Pivotal Suppliers and Market Power in Experimental Supply Function Competition

Jordi Brandts, Stanley S. Reynolds and Arthur Schram

January 31, 2011

Abstract

In the process of regulatory reform in the electric power industry, the mitigation of market power is one of the basic problems regulators have to deal with. We use experimental data to study the sources of market power with supply function competition, akin to the competition in wholesale electricity markets. An acute form of market power may arise if a supplier is pivotal; that is, if the supplier’s capacity is required in order to meet demand. To be able to isolate the impact of demand and capacity conditions on market power, our treatments vary the distribution of demand levels as well as the amount and symmetry of the allocation of production capacity between different suppliers. We relate our results to a descriptive power index and to the predictions of two alternative models: a supply function equilibrium (SFE) model and a multi-unit auction (MUA) model. We find that pivotal suppliers do indeed exercise their market power in the experiments. We also find that observed behavior is consistent with the range of equilibria of the unrestricted SFE model and inconsistent with the unique equilibria of two refinements of the SFE model and of the MUA model.

Keywords: Market Power, Electric Power Markets, Pivotal Suppliers, Experiments

JEL Classification Codes: C92, D43, L11, L94

Acknowledgements

Financial support by the Spanish Ministerio de Ciencia e Innovación, the Barcelona GSE Research Support Program and Consolider-Ingenio is gratefully acknowledged. David Rodriguez provided excellent research assistance Remaining errors are ours.

Authors

<table>
<thead>
<tr>
<th>Jordi Brandts</th>
<th>Stanley S. Reynolds</th>
<th>Arthur Schram</th>
</tr>
</thead>
</table>
| Department of Business Economics
 Universitat Autònoma de Barcelona and
 Institut d’Anàlisi Econòmica, CSIC
 Campus UAB
 08193 Bellaterra (Barcelona) Spain
 phone +34-93-5814300
 Jordi.Brandts@uab.es | Department of Economics
 McClelland Hall
 Eller College of Management
 University of Arizona
 Tucson, AZ 85721-0108 U.S.A. | CREED
 Amsterdam School of Economics
 Department of Economics and
 Business
 University of Amsterdam
 Roeterstraat 11
 1018 WB Amsterdam
 The Netherlands
 phone +31-20-525.4293
 Schram@uva.nl |

Authors
1. Introduction

In the worldwide process of regulatory reform in the electricity industry, the possible existence of market power is one of the basic problems analysts and policy makers have to deal with. Field data document the existence of reduced competition due to market power in some electric power markets (Wolfram 1999; Borenstein et al. 2002). The severe welfare losses this may cause are a major concern that needs to be addressed to fully assess the success of the reforms. If non-competitive prices can easily persist in these markets, this creates the need to find measures to mitigate market power.

Among the features of markets that need to be taken into account in relation to market power is the presence of one or more pivotal suppliers. In a general sense, a producer can be considered to be pivotal if, without his capacity, the supply cannot serve the whole demand. The issue is not one of insufficient total capacity to serve the market demand, but one of particular producers controlling large enough parts of the capacity. We will refer to market power due to pivotal suppliers as pivotal power.

Concerns about pivotal power are the basis for some energy policy provisions. For instance, the U.S. Federal Energy Regulatory Commission (FERC) may block a generation company from charging market-based rates for energy if the company fails either of two screening tests for market power. One of the tests used by FERC is the pivotal supplier screen; a generation supplier is deemed pivotal, and therefore fails the test, if peak demand cannot be met in the relevant market without production from the supplier’s capacity.1

In this paper we present results from laboratory experiments in which we study the effects of pivotal power. To our knowledge this is the first experimental study focusing on this specific issue. A potentially important distinction for policy-makers is the presence of a pivotal supplier vs. the supplier’s incentive to exercise market power. We examine in the laboratory the extent to which pivotal suppliers actually exercise market power under varying market conditions. We study both the cases where pivotal power is evenly spread among producers and where it is concentrated in a subset of producers. The first case corresponds more to a situation of tight market capacity and the second more to a case in which particular firms may have strong influence on market outcomes, even though market capacity is large.

1 The following quote is from FERC Order No. 697 (2007), pp. 18-19: “The second screen is the pivotal supplier screen, which evaluates the potential of a seller to exercise market power based on uncommitted capacity at the time of the balancing authority area’s annual peak demand. This screen focuses on the seller’s ability to exercise market power unilaterally. It examines whether the market demand can be met absent the seller during peak times. A seller is pivotal if demand cannot be met without some contribution of supply by the seller or its affiliates.”
To study more closely the circumstances under which pivotal power may matter, we also analyze the impact on market power of a variation in the extent of demand uncertainty.

The use of laboratory experiments makes it possible to implement the desired variations in capacity distributions with a high degree of control, in order to study their effects under conditions that are strongly ceteris paribus. This control makes the experimental method a useful tool for studying electric power markets (Rassenti et al. 2002; Staropoli and Jullien 2006). In addition the possibility of replication allows for a very systematic study of the relevant issues. (See Falk and Heckman 2009 for a recent methodological discussion of laboratory experiments).

Though pivotal power as such has not been studied experimentally, previous laboratory experiments do show that market power is easily exerted in environments that mirror the wholesale electricity market. Moreover, experiments have been useful for studying how certain market features can increase or limit market power; demand side bidding (Rassenti, Smith and Wilson 2003) and forward trading (Brandts, Pezanis-Christou and Schram 2008) have been shown to enhance competition.

Outside of the laboratory the notion of pivotal power has been investigated before, both with descriptive measures of suppliers’ positions in the market and with theoretical models. The Residual Supply Index (hereafter, RSI) provides a measure of the degree of pivotal power based on fundamental economic intuition. The RSI measures the aggregate capacity of all suppliers except the largest as a fraction of total demand. The largest supplier is pivotal when this index is less than one and the lower the RSI the higher pivotal power. Field data suggest that the RSI is a useful indicator. The higher the index’ value –i.e., the lower the weight of the largest supplier–, the lower were price-cost margins in the summer peak hours of the year 2000 in the California wholesale market (Rahimi and Sheffrin 2003). Wolak (2009) develops a measure of a supplier’s ability to exercise unilateral market power in each half-hour period in his study of the New Zealand wholesale electricity market. He notes that this ability to exercise market power is strengthened the greater the probability that the supplier is pivotal during the period.\(^2\) Wolak finds a positive correlation between the average half-hourly firm-level ability to exercise unilateral market power and half-hourly market prices.

More formal analyses of pivotal power have been based on either a multi-unit auction model (Anwar 1999; Fabra et al. 2006), hereafter MUA, or the supply function equilibrium

\(^2\) Wolak discusses pivotal suppliers and their significance in the New Zealand wholesale market in Section 3.4 of part 2 of his report. He defines a pivotal supplier as follows: “A supplier that faces a residual demand curve that is positive for all possible positive prices is said to be a pivotal because some of its supply is necessary to serve the market demand regardless of the offer price.” [Wolak (2009), p. 115]
model (Klemperer and Meyer 1989), hereafter SFE. Both are models of one-shot strategic interaction. The MUA is a discrete unit model in which each supplier submits price offers for units of capacity under their control. Fabra, von der Fehr and Harbord (2006) utilize the MUA to compare uniform and discriminatory auction formats under distinct environments concerning costs, capacity, and demand characteristics. Our focus in the present paper is on uniform price auctions. For uniform price auctions, the MUA predicts Bertrand-like outcomes with price equal to marginal cost for cases with no pivotal firms. If pivotal firms are present then the MUA predicts equilibrium prices above marginal cost, with the extent of price-cost markups and the character of equilibrium prices depending on the nature of demand uncertainty and the allocation of capacity across firms.

