct expression is `sqrt((2+4)*3)` which has the closing parenthesis. If the R prompt changes from `>` to `+` it indicates you are missing a closing parenthesis or quotation. Type the closing element and hit enter. If you can’t get the `>` prompt back, quit and reopen R.

Copy your work into a word document (including any plots). Ensure it is labeled with the question numbers and neat. Only include the correct work, do not include errors.

1. Use R as a calculator to verify that the following statements are true (by evaluating the left hand side to check that it is equal to the right hand side).

\[
\text{(a) } 12 \times 2 - 4.8 = 19.2
\]

Solution:

\[
> 12 \times 2 - 4.8
\]

[1] 19.2

\[
\text{(b) } \frac{8^3 + 2}{4} = 128.5 \tag{1}
\]
Solution:
> (8^3 + 2)/4
[1] 128.5

(c) \(\cos(0) = 1 \)

Solution:
> cos(0)
[1] 1

(d) \(\sqrt{8} = 2.82842712474619 \)

Solution:
> sqrt(8)
[1] 2.828427

(e) \(\sqrt{\frac{8+43}{5}} = 3.19374388453426 \)

Solution:
> sqrt((8 + 43)/5)
[1] 3.193744

2. Define the following variables in R: \(a = 5, b = 12.3 \). Use R to show that the following statements are true. (If you want to check to see what value is stored in a variable, just type its name and hit enter.) **Don’t forget to include implicit multiplication signs.**

Solution:
> a = 5
> b = 12.3

(a) \(3.5a = 17.5 \)

Solution:
> 3.5 * a
[1] 17.5
(b) \(a - b = -7.3 \)

Solution:
\[
> a - b \\
[1] -7.3
\]

(c) \(\frac{12 - 5}{b} - 5.2^a = -3801.5 \)

Solution:
\[
> (12 - 5)/b - 5.2^a \\
[1] -3801.471
\]

(d) \((b - a)(2a - b) = -16.79 \)

Solution:
\[
> (b - a) * (2 * a - b) \\
[1] -16.79
\]

3. Define the vector (data set) \(w = \{-5, 4, 2, 0, 3, 1, -2, 4\} \) in R. Answer the following questions. Type the following commands in R, look at the output and then write one or two complete sentences describing what the command did. (Be sure to include your input and output.)

To create the vector \(w \) you type: \(w = c(-5, 4, 2, 0, 3, 1, -2, 4) \)

Solution:
\[
> w = c(-5, 4, 2, 0, 3, 1, -2, 4)
\]

(a) \(w \times 2 \)

Solution:
\[
> w * 2 \\
[1] -10 8 4 0 6 2 -4 8
\]
Squares each value in \(w \).

(b) \(w[1] \)

1Throughout this course we will use this method to store a set of data in a variable. Make sure you know how to do this!
Solution:
> w[1]
[1] -5
Retrieves the first element \(w_1 \).

(c) \(w[2] \)

Solution:
> w[2]
[1] 4
Retrieves the second element \(w_2 \).

(d) \(w==4 \)

Solution:
> w == 4
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
Shows the elements in \(w \) that are equal to 4.

(e) \(w>2 \)

Solution:
> w > 2
[1] FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
Shows the elements in \(w \) that are greater than 2.

(f) \(w[w>2] \)

Solution:
> w[w > 2]
[1] 4 3 4
Retrieves all the elements in \(w \) that are greater than 2.

(g) What would you type in R to find all the values in \(w \) that are less than 0?
Solution:
> w[w < 0]
[1] -5 -2

4. Define the following vectors in R just as you did for w in the previous question:

\[
y = \{65, 22, 14, 19, 20\}\\
z = \{8, 3, 2, 5, 7, 8\}
\]

Solution:
> y = c(65, 22, 14, 19, 20)
> z = c(8, 3, 2, 5, 7, 8)

(a) To sum up all the numbers in a vector x, you can use the function `sum(x)`. Thus, to find the sum of all the values in y you would type:

> sum(y)
[1] 140

Use R to find the sum of all the values in z.

