Stats Review

February 10, 2010 Pedro Wolf

Today

- Review Statistics
- Data?
 - Creating measures of constructs
- Descriptive Statistics
- The Correlation Coefficient
- The Student's T-test

What Data to Collect

- FPOT
- On the bottom level you have the undifferentiated real world
- On the other end you have a theory (analytical world)
- The purpose of research is to compare that theory (analytic world) to the undifferentiated real world
- The first step in that comparison is data collection

Things, Events, and Data

- The undifferentiated real world is extremely complex and fluid
 - e.g. where do I begin and end?
 - you see me as a distinct thing because things like me have been a selective pressure on your ancestors
 - At the same time we can't perceive other potential "things"
- To overcome this we define and extract things from the real world
- In your research these things and events are data

The Latent Variable and Cause

- Necessary and Sufficient Causes
 - Necessary- if x is a necessary cause of y then the presence of y implies the presence of x.
 - Sufficient- if x is a sufficient cause of y, then the presence of x implies the presence of y, but another cause z could also cause y.
 - In science we are looking for necessary causes
- You can never see a "necessary cause" directly.
 - I put a gallon of water in a pot, what can I do to make it boil?
 - I can build a fire under the pot
 - I can decrease the surrounding pressure
 - If I wanted water to not boil at let's say 213 degrees Fahrenheit I could increase the pressure
 - I can put it on a stove and turn a dial
 - What causes water to boil?
 - pressure, stove, fire, pressure and heat...?

Are these the causes of water boiling? What kind?

• They are all sufficient causes

• What is the necessary cause?

• They all manipulate heat.

Heat causes molecules to move

When the molecular motion is strong enough a phase transition happens

• This happens when the vapor pressure of the liquid equals the environmental pressure

• This happens when the vapor pressure of the liquid equals the environmental pressure

Selecting Things and Events

- Selecting things and events 1st step in linking analytical world with real world
- Things and events need to be linked with "empirical constructs" which are part of your hypothesis
 - If your studying heat and boiling water, how are you measuring heat, how are you measuring boiling?
 - You have to select the appropriate things which make up your events, which eventually become your data

Your data is collected, now what do you do?

- First thing you do is calculate the descriptive statistics.
- Measures of central tendency
 - Mean- the mean is the score located at the exact mathematical center of a distribution
 - median- the median is the <u>middle</u> score of the data; the score that divides the data in half
 - mode-the mode is the score that has the highest frequency in the data
- Measures of dispersion
 - range- the range indicates the distance between the two most extreme scores in a distribution
 - standard deviation- The standard deviation indicates the "average deviation" from the mean, the consistency in the scores, and how far scores are spread out around the mean

Measures of Central Tendency

• The X with the bar over it is the mean of X $\overline{X} = \frac{\Sigma X}{N}$

- The sigma is code for add all the values of X up
- The N is the number of values for X you have
- We are not doing ''' ' ' and.
 - Go to the course data set

e and download todays

- http://www.u.arizona.edu/~wolfp/psych297a.htm
- Or google Pedro Wolf and click on the link under my picture.

	A	В	<u> </u>	D
1	Y	Jan H	Jan A	
2	1996	69.5	53.6	
3	1997	63.6	52.4	
4	1998	67.1	53.2	
5	1999	70	53.6	
6	2000	70.5	55	
7	2001	65.6	49.7	
8	2002	73.6	51.8	
9	2003	73.6	58.1	
10	2004	64.6	52.9	
11	2005	66	54.4	
12	2006	69.5	54.5	
13	2007	60.7	48.6	
14	2008	63.6	51.7	
15	2009	69.1	55.5	
16	2010	66	53.9	
17				

• First you may want to label your rows which contain averages

	A	В	С	
1	Y	Jan H	Jan A	
2	1996	69.5	53.6	
3	1997	63.6	52.4	
4	1998	67.1	53.2	
5	1999	70	53.6	
6	2000	70.5	55	
7	2001	65.6	49.7	
8	2002	73.6	51.8	
9	2003	73.6	58.1	
10	2004	64.6	52.9	
11	2005	66	54.4	
12	2006	69.5	54.5	
13	2007	60.7	48.6	
14	2008	63.6	51.7	
15	2009	69.1	55.5	
16	2010	66	53.9	
17				
18	AVERAGES			

 In the row under the column you want to take the average for type =AVERAGE(

	Α	В	С	
1	Y	Jan H	Jan A	
2	1996	69.5	53.6	
3	1997	63.6	52.4	
4	1998	67.1	53.2	
5	1999	70	53.6	
6	2000	70.5	55	
7	2001	65.6	49.7	
8	2002	73.6	51.8	
9	2003	73.6	58.1	
10	2004	64.6	52.9	
11	2005	66	54.4	
12	2006	69.5	54.5	
13	2007	60.7	48.6	
14	2008	63.6	51.7	
15	2009	69.1	55.5	
16	2010	66	53.9	
17				
18	AVERAGES	=AVERAGE(