The SFE assumes a completely divisible good and has been used to study a variety of issues related to electric power markets (Green 1999; Newbery 1998; Baldick et al. 2004; Bolle 2001). In the standard model each seller submits a supply function that specifies the quantities supplied at different prices (Klemperer and Meyer 1989). At the time the sellers submit their supply functions, demand is typically uncertain. The supply functions are aggregated and intersected with realized demand to obtain a uniform market price. If the range of demand variation is bounded then there is a continuum of equilibria. The equilibrium price at the upper bound of demand realizations ranges between the competitive price and the Cournot price. The assumption of divisible output and the use of supply function strategies essentially expand the set of equilibria relative to that of the MUA. If there are no pivotal suppliers then the MUA equilibrium involves marginal cost pricing; the SFE model has that equilibrium as well as additional equilibria with positive price-cost markups. If pivotal suppliers are present then the SFE model may yield equilibria with prices below those of a MUA equilibrium (Genc and Reynolds 2010).

Neither model of pivotal power has to date been applied to either field or laboratory data. In our data analysis we will use the input of both the descriptive index and the two theoretical models. As will be seen, the RSI proposes certain shifts in prices in response to changes in total capacity and its distribution, but is silent about what price levels should be expected. The two theoretical models allow us to go beyond that. The MUA prescribes unique pure strategy equilibrium prices for four of the five environments we consider and mixed strategy equilibria for the fifth. The SFE yields pure strategy equilibrium price sets for each parameter constellation that we study. Aside from these sets, we will also consider two refinements of the SFE. In each case for which the MUA has a pure strategy equilibrium, this equilibrium is also an equilibrium for the SFE.
Our results show that observed market prices change with capacity levels and their distribution. The existence of overall excess capacity is not enough to guarantee competitive prices. The way in which they change is intuitive and consistent with the qualitative predictions of the RSI. In contrast to these effects of capacities, the variations in the demand range have smaller effects on observed market prices.

We also study the best response behavior of our subjects. We compare actual profits to optimal profits for subjects and compare these results to those from a similar analysis with field data from the Texas (ERCOT) wholesale power balancing market (Hortaescu and Puller 2008). We find that the behavior we observe in our experiments is closer to best responding than behavior in the particular field environment we compare our data to.

Overall, we find that observed behavior is consistent with the range of equilibria of the unrestricted SFE model and inconsistent with the unique equilibria of the MUA model and two refinements of the SFE model. In treatments without pivotal power, observed prices are on average higher than the marginal cost level of the MUA equilibrium, though there is a tendency for them to move towards the competitive MUA prediction. For treatments with market power observed prices are consistent with the qualitative feature of the SFE that market power caused by a symmetric reduction in capacity has a stronger effect on prices than market power caused by an asymmetric distribution of overall high capacity.

Our experiments bear some similarity to multi-unit auction experiments reported on in Sefton and Zhang (2010); these are sales auctions with three buyer subjects, in contrast to our procurement auctions with four seller subjects. The discrete units Nash equilibrium prediction in Sefton and Zhang is for each buyer to bid their value (roughly corresponding to subjects offering units at marginal cost in our experiments). Nash equilibria for a divisible units model, applied to Sefton and Zhang’s experiments, include bid-shading behavior with bids below values. Experimental results in Sefton and Zhang are consistent with bids equal to values; they find little evidence of bid shading. This is in contrast with results in our high-capacity treatments, in which average offers remained well above marginal cost for some groups. We discuss possible reasons for the differences in experimental results below.

The remainder of this paper is organized as follows. In the following section, we present our experimental design and procedures. Specific theoretical predictions are provided in section 3. The results follow in section 4. Section 5 concludes and discusses the implications of our findings.

3 Sefton and Zhang’s parameterized experimental model with discrete units has multiple equilibria, including equilibria involving bid shading.
2. Design and Procedures

In the experiment there are 25 rounds each consisting of five periods. The demand is simulated using a simple box-design (Davis and Holt, 1993). In each of the five periods \(t \) in round \(r \), a perfectly inelastic demand \(d^r_t \) is randomly chosen from the set \(d^r_t \in \{d_{\min}^r, \ldots, d_{\max}^r\} \) with equal probabilities for each element in the set. In all of our treatments, \(d_{\max}^r = 35 \). We define \(l=d_{\min}^r/d_{\max}^r \) as the load ratio, which is our first treatment variable. All sessions have either \(l=4/7 \) (i.e., \(d_{\min}^r = 20 \)) or \(l=6/7 \) (\(d_{\min}^r = 30 \)).\(^4\) There is a price cap given by \(p_{\max} = 25 \), i.e. no units can be traded above this price.

On the supply side there are four firms in each market. Each subject represents one firm. Each firm \(j \) offers a discrete number of units in round \(r \), which will apply to each period \(t \) in \(r \). Any units sold are produced at constant marginal costs \(c=5 \).\(^5\) Individual supply is limited by an exogenously enforced maximum capacity \(s_{j}^{\max} \). These determine industry capacity, which is given by \(S_{\max}^{\max} = \sum_{j=1}^{4} s_{j}^{\max} \).

Our second treatment variable is this industry capacity. This is given by either \(S_{\max}^{\max} = 48 \) or \(S_{\max}^{\max} = 36 \). Note that in both cases \(d_{\max}^{\max} \leq S_{\max}^{\max} \), i.e., in all cases industry capacity suffices to satisfy the maximum demand. Our third treatment variable pertains to the \(S_{\max}^{\max} = 48 \) case. We distinguish between the case where this capacity is distributed evenly across firms \((s_{j}^{\max} = 12, j = 1, \ldots, 4) \) and the case where there is asymmetric capacity \((s_{j}^{\max} = 5, j = 1, 2, s_{j}^{\max} = 19, j = 3, 4) \). For the \(S_{\max}^{\max} = 36 \) treatment we only consider the symmetric case \((s_{j}^{\max} = 9, j = 1, \ldots, 4) \).

Firm \(j \) offers units for sale in round \(r \) by bidding a discrete ‘supply function’, \(s_{j}^{r} \). This is a vector of up to \(s_{j}^{\max} \) supply prices, \(p_{j}^{sr} \), ordered from low to high at which firm \(j \) is willing to sell units: \(s_{j}^{r} = (p_{j1}^{sr}, p_{j2}^{sr}, \ldots, p_{j_{s_{j}^{\max}}}^{sr}) \), with \(p_{j1}^{sr} \geq p_{j2}^{sr} \geq \ldots \geq p_{j_{s_{j}^{\max}}}^{sr} \).\(^6\) Subjects can offer fewer than \(s_{j}^{\max} \) units by not entering prices for them. Equivalently, they can offer \(m < s_{j}^{\max} \) units by setting \(p_{jk}^{sr} = 26, k = m + 1, \ldots, s_{j}^{\max} \).\(^7\) The individual supply functions are combined and supply prices are ordered from low to high to obtain the market supply function for round \(r \), denoted

\(^4\) The load ratio affects the theoretically predicted outcomes (cf. section 3).
\(^5\) Given our focus on pivotal power, the assumption of constant marginal costs is not restrictive.
\(^6\) The “s” superscript on the price variable indicates that the variable is a price offer made by a seller.
\(^7\) Units offered at a price above the price cap, \(p_{\max} = 25 \) will not be sold.
by \(s' = (s'(1), \ldots, s'(S^{\text{max}})) \), which is a vector of the \(S^{\text{max}} \) submitted supply prices ordered from low to high (if necessary, supplemented with infinite prices for units not supplied). Finally, a uniform transaction price, \(p_{t}^{'} \), is determined in each period \(t \) of \(r \) by comparing \(d_{t}^{'} \) to \(s' \):
\[
p_{t}^{'} \equiv \min \{ s'(d_{t}^{'}) , p_{t}^{\text{max}} \}.
\]
Note that if \(s'(d_{t}^{'}) > p_{t}^{\text{max}} \), then supply cannot satisfy demand at a price below \(p_{t}^{\text{max}} \), and \(k < d_{t}^{'} \) units are sold, where \(k \) is uniquely determined by \(s'(k) \leq 25 \) and \(s'(k+1) > 25 \).