Solution:
> sum(z)
[1] 33

(b) The function `max(x)` returns the maximum value in a vector. Thus, to find the maximum value in z you would type:

> max(z)
[1] 8

Use R to find the maximum value in y.

Solution:
> max(y)
[1] 65

5. R is capable of making many types of graphs. We can use R's `curve` function to plot polynomials.
(a) Type in the following command: \texttt{curve(sin(x*2*pi))}
What function did R plot?

\begin{Verbatim}
> curve(sin(x * 2 * pi))
\end{Verbatim}

Solution:
\begin{Verbatim}
R plotted the sine function. \(f(x) = \sin(x2\pi) \)
\end{Verbatim}

(b) What is the range of x values plotted for the previous graph you made?

Solution: \((0, 1)\)

(c) Now type in: \texttt{curve(sin(x*2*pi), xlim=c(-2, 2))}
We now have added an optional argument to the function which changes the default behavior. What is the new range of x values plotted on the graph?

Solution: \((-2, 2)\)

(d) What is the default range of x values plotted for the \texttt{curve} function?

Solution: \((0, 1)\)

(e) What does the optional argument \texttt{xlim} do?

Solution: Changes the range of x values plotted.

(f) What would you type into R to make the above graph have a x range of \((0, 5)\)?

Solution: \texttt{curve(sin(x*2*pi), xlim=c(0, 5))}

(g) Type the following command: \texttt{curve(x^3, xlim=c(-10, 10), main="Polynomial")}
This time we are graphing \(f(x) = x^3 \). What does the optional argument \texttt{main} do?
6. Use the `curve()` function in R to plot the following function over the domain \((-10, 20)\). Set the title of the plot to “Parabola”. (Be sure to copy and paste your plot into the HW.)

\[
f(x) = (x - 4)^2 + 20
\]

Solution:

```r
> curve((x - 4)^2 + 2, xlim = c(-10, 20), main = "Parabola")
```

7. Load the book data into R (download the .RData file on the website under the R resources and double click on it). This will load a bunch of data tables.

(a) One of the data tables is named `MM`. This table contains information on the weights and colors of M&M’s observed in a study. Type `MM` and hit enter. This will display the data in the table. What are the column names (you may have to scroll up)?

Solution:

```r
> names(MM)
[1] "WEIGHT" "COLOR"
```

(b) An easier way to determine the names of the columns is to use the `names()` function. Now type: `names(MM)`. What did this do?

Solution: Listed the names of the columns in the `MM` table.

(c) Type `MM$WEIGHT`. What did this do?
Solution: Retrieved the weight of the M&M data.

(d) Now find the mean weight of the M&M’s using the above statement and the same method we used previously to find the mean of a vector.

```
> mean(MM$WEIGHT)
[1] 0.85649
```

(e) Now make a histogram plot of the M&M weights by typing: `hist(MM$WEIGHT)`

Hopefully now you can see how R is able to do allot of work with just a little typing. Yes, the trivial calculations can seem tedious, but more complex calculations and plots are made easily!

```
> hist(MM$WEIGHT)
```

(f) Type the following: `plot(MM$COLOR)`

Which color of M&M were observed the most in the study?

```
> plot(MM$COLOR)
```
The blue colored M&M’s were observed most in the study.

(g) Type the following: `summary(MM)`
What does the above command do?

Solution: It summarizes each column.

```r
> summary(MM)

            WEIGHT        COLOR
      Min. :0.6960    Red :13
    1st Qu.:0.8287  Orange:25
  Median :0.8580   Yellow: 8
    Mean :0.8565  Brown : 8
3rd Qu.:0.8810    Blue :27
    Max. :1.0150  Green :19
```

(h) Now find the mean weight of the blue M&M’s by typing

```r
blue=MM$WEIGHT[MM$COLOR=="Blue"]
mean(blue)
```
Solution:

```r
> blue = MM$WEIGHT[MM$COLOR == "Blue"]
> mean(blue)
[1] 0.856037
```

(i) Next find the mean weight of the green M&M’s by modifying what you did in the previous problem.

Solution:

```r
> green = MM$WEIGHT[MM$COLOR == "Green"]
> mean(green)
[1] 0.8635263
```