- Now highlight the numbers you want to average
- To do this just place your cursor over the first cell in the column and drag to the last

Α	B	С	D	E
Y	Jan H	Jan A		
1996	69.5	53.6		
1997	63.6	52.4		
1998	67.1	53.2		
1999	70	53.6		
2000	70.5	55		
2001	65.6	49.7		
2002	73.6	51.8		
2003	73.6	58.1		
2004	64.6	52.9		
2005	66	54.4		
2006	69.5	54.5		
2007	60.7	48.6		
2008	63.6	51.7		
2009	69.1	55.5		
2010	66	53.9		
		15 B x 1 C		
AVERAGES	=AVERAGE(32.D TO		
		AVERAGE(>	number 1, nu	mber 2,)

- Now just finish by either hitting enter or close the parantheses
- What's our answer?

- Now just finish by either hitting enter or close the parantheses
- What's our answer?

Α	В	С
Y	Jan H	Jan A
1996	69.5	53.6
1997	63.6	52.4
1998	67.1	53.2
1999	70	53.6
2000	70.5	55
2001	65.6	49.7
2002	73.6	51.8
2003	73.6	58.1
2004	64.6	52.9
2005	66	54.4
2006	69.5	54.5
2007	60.7	48.6
2008	63.6	51.7
2009	69.1	55.5
2010	66	53.9
AVERAGES	67.53	

• Select a cell 16 2010 66 53.917 • Label it AVERAGES 18 67.53 Type =stdev(19 Highlight the cells 20 21 • Hit enter 99

16 2010 66 53.9 Select a cell 17 • Label it – 18 AVERAGES 67.53 19 Type =stdev(20 • Highlight the cells $\frac{2}{21}$ 22 • Hit enter

- Select a cell
- Label it
- Type =stdev(______
- Highlight the cells
- Hit enter

16		2010	66	53.9
17				
18	AVERAGES		67.53	
19	Standard Deviation		STDEV(
20				

- Select a cell
- Label it
- Type =stdev(
- Highlight the cells

15

16

17

18

19

20

21

• Hit enter

I	16			2010	66	53.9
	17					
	18	AVE	RAGES		67.53	
/(19	Stan	dard Deviatio	on	=STDEV(
`	20					
e cells		1		I		1
		2009	69.1	55.	.5	
		2010	66	53.	.9	
				15 B x 1 (
AVERAGES			67.53			
Standard Deviat	ion		=STDEV(<mark>B2:</mark> B	316		
			STE	DEV(► num	ber 1, number	2,)

The Correlation Coefficient as a Cause Detecting Tool

- The correlation coefficient by itself can not detect a cause
- There are different types of correlation coefficients.
 - These different correlation coefficients are used for different types of data
 - Review:
 - What's the difference between Nominal, Ordinal, Interval, and Ratio type data?

The Correlation Coefficient as a Cause Detecting Tool

Nominal

- r_{di} (phi coefficient) Two dichotomous variables
- r_{b} (biserial *r*) One dichotomous variable with continuity assumed
- r_t (tetrachoric) Two dichotomous variables in which underlying continuity can be assumed
- Ordinal
 - $-r_s$ (Spearman *r*) Ranked data. Both measures must be at least ordinal.
 - τ (Kendall's tau or rank order correlation
- Interval or ratio
 - Pearson r Both scales interval or ratio
- We will primarily use the *Pearson r*

Hypothesis

- We want to test a global warming hypothesis for Tucson.
- This past January seemed particularly cold
- I have data from 1996 to 2010 on both January average high (Jan H) and the January average for the daily averages (Jan A)
- To test this hypothesis we are going to see if there is a correlation between the passage of time and these temperatures using a correlation coefficient

- choose a cell
- Label it
- Type =correl(

Α	B	С	D
Y	Jan H	Jan A	
1996	69.5	53.6	
1997	63.6	52.4	
1998	67.1	53.2	
1999	70	53.6	
2000	70.5	55	
2001	65.6	49.7	
2002	73.6	51.8	
2003	73.6	58.1	
2004	64.6	52.9	
2005	66	54.4	
2006	69.5	54.5	
2007	60.7	48.6	
2008	63.6	51.7	
2009	69.1	55.5	
2010	66	53.9	
AVERAGES	67.53		
Correlation Year X Jan H	= <u>correl(</u>		
	CORF	REL(► Data_1	, Data_2)