Finally, the payoffs of firm \(j \) in round \(r \), \(\pi_{j}^{'} \), are determined by the uniform prices in each of the five periods of a round and the marginal costs:
\[
\pi_{j}^{'} = \sum_{t=1}^{5} (p_{t}^{'} - c)q_{t}^{'} , \quad j = 1, \ldots, 4
\]
where \(q_{t}^{'} \) denotes the number of units sold by \(j \) in period \(t \) of round \(r \).

In the experiment, subjects submit supply functions by entering a price for each possible unit in a table. To ease the task, the software fills gaps between units priced. For example, if a subject enters a price of 5 for unit 1 and then 7 for unit 5, then units 2-4 are automatically priced at 7, though the subject can subsequently change them. In addition, the software does not allow decreasing prices across units. The subject is free to withhold units from the market by leaving them unpriced, as long as all subsequent units remain unpriced as well. No supply price is submitted until the subject finalizes and confirms the complete set. There is no time limit for submission of the supply functions.

After all four subjects have submitted a supply function, they are aggregated and the result is confronted with 5 subsequent demand realizations – the 5 periods of a round – yielding 5 prices. Each realization appears on the subjects’ monitors for 5 seconds. After the 5 periods, the subject can page back and forth between the periods until satisfied. After everyone has indicated that they are ready the next round commences.

The results of a period appear on the screen graphically and in numbers. Figure 1 shows an example of the graph a subject could see – the text is in Dutch. This was a treatment where each subject had a maximum of 9 units to supply. The graph shows the results for period 3 (shown at the bottom on the right), where \(d_{3}^{'} = 30 \) and \(p_{3}^{'} = 13 \) were realized (bottom left) and this subject sold 7 units (bottom center). The graph shows the realized demand function (including the price cap), the price (light colored line) and the 9 supply prices submitted by this subject for this round (rising from 6 to 22). The 7 units sold by the subject are shown in
dark gray; the 2 that were not sold are light gray. Notice that this subject was willing to sell her 8th unit at price 13 as well, but other subjects had also submitted units at this price. In this case the computer randomly appoints subjects to slots on the aggregate supply function.

The three treatment variables presented above (load ratio, industry capacity and symmetry of capacity) are varied between subjects. Table 1 presents an overview of these treatments and the number of markets we ran for each of them. In addition, it gives the average subject earnings for each treatment.

Table 1: Treatment Overview

<table>
<thead>
<tr>
<th>Load Ratio</th>
<th>Low: $l=4/7$</th>
<th>High: $l=6/7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric: $s_j^{max}=9, j=1,\ldots,4$</td>
<td>hsl; n=6; €45.14</td>
<td>hsh; n=5; €67.13</td>
</tr>
<tr>
<td>Symmetric: $s_j^{max}=12, j=1,\ldots,4$</td>
<td>hsl; n=6; €15.89</td>
<td>hsh; n=5; €27.28</td>
</tr>
<tr>
<td>Asymmetric: $s_j^{max}=5, j=1,2$</td>
<td>---</td>
<td>has; n=6; €43.60</td>
</tr>
<tr>
<td>Asymmetric: $s_j^{max}=19, j=3,4$</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note that this simple design allows us to investigate the role of pivotal suppliers in a straightforward manner. First, in treatments hsl and hsh no single firm is pivotal because any three firms can cover maximum demand ($d^{max}=35$). Second, lsI and lsH deal with the case where every firm is pivotal for at least some possible demand quantities: together the four firms have sufficient capacity for maximum demand, but three firms can only supply 27

Notes. The entries in the cell show the acronym, xyz (x=capacity, y=symmetry and z=load ratio); the number of markets we have data for, n; and the average earnings in euro (€).

8 Subjects did not receive information about the offer price of units sold by other suppliers; we considered this to be closest to what happens in the field.

9 We use pro-rata on the margin rationing in the experiments. This scheme forrationing supply is commonly used in wholesale electricity auctions. The way in which excess supply is rationed may have an impact on bidding; see Kremer and Nyborg (2004) for a theoretical analysis.
units. Third, *hah* covers the situation where two of the four firms (i.e., firms 3 and 4) are pivotal. Any combination of three firms including these two suffices for maximum demand but a combination of firms 1 and 2 with either 3 or 4 can only supply 29 units. Finally, note the large variation in earnings. This is a first indication that market power matters.

The experiment was conducted in seven sessions at the CREED laboratory for experimental economics of the University of Amsterdam. 112 subjects were recruited by public advertisement on campus and were mostly undergraduate students in economics, business and law. They were allowed to participate in only one experimental session. Each session lasted for about 2-3 hours. Earnings in the experiment were denoted in experimental francs. We used an exchange rate of 250 francs to 1 euro. All subjects received a starting capital of 1250 francs, which was part of their earnings. There was no show-up fee. Subjects earned between €12.40 and €112.20 with an average of €42.71.

At the outset of each session, subjects were randomly allocated to the laboratory terminals and were asked to read the instructions displayed on their screens. Then they were introduced to the computer software and given five trial rounds to practice with the software’s features. Subjects were told that during these trial rounds other subjects’ decisions would be simulated by the computer, which was programmed to make random decisions, and that gains or losses made during those rounds would not count for their final earnings from participation. Once the five trial rounds were over, the pool of subjects was divided into independent groups (markets) of 4 subjects.

Each session then consisted of 25 repetitions (rounds), each round taking approximately 3-4 minutes to be completed. In each session only one treatment was run with 5 or 6 groups per session. As mentioned at the beginning of the section, each round consisted of five periods, meant to correspond to different times of the day, with possibly different demand realizations. Subjects made supply decisions for each round; decisions were held fixed across the five periods within the round.

Subjects stayed in the same market for the whole session and did not know who of the other subjects were in the same market as themselves. The interaction in fixed groups approximates best actual circumstances in the kind of electric power markets that we are interested in. Fixed interaction is used in all previously cited experiments on electric power markets. The procedure has also the advantage that the observations from the different groups are statistically independent from each other.

10 A transcript of the instructions (translated from Dutch) is included in Appendix 1.
3. Theoretical Predictions and Hypotheses

As mentioned in the introduction, we center our theoretical analysis on a descriptive index, the RSI (Residual Supply Index) and two theoretical models, the MUA (multi-unit auction model) and SFE (supply function equilibrium model). In this section we formulate specific hypotheses derived from these benchmarks. Our hypotheses will pertain to prices. In particular, we will use the volume weighted average price (VWAP, hereafter), which is defined as the monetary value of trades divided by the number of units traded per round. The VWAP provides a useful way to compare observed prices in experiments to theoretical predictions. Formally, let \(p(d) \) be the expected price when \(d \) units of output are demanded. The expected VWAP is defined as,

\[
\overline{P}^e = \sum_{d=20}^{35} \frac{\delta d p(d)}{E[d]},
\]

where superscript \(e \) denotes expectation and \(\delta \) is the probability of each possible demand level.

The RSI is an indicator of market power given by the following expression:

\[
RSI = \frac{\text{total capacity} - \text{largest seller's capacity}}{\text{demand quantity}} = \frac{S_{\text{max}} - s_{j_{\text{max}}}}{d},
\]

where we have used the fact that in our notation seller \(j=3 \) has the highest capacity in all treatments (as does seller \(j=4 \)). Table 2 shows the range of RSI for each of our treatments, as well as the midpoint of the interval.

<table>
<thead>
<tr>
<th>Load Ratio</th>
<th>Low Capacity:</th>
<th>High Capacity:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Symmetric:</td>
<td>Symmetric:</td>
</tr>
<tr>
<td>Low</td>
<td>[0.71,1.25], 0.98, lsl</td>
<td>[1.03,1.80], 1.415, hsl</td>
</tr>
<tr>
<td>High</td>
<td>[0.71,0.83], 0.77, lsh</td>
<td>[1.03,1.20], 1.115, hsh</td>
</tr>
</tbody>
</table>

Notes. The first entry in the cell shows the range within which the RSI falls for the various possible demand realizations in the treatment concerned. The second entry shows the midpoint of that interval. The third entry is the treatment acronym defined in table 1.

If no firms are pivotal for any demand quantity, as in high-capacity treatments \(hsh \) and \(hsl \), then the RSI exceeds one in all periods of all rounds; in this case any group of three firms has enough capacity to meet demand. If the largest firm is pivotal for all demand quantities, as in treatments \(lsh \) and \(hah \), then the RSI is less than one for all periods of all rounds. For treatment \(lsl \) firms are pivotal for low demand quantities but not for high quantities. RSI is less than one for some periods and greater than one for other periods in treatment \(lsl \). We expect treatments with higher average values of RSI to have lower market prices.
The descriptive index is useful but has clear limitations, as it does not propose specific price levels for the different parameter configurations we analyze. The MUA and the SFE take us a bit further in this regard. Both models analyze the interaction between firms as a one shot strategic game, where the strategies consist of supply functions. Of course, the subjects in our experiment are engaged in a 25-round repeated game, so that the equilibrium prescriptions do not exactly pertain to the environment we study. However, as in many other studies the equilibria of the one shot game are relevant benchmarks, particularly given the known and finite time horizon we use. The central difference between the two models is that the MUA pertains to discrete production units while the SFE specifies continuously divisible output.

MUA Predictions

The MUA considers the game as an auction in which each firm \(j \) submits a vector of offer prices, selected from non-negative real numbers, for discrete units of output, \(s' j \). This game is analyzed in Anwar (1999) and Fabra, et al. (2006). For our parameters, this formulation yields pure strategy equilibria for treatments \(\text{hsh}, \text{hsl}, \text{hah}, \text{and lsh} \); the equilibrium is in mixed strategies for treatment \(\text{lsl} \). Details are given in Appendix 2.

Equilibria for high-capacity treatments \(\text{hsh} \) and \(\text{hsl} \) involve all firms offering their capacity at a price equal to marginal cost (\(c = 5 \)), i.e., \(p' j = 5, \forall j, r, k \), yielding an equilibrium price \(p' r = 5, \forall r, t \) and profits \(\pi' j = 0, \forall j, r \). In other words, when none of the firms are pivotal, the MUA model predicts that competition will work perfectly with the equilibrium price equal to marginal cost. Our experimental setup involves discrete price units \{5,6,…,25,26\}, rather than prices chosen from a continuum. For high-capacity treatments our experiments have equilibrium prices equal to either 5 or 6.

Pure strategy equilibria of MUA for \(\text{hah} \) and \(\text{lsh} \) involve asymmetric strategies, in which 3 firms offer all units at a low price, and the 4th firm (one of the two high-capacity firms for \(\text{hah} \)) offers all of its units at 25 (the price cap). The equilibrium price is equal to 25 for all demand realizations. The firm submitting high-price offers earns lower expected profit than its rivals; the low-price offers of rivals leave the high-price firm with no incentive to reduce its offers. These equilibria embody maximal exercise of market power; firms extract the maximum possible surplus in equilibrium.\(^{11}\)

\(^{11}\) This effect of the asymmetric distribution of capacities is reminiscent of the price competition environment with capacity constraints studied experimentally by Davis and Holt (1994). With a symmetric distribution of capacity the (pure strategy)
In treatment \textit{ls}l firms are pivotal for high demand quantities, but not for low demand quantities. There are no pure strategy equilibria of the MUA for \textit{ls}l. Fabra, et al (2006) derive a mixed strategy equilibrium for the case in which firms are restricted to make a single price offer for their capacity. However, Anwar (1999) shows that mixing over a single offer is not an equilibrium when each firm can make distinct offers for multiple units. We are not aware of analytical results for mixed strategy equilibria of MUA in which each firm can submit multiple offers. However, we can provide bounds on mixed strategy prices. Our experiment requires firms to submit offers in discrete price units from the set \{5,6,...,25,26\}; a unit offered at 26 will not be accepted and is equivalent to withholding the unit. Each firm submits offers for 9 units. A firm’s strategy is a non-decreasing offer schedule for 9 units; each firm has a finite set of strategies to choose from.12 It is well known that any finite \(n\)-person non-cooperative game has at least one mixed strategy Nash equilibrium. In Appendix 2 we show that expected equilibrium profit for a seller has a positive lower bound. This profit bound permits us to bound the equilibrium VWAP for treatment \textit{ls}l: \(\overline{P} \geq 11.55\).

\textit{SFE Predictions}

The second theoretical approach permits firms to submit continuous supply functions to an auctioneer. Klemperer and Meyer (1989) formulate and analyze game-theoretic models in which demand is uncertain and strategies are continuous, non-decreasing supply functions for infinitely divisible output. A Nash equilibrium for such a game is termed a Supply Function Equilibrium (SFE). Genc and Reynolds (2010) extend the SFE analysis of Klemperer and Meyer to permit capacity constraints and supply functions with discontinuities (e.g., step functions).

The SFE formulation has been used in a number of studies to predict behavior in naturally occurring wholesale electricity markets (Green 1999; Newbery 1998; Baldick et al. 2004; Bolle 2001) in which suppliers submit offers for discrete units of output. Output is not infinitely divisible in our experiments either. Each firm (subject) submits offers for between 5 and 19 discrete units of output, depending on the treatment. This permits us to explore whether or not the SFE model provides useful predictions of behavior in an environment with

\footnotesize{12 The strategy set is finite, but very large. There are 14,307,150 strategies to choose from.}
discrete units. In addition, our experiments permit us to compare the predictive power of the SFE model to that of the MUA model in a particular setting.13

Details of the SFE method applied to our parameters are presented in Appendix 3. Here, we present the main results derived from this theory. The first point to make is that Nash equilibrium pure strategies of the MUA model are also equilibrium strategies of the SFE model. Second, the SFE model admits additional pure strategy equilibria compared to the MUA model.