• Highlight all values for Y

Α	в	С	
Y	Jan H	Jan A	
1996	69.5	53.6	
1997	63.6	52.4	
1998	67.1	53.2	
1999	70	53.6	
2000	70.5	55	
2001	65.6	49.7	
2002	73.6	51.8	
2003	73.6	58.1	
2004	64.6	52.9	
2005	66	54.4	
2006	69.5	54.5	
2007	60.7	48.6	
2008	63.6	51.7	
2009	69.1	55.5	
2010	66	53.9	
	15 R x 1 C		
AVERAGES	07.00		
Correlation Year X Jan H	=correl(A2:A1	6	

• type a comma and highlight all values for Jan H

and hit enter

Α	В	С	D	E
Y	Jan H	Jan A		
1996	69.5	53.6		
1997	63.6	52.4		
1998	67.1	53.2		
1999	70	53.6		
2000	70.5	55		
2001	65.6	49.7		
2002	73.6	51.8		
2003	73.6	58.1		
2004	64.6	52.9		
2005	66	54.4		
2006	69.5	54.5		
2007	60.7	48.6		
2008	63.6	51.7		
2009	69.1	55.5		
2010	66	53.9		
		15 B x 1 C		
AVERAGES	67.53	15 1 1 1 0		
Correlation Year X Jan H	=correl(A2:A1	6, <mark>B2:B16</mark>		
		CORREL(D	ata 1,> Data	a 2)
			_	_

• Does this result support the global warming hypothesis?

Α	В	С
Y	Jan H	Jan A
1996	69.5	53.6
1997	63.6	52.4
1998	67.1	53.2
1999	70	53.6
2000	70.5	55
2001	65.6	49.7
2002	73.6	51.8
2003	73.6	58.1
2004	64.6	52.9
2005	66	54.4
2006	69.5	54.5
2007	60.7	48.6
2008	63.6	51.7
2009	69.1	55.5
2010	66	53.9
AVERAGES	67.53	
Correlation Year X Jan H	-0.25	

Let's see what the data look like?

- Highlight the two columns
- Click on the chart
- Select Scatterplot

What do the data look like?

Another test of the hypothesis

Select sheet two

		A		C	D
	1	1996 AT	2010 AT	_	
	2	50	58		
	3	43	55		
	4	45	53		
	5	53	53		
	6	53	56		
	7	52	54		
	8	55	56		
	9	58	51		
	10	62	58		
	11	61	55		
	12	55	56		
	13	59	61		
	14	60	59		
	15	58	54		
	16	59	54		
	17	61	57		
	18	57	53		
	19	49	60		
	20	53	58		
	21	50	53		
	22	54	58		
	23	51	50		
	24	43	46		
	25	47	44		
	26	48	4/		
	27	55	54		
	28	52	00		
	29	54	52		
	30	54	54		
	32	61	54		
	33	01			
\backslash	34				
	35				
```	36				
	37				
	38				
	39				
	40	$\langle \rangle$			
	41				
	42				
	43				
	44	$\backslash$			
	45				
	46				
	<b>^17</b>	W Sheet1	Sheet2 /US	1	
	UUU	Jon ( Sheet1 )	Sheetz		

# A t-test in excel

- Again select a cell
- Label it
- Type =ttest(
- Highlight your first group
- Type a comma
- Highlight the second



	47	44	
	48	47	
	51	54	
$\backslash$	55	56	
	53	50	
	54	53	
	61	54	
	61	54	
	T Test	31 R x 1 C	

47

54

56

50

53

54

54

TTEST(> data 1, data 2, mode, Type )

48

51 55

53

54

61

61

=ttest(

T Test

# A t-test in excel

- type a comma
- Select one or two tails by entering a one
- type a comma
- Select the type of t-test- we are going to assume equal variances so type a 2

29	53	50	
30	54	53	
31	61	54	
32	61	54	
33			
34	T Test	=TTEST(A2:A32,B2:B32,2,2)	
35			

#### Answer

26	48	47	
27	51	54	
28	55	56	
29	53	50	
30	54	53	
31	61	54	
32	61	54	
52	01	U-1	
33			
33 34	T Test	0.81	
33 34 35	T Test	0.81	
33 34 35 36	T Test	0.81	
33 34 35 36 37	T Test	0.81	

# Homework

- Write a rough draft for an introduction for next week
  - Rubric will be posted
- Also turn in a complete spreadsheet in an excel file
- All the variables need descriptive statistics
  - Mean and standard deviation
- I want correlations between all the variables in sheet 1
- I want a 2 tailed t test assuming equal variances in sheet 2
- All due next Tuesday by 10 p.m.