Consider our high-capacity hsh and hsl treatments. The only equilibrium for the MUA model has price equal to marginal cost (or one tick above marginal cost, for discrete prices); a firm has an incentive to undercut any rival offers that are above marginal cost. However, with infinitely divisible output, if a firm’s rivals submit smooth upward sloping supply curves then the firm’s best response is to offer its supply at prices above marginal cost. Klemperer and Meyer (1989) show that in general there are multiple supply function equilibria and these equilibria involve non-negative price-cost markups; a SFE with positive markups is sometimes referred to as an implicitly collusive equilibrium. Supply function equilibria for some of the treatments are illustrated in Figure 2. For hsh and hsl any aggregate supply func-

\textbf{Figure 2: Aggregate Supply Functions for SFE}

![Figure 2: Aggregate Supply Functions for SFE](image)

\textit{Notes.} The curves show possible aggregate supply curves for smooth supply function equilibria. The vertical dashed line at $Q=35$ indicates maximum demand d_{max}. For hsh and hsl, any curve between A and B constitutes a SFE. For lsh and lsl the set of aggregate supply curves for smooth SFE is reduced to the curves between A and some curve C, above curve B.

13 Under some market rules, one theory may be much more suitable than the other. If market rules limit firms to submitting offers with one or two steps, then the MUA model seems more appropriate than SFE. Some market rules allow firms to submit upward sloping supply functions. For example, the Southwest Power Pool RTO runs an energy balancing market in which each firm submits multiple price-quantity pairs. This RTO interpolates linearly between pairs to yield a piece-wise linear, upward sloping supply curve for the firm. See: http://www.spp.org/section.asp?group=328&pageID=27. A SFE model would seem more appropriate than a MUA model for such market rules.
tion between (and including) the two bold curves indicated by A and B is consistent with a SFE.\footnote{We refer to a SFE in which the aggregate supply function is differentiable over the range of possible demand quantities as a \textit{smooth SFE}. For example, supply function equilibria associated with aggregate supply functions labeled A and C in figure 2 are smooth.}

One way to characterize supply function equilibria is by the equilibrium price they generate when \(d^\text{max} \) is realized, i.e., \(p^*_j \big|_{d^\text{max}} = s'(35) \). As illustrated in Figure 2, the set of SFE for \(hsh \) and \(hsl \) is characterized by \(s'(35) \in [5,25] \), i.e., the price at maximum demand can lie anywhere between the competitive price and the Cournot price, which in this case is the same as the monopoly price.

Consider now treatments \(lsh \) and \(lsl \) for which each firm is pivotal; other firms cannot fully compensate if one firm withholds units. The market power induced in these treatments has as a consequence that supply functions at or near marginal cost for all units for all firms are not equilibrium strategies. In fact only the aggregate supply functions between some function C, above B, and A are SFE for these low capacity treatments (cf. figure 2). More specifically, for \(lsh \), functions characterized by \(s'(35) \in [25,21] \) are SFE and for \(lsl \) this holds for functions with \(s'(35) \in [18,25] \).

For \(lsh \) we have to also consider non-smooth SFE. If one allows firms to submit non-smooth step-function supply functions (formally, right-continuous functions of price) then the asymmetric equilibria of the MUA with price equal to 25, in which 3 firms offer all units at a low price and the 4th firm offers all of its units at 25 are also SFE for treatment \(lsh \) (but not for any of the other treatments with symmetric capacity distribution).

For treatment \(hah \) the asymmetric equilibria of the MUA, with one of the two high-capacity firms bidding in all units at a price of 25 (yielding price equal to 25 for all demand realizations), are also supply function equilibria. There are additional supply function equilibria for treatment \(hah \) with prices below the price cap. In these equilibria, low-capacity firms offer all units at a low price and high-capacity firms have upward sloping (in fact, linear) supply functions, which are between supply curves A and B in Figure 3; \(s'(35) \in [11.9,25] \) for these equilibria.

Table 3 summarizes the theoretical predictions from the two approaches in terms of volume weighted average prices (\(\overline{P} \)). In summary, the MUA yields very precise predictions for four out of five cases, but only mixed strategy equilibria for treatment \(lsl \). SFE predictions
Figure 3: SFE for Asymmetric Capacity Treatment

Notes. The small firms submit low price offers for their entire capacity, jointly 10 units (in the graph, these low offers are set equal to 5, but they may be larger than the marginal costs). Each large firm submits a linear, increasing supply function. The aggregate supply function is horizontal for units 1 – 10 and increases after unit 10. The most competitive of these equilibria reaches a price of 11.9 at \(d_{\text{out}} = 35\); the aggregate supply is labeled B. The least competitive of these equilibria reaches the price cap of 25 at \(d_{\text{out}} = 35\); the aggregate supply is labeled A.

Table 3: Theoretical Predictions of Volume Weighted Average Price

<table>
<thead>
<tr>
<th>Capacity:</th>
<th>low load ratio</th>
<th>high load ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUA</td>
<td>SFE</td>
</tr>
<tr>
<td>High symmetric</td>
<td>{5, 6}</td>
<td>[5, 16.4]</td>
</tr>
<tr>
<td>High asymmetric</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Notes. The SFE refinements (midpoint and payoff dominant) are described in the main text.

include the pure strategy equilibrium predictions of MUA, as well as additional predictions of intervals of average prices that are based on smooth supply function equilibria.

We will also apply two refinements to SFE and investigate how well they organize the data we observe. First, the ‘midpoint equilibrium’ selects the mean SFE in the range of symmetric SFE. This is an easy heuristic that attempts to predict average behavior across markets, assuming that distinct SFE occur with more or less equal probability. Second, the
‘payoff-dominant’ equilibrium is the SFE with the highest VWAP. This has the intuitive appeal of being best for the players concerned. Both refinements are given in table 3.15

We will use these theoretical predictions to organize our data on volume-weighted-average prices in several ways. We will study whether observed prices remain within the interval prescribed by the SFE and, if so, whether they are well approximated by the more extreme predictions of the SFE refinements or the MUA model, all shown in table 3.

In addition, we will take a more qualitative look at the data and test a set of formal hypotheses about the comparative static effects that the results in table 3 predict for our treatment variables. The null hypothesis we use as a benchmark stems from the naive view that prices should not be expected to differ across treatments, since in all our treatments total capacity is sufficient to serve the maximum demand. The distinct alternative hypotheses are based on both the midpoint values of the RSI (table 2) and the predictions that have been derived using MUA and the two SFE refinements (table 3). The comparisons we perform pertain to the distinguished treatment variations of total capacity, capacity distribution and demand load factor and to the direct comparison of the two ways in which pivotal power is present in our design.

In the following hypotheses \(\bar{P}_x \) stands for the volume weighted average price in treatment \(x \). The first two hypotheses refer to the symmetric reduction of capacity, with a high and low demand load factor respectively:

1. With a high load ratio, the presence of pivotal firms, due to symmetrically distributed low total capacity, increases average prices (predicted by RSI, MUA and both SFE refinements). Formally:

 \[H_{10}: \quad \bar{P}_{shh} = \bar{P}_{lsh} \quad \text{vs.} \quad H_{11}: \quad \bar{P}_{shh} < \bar{P}_{lsh} \]

2. With a low load ratio, market power caused by a symmetric reduction in capacity causes an increase in average prices (predicted by RSI, MUA and the midpoint SFE refinement). Formally:

 \[H_{20}: \quad \bar{P}_{shl} = \bar{P}_{lsl} \quad \text{vs.} \quad H_{21}: \quad \bar{P}_{shl} < \bar{P}_{lsl} \]

15Alternatively, one may think that the set of SFE equilibria could be refined by a restriction to linear supply functions (as demonstrated by Klemperer and Meyer 1989). This refinement only works with linear, downward sloping demand and linear marginal cost, however. In our environment such an approach does not refine the set of SFE equilibria.
The next hypothesis refers to the change in distribution of the high total capacity level for the high demand load factor.

3. With a high load ratio, the presence of pivotal firms, due to asymmetrically distributed high total capacity, increases average prices (predicted by RSI, MUA and both SFE refinements). Formally:

\[H_3_0: \overline{p}_{lsh} = \overline{p}_{hah} \text{ vs. } H_3_1: \overline{p}_{lsh} < \overline{p}_{hah} \]

The next hypothesis refers to the two ways in which pivotal power can appear.

4. With a high load ratio, market power caused by a symmetric reduction in capacity has a stronger effect on average prices than market power caused by asymmetry (predicted by RSI and midpoint-refined SFE). Formally:

\[H_4_0: \overline{p}_{lsh} = \overline{p}_{hah} \text{ vs. } H_4_1: \overline{p}_{lsh} > \overline{p}_{hah} \]

The RSI predicts a shift simply because the aggregate capacity that is left after a pivotal supplier withdraws his capacity from the total is smaller under \(lsh \) than under \(hah \). The midpoint-SFE picks this up; some of the lower prices that are equilibrium for the \(hah \) treatment are not part of the equilibria for \(lsh \). In contrast, the MUA model and the payoff-dominant SFE do not suggest a difference between these two cases; both ways of introducing pivotal power lead to the same (asymmetric) equilibrium with the highest possible price.

The two remaining pair-wise comparisons pertain to the impact of changing the load factor.

5. With a high symmetric capacity, the change from a low to a high load factor yields higher prices (predicted by RSI and both SFE refinements). Formally:

\[H_5_0: \overline{p}_{lsh} = \overline{p}_{lsl} \text{ vs. } H_5_1: \overline{p}_{lsh} > \overline{p}_{lsl} \]

6. With a low symmetric capacity, the change from a low to a high load factor leads to higher prices (predicted by RSI, MUA and both SFE refinements). Formally:

\[H_6_0: \overline{p}_{lsh} = \overline{p}_{lsl} \text{ vs. } H_6_1: \overline{p}_{lsh} > \overline{p}_{lsl} \]
Observe that both the RSI and the midpoint SFE refinement prescribe a directional shift for all the cases we consider. The prescriptions of the MUA and of the payoff-dominant SFE do not change for two of the parameter changes.

4. Results

We start with a general qualitative overview of the supply functions submitted by our subjects. This is followed by an analysis of the aggregate supply functions. We then present data on average volume weighted average prices, compare them with the equilibrium predictions and formally test our hypotheses H₁-H₆. In the latter part of the section we analyze individual best responses and assess the theoretical predictions of the two models.

When submitting their individual supply functions, subjects typically submitted all units that they had available. In the low capacity treatments (where each subject had a capacity of 9 units) on average 8.9 units were offered at a price lower than or equal to $p^{\text{max}} (=25)$. In the symmetric high capacity cases (12 units each) on average 11.7 units were offered. In the asymmetric treatment hah (two firms with 5 units and two with 19) the low capacity firms always offered all units whereas the firms with high capacity on average offered 18.6 out of 19 units at a price lower than or equal to 25. This is an indication that attempts to exert market power were done by offering units at high prices, not by withholding them altogether.¹⁶

Figure 4 gives the average aggregate supply function per treatment, distinguishing between the low load ratio and high load ratio cases. In both panels the ranking of the functions, in relation to the load factor, is the same. The highest prices are asked for the low capacity treatments lsh and lsl and the lowest for the symmetric high capacity cases hsh and hsl. The supply function for the asymmetric capacity case lies somewhere in between, in the top panel.

¹⁶ Across all treatments, in 82.2% of the rounds the aggregate supply function offered the maximum total capacity at prices lower than or equal to 25.
Notes: The lines show the average supply function across all rounds for a high load ratio (top panel) and low load ratio (bottom panel). The window with dashed contour shows the area \([d_{\text{min}}, d_{\text{max}}]\) within which demand may vary. Rounds are indicated on the horizontal axes, prices on the vertical axes.

Table 4 shows volume weighted average prices both for all rounds and for the last 5 rounds, averaged over all groups of each treatment, together with the equilibrium predictions for the two models we consider. Focus first on the two cases with high symmetric capacity, \(hsh\) and \(hsl\). For both load factors prices are within the range of the SFE predictions, but below the two refinements and above the prediction of the MUA. Note also that prices are lower in the last five rounds than in earlier rounds. This means that they are moving away from the SFE refinements and in the direction of the MUA predictions. For low symmetric capacity with the high load factor – \(lsh\) - prices are again within the interval of the SFE. They are close to
Table 4: Predicted and Actual Volume Weighted Average Prices

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium Predictions</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUA</td>
<td>SFE</td>
</tr>
<tr>
<td>High Load Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Sym Cap (hsh)</td>
<td>{5,6}</td>
<td>[5, 21.3]</td>
</tr>
<tr>
<td>Low Sym Cap (lsh)</td>
<td>{25}</td>
<td>[18, 21.3] & {25}</td>
</tr>
<tr>
<td>Low Load Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Sym Cap (hsl)</td>
<td>{5,6}</td>
<td>[5, 16.4]</td>
</tr>
<tr>
<td>Low Sym Cap (lsl)</td>
<td>> 11.6</td>
<td>[12.4, 16.4]</td>
</tr>
</tbody>
</table>

the SFE midpoint refinement and below the MUA and SFE payoff dominant predictions (the latter two are equal). For lsl, observe that prices are somewhat above the upper limit of the SFE interval and therefore above both refinements. They are also above the lower limit of the mixed-strategy equilibrium support. Finally, for the high asymmetric case, hah, prices are within the SFE interval and below all point predictions.\(^{17}\) Formal tests of differences in average VWAP are presented below, when we discuss the results for our hypotheses testing.

Given that average prices are (slightly) different in the final five rounds than across all rounds, the dynamics of the VWAP may be important. Therefore, we now examine how these prices changed across rounds. Figure 5 presents their development across rounds, separately for each treatment. Starting with the symmetric treatments, figure 5 shows that prices for both low capacity treatments lsl and lsh are substantially and consistently above those for the high capacity treatments hsl and hsh. The differences increase over rounds: the primary reason is that average prices for high symmetric capacity treatments decrease steadily.

Comparing hsh to hsl one can see that prices for the former are above those for hsl in all rounds. In addition, average prices in these high symmetric capacity experiments are above the (highest) MUA prediction of 6 in all rounds. Thus, aggregate behavior in these high symmetric capacity experiments appears to be inconsistent with MUA predictions, although prices may be slowly moving toward the MUA prediction over time. We will explore this issue further when we examine data from individual markets. The ordering of average prices in hsh and hsl would be consistent with a single upward sloping aggregate supply function in a SFE. This is true because the low demand realizations in hsl would cut the aggregate supply curve at prices below the clearing prices for hsh.

\(^{17}\) The fact that prices stay away from the extreme predictions of the MUA could be attributed to a behavioral tendency not to choose prices at the edges of the choice space. However, it is worth pointing out here that in experiments with the double auction and the box demand design prices often do go all the way to the extremes (Davis and Holt, 1993).
Figure 5: Development of Volume Weighted Average Prices

Figure 5: Development of Volume Weighted Average Prices

Notes. For each treatment the graph shows the volume weighted average price at each round.

Average prices for the low symmetric capacity treatments (solid lines in Figure 5) vary across rounds, but tend to stay within to slightly above the intervals predicted for smooth SFE (see Table 4). Note that average prices for \(lsh \) are inconsistent with the MUA prediction of 25. Their dynamics show no tendency toward this prediction. Average prices for \(lsl \) are consistent with the MUA prediction, in the sense that they are above the lower bound prediction for the mixed strategy MUA equilibrium.

Finally, average prices for \(hah \) vary over rounds but tend to lie within the interval of equilibrium prices for smooth SFE. In later rounds, average prices are in the lower portion of this predicted interval. Average prices for \(hah \) are clearly inconsistent with the pure strategy equilibrium prediction of 25 for MUA. If anything, they are converging away from this predicted level.

We conclude that the time trends in our data could be interpreted as convergence in the direction of the MUA prediction only in the symmetric high capacity cases. Even in these cases, this predicted level has not been reached, even after 25 rounds. As for the two SFE refinements, a comparison between figure 5 and the predictions in table reveals that the data do not appear to be converging towards either prediction in any of the treatments.

Figure 5 aggregates observations across markets but disaggregates across rounds. We do the reverse in figure 6, which shows average prices across rounds separately for each market.
Notes. Markers denote the volume weighted average price per market across all rounds (triangles) or last five rounds (crosses). Rectangles and lines connecting rectangles denote SFE predictions. Ovals and the dashed line between the two ovals for lsl denote MUA predictions. The SFE midpoint refinement is found at the middle point of each SFE line. The payoff dominant SFE is the ‘highest’ rectangle for each treatment.

To highlight the effects of learning we distinguish between the average across all rounds and the average across the final five rounds. This figure confirms that just like the aggregate prices (figure 5), the average prices per market lie largely within the bounds predicted by SFE. In the absence of market power, the observations for hsh and hsl appear to be drawn towards the competitive prices predicted by MUA. For each of these two treatments, all groups but one had average prices near the MUA prediction for the last five rounds. For the treatments with market power, the observations appear to be more or less uniformly spread over the predicted interval of smooth SFE prices.18

Our symmetric, high-capacity treatments (hsh and hsl) are similar in some respects to the multi-unit sales auction experiments reported on in Sefton and Zhang (2010). In their no-communication treatment, they find that subjects’ bids converge to the discrete-units Nash equilibrium prediction of bids equal to values. By contrast, some offers remained above the discrete-units Nash prediction of offers equal to marginal cost for some groups in our hsh and hsl treatments. Factors that might account for the differences in results include relatively

18 Note that for lsh there is one group that has VWAP at the MUA prediction of 25 in the last 5 rounds. In the MUA equilibrium, three firms offer all units at a low price and one firm offers all units at a price of 25. The data for this group reveal that there are two firms offering all units at a low price and two firms offering at the price cap.
greater excess capacity in Sefton and Zhang and a random demand quantity in our experiments compared to the fixed sales quantity in Sefton and Zhang.

We now move to the tests of the hypotheses 1 to 6 about differences in prices across treatments presented in section 3. Table 5 presents the results of Mann-Whitney tests for all pairwise differences in means across the five treatments. It takes the (volume weighted) average price per market (across all rounds) as the unit of observation. The p-values pertaining to our six hypotheses are shown in italics.19 For the hypotheses, we only need to consider these results. Observe that five out of six of the differences in italics are statistically significant at the 10%-level or better (four are significant at the 1%-level) and therefore support the alternative hypotheses against the null of no differences in average prices.

\textbf{Table 5: Pairwise Mann-Whitney Tests for Volume Weighted Average Prices}

<table>
<thead>
<tr>
<th></th>
<th>hsl</th>
<th>hah</th>
<th>lsh</th>
<th>lsl</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsh</td>
<td>0.137</td>
<td>0.089</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>hsl</td>
<td>-</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>hah</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
<td>0.032</td>
</tr>
<tr>
<td>lsh</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Notes. Cell entries give the \(p \)-value for the Mann-Whitney test for the null hypothesis that the difference in means between the treatments in the row and column concerned are equal to zero. Results in italics are relevant for the hypotheses developed in section 3, as explained in the main text.

We summarize the results of our hypotheses testing in the following way:

(1) for H1-H3, the alternative hypotheses are supported: symmetrically decreasing capacity (with either load ratio) and asymmetrically redistributing a given total capacity (with the high load ratio) all have the positive effects on prices predicted by the RSI and both theoretical models. In other words, when the RSI, MUA and at least one SFE refinement all yield the same comparative static prediction, this is confirmed by our data.

(2) for H4, the alternative hypothesis is supported: with a high load ratio, market power caused by a symmetric reduction in capacity has a stronger effect than market power caused by asymmetry; this is in accordance with the hypothesis based on the RSI and the SFE midpoint refinement, while MUA and the payoff-dominant SFE are mute on this particular comparison.

(3) for H5, the null hypothesis cannot be rejected: with high symmetric capacity the change from a low to a high load ratio does not significantly affect prices, an effect predicted both by RSI and the two SFE refinements.

19 As mentioned in section 3 we only evaluate separate variations of the different treatment variables.
(4) for H6, the alternative hypothesis is supported: for low symmetric capacity, the change in load ratio does lead to higher prices, an effect predicted by RSI, MUA and both SFE refinements.

Next, we consider the matter of who is exerting market power. We focus on the firm that determines the supply price of the 35th unit. If this is the same firm in every round, then in some sense behavior within a market is stable. However, if market power is being exerted, the firm supplying this unit will typically have lower earnings than other firms in the round concerned. Table 6 shows the extent to which the price of the 35th unit was determined by one or two firms in the market.

<table>
<thead>
<tr>
<th>Table 6: Firms Determining (s'(35))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>One firm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Two firms</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>hsh 0.48 0.56 0.70 0.56 0.66</td>
</tr>
<tr>
<td>hsl 0.82 0.84 0.91 0.87 0.9</td>
</tr>
<tr>
<td>lsh</td>
</tr>
<tr>
<td>lsl</td>
</tr>
</tbody>
</table>

Notes. For each treatment denoted in the first row, numbers give the average (across markets) fraction of the 25 rounds that the price of unit 35 was determined by a single firm (2nd row) or two (out of the four) firms (3rd row).

Note that if all firms are equally likely to determine \(s'(35) \) the fractions in the 2nd row should all be approximately 0.25 and those in the third row approximately 0.5. This is obviously not the case. For the asymmetric treatment, \(hah \), one may expect the two large firms to alternate, yielding fractions 0.5 and 1, respectively. On average there appear to be only small differences across the symmetric treatments. 50-60% of these prices are determined by a single firm in any market and two firms account for more than 80%. We conclude that there is a strong asymmetry in the bidding by distinct firms in a market. Even when all four firms have (equal) market power in \(lsh \) and \(lsl \), (almost) 90% of the prices at unit 35 are determined by only 2 of the 4 firms. While we clearly observe heterogeneous bidding by subjects, it is not consistent with the MUA predictions of asymmetric equilibria for treatments \(lsh \) and \(hah \). These equilibria involve low offers for all units by three subjects and all capacity of the fourth subject offered at the price cap. We did not observe this in \(lsh \) or \(hah \) markets.

Now we take a closer look at the degree of rationality of the behavior we observe. Since we have detailed data on round-by-round offers submitted by subjects it is possible for us to

20 If other firms do not offer at high prices (as predicted for \(lsh \) by MUA, for example) then it may easily happen that the same firm provides the 35th unit, round after round. When market power is exerted in our experiments, such asymmetry typically did occur within a round. Here we analyze whether firms alternated in exerting such power across rounds or that it was typically the same firm that did so.
assess the extent to which individual choices are best responses to choices made by rival subjects. We would not expect outcomes in the experiment to be consistent with Nash equilibrium predictions unless subjects are making best responses to rivals’ choices. The game that subjects are playing is complex with a very large strategy set. Footnote 12 points out that the treatment with symmetric capacity of 9 units per subject has a strategy set with over 14 million choices; strategy sets for high capacity treatments are even larger. Both MUA and SFE predict multiple equilibria. In addition, our subjects have only limited feedback regarding auction results. After each period (there are 5 periods per round) subjects observe the market clearing price, the quantity demanded, and the position of their own offers in the aggregate offer queue; see Figure 1. Subjects do not directly observe the offers made by other subjects, although they may be able to infer approximate offers of rivals. Given the size of the strategy set, multiplicity of equilibria, and limited information feedback, it is not at all obvious that subjects would play best responses in the experiments.

In order to assess individual choices we compare the actual profit of subjects to what we call ex-post optimal profit. We calculate the ex-post optimal profit for a subject in a round of play by finding an offer that yields the highest possible expected profit given the actual offers submitted by other subjects for that round. Note that a subject’s ex-post optimal offer in a particular round need not be unique. For example, if rival subjects submit relatively high offers then a subject’s best response would be any offer schedule that offers all units up to capacity at prices below rivals’ offers, allowing the market price to be dictated by rivals’ offers.

Table 7 summarizes results for actual profit as percent of ex-post optimal profit over all rounds for each subject. This figure ranged between 110 and 33 percent, with a median of 79 percent across all 112 subjects in the experiments. There are differences in actual/ex post optimal profit across decision-making conditions. Differences across all symmetric treatments are statistically significant ($KW, \chi^2=15.10, p=0.00, N=22$), as are differences be-

21 A similar approach of comparing actual profit to ex-post optimal profit was used in Hortacsu and Puller (2008) in their examination of behavior of electricity generation suppliers in the Texas ERCOT wholesale power balancing market. We will compare the results of our analysis to theirs, below.

22 The set of possible offer schedules for high-capacity subjects in hah is extremely large. For these subjects we approximate the best response in each round by sampling from the set of possible offers.

23 Also note that “ex-post” refers to rivals’ offers rather than to demand realizations. An ex-post optimal offer schedule is optimal against actual offers made by rivals and against the ex-ante distribution of demand quantities. When we calculate actual profit and ex-post optimal profit we use the actual demand quantity realizations from experimental sessions. A consequence of using actual demand quantity realizations to calculate profits is that actual profit can exceed ex-post optimal profit for a subject in a round.
Table 7: Actual Subject Profit as Percent of Ex-post Optimal Profit

<table>
<thead>
<tr>
<th>high load ratio</th>
<th>symmetric</th>
<th>high capacity (hsh)</th>
<th>low capacity (lsh)</th>
<th>(hah-high capacity trader)</th>
<th>(hah-low capacity trader)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#units</td>
<td>Median</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>high capacity</td>
<td></td>
<td>12</td>
<td>72</td>
<td>87</td>
<td>33</td>
</tr>
<tr>
<td>low capacity</td>
<td></td>
<td>9</td>
<td>85</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>(hah-high capacity trader)</td>
<td>19</td>
<td>79</td>
<td>90</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>(hah-low capacity trader)</td>
<td>5</td>
<td>89</td>
<td>110</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>low load ratio</td>
<td>symmetric</td>
<td>high capacity (hsl)</td>
<td>low capacity (lsl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#units</td>
<td>Median</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>68</td>
<td>94</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>83</td>
<td>100</td>
<td>66</td>
</tr>
<tr>
<td>All subjects</td>
<td></td>
<td>--</td>
<td>79</td>
<td>110</td>
<td>33</td>
</tr>
</tbody>
</table>

Notes. Numbers represent average/ex post optimal profit for the treatment concerned. Ex post optimal profits were calculated in the way described in the main text. The column #units gives the maximum number of units each trader had available to offer. To see why a ratio larger than 100 may occur, see footnote 23.

tween high- and low-capacity subjects in the asymmetric treatment \(MW, Z=2.21, p=0.03, N=6 \) paired observations). Subjects with a small amount of capacity (low capacity subjects in \(hah \) and subjects in treatments \(lsh \) and \(lsl \)) have higher average actual/ex post optimal profit than subjects with higher capacity (high capacity subjects in \(hah \) and subjects in treatments \(hsl \) and \(hsh \)). More specifically, from high to low, the treatment-average actual/ex post optimal profit is ordered as follows:

\[
\text{hah}_{\text{low}} > 0.429 \quad lsh > 0.537 \quad lsl > 0.015 \quad \text{hah}_{\text{high}} > 0.329 \quad hsh > 0.537 \quad hsl
\]

where \(\text{hah}_{\text{low}} (\text{hah}_{\text{high}}) \) refers to the low (high) capacity traders in \(hah \) and \(> xx \) indicates the \(p \)-value of the Mann-Whitney test of the difference concerned (using market averages as units of observations). These tests confirm that the percent of actual to ex post optimal profit is significantly greater the lower the capacity per subject.\(^{24}\) In fact, the ‘turning point’ between high and low values seems to be between \(lsl \) and \(\text{hah}_{\text{high}} \), which is between traders without and with market power. It appears that the larger strategy sets associated with greater capacity (hence, more market power) contribute to a more complex decision making environment and greater departures from optimality.

We also checked to see whether there is a time trend within experiments for actual as percent of optimal profit. This percentage was regressed on round number and dummy variables for treatments. The coefficient on round number is negative and not statistically significant (\(p \)-value is 15%); actual as percent of optimal profit falls by about two percentage points over 25 rounds on average. This result is not supportive of learning of best responses over time during experiments, although there could be other learning taking place.

\(^{24}\) Additional tests show \(\text{hah}_{\text{low}} > 0.041 \quad lsl \) and \(\text{hah}_{\text{high}} > 0.132 \quad hsl \).
Hortacsu and Puller (2008) conduct a similar analysis using market data and report on actual profit vs. ex post optimal profit for firms that offer electricity generation into the ERCOT wholesale power balancing market. It is possible to make these calculations because of the detailed information available about generation costs and about bids submitted by firms. They use data from a single trading period within each day (6 – 6:15 pm) for days that did not experience transmission congestion across zones within ERCOT. The reported results for actual to ex post optimal profit range from a high of 79 percent to a low of −81 percent; the median figure for the sample of 35 firms is 15 percent. This contrasts with results from our experiments; approximately half of our subjects achieved higher actual to ex post optimal profit than the firm with the highest percentage in the Hortacsu and Puller study.

Hortacsu and Puller (2008) also found differences in performance across firms, but seemingly in the opposite direction of our experimental results. They find that large firms (those with a high volume of sales under ex post optimal bidding) have significantly higher actual/ex post optimal profit than smaller firms. Hortacsu and Puller attribute this result to the fixed costs associated with activities required in order to profit in the balancing market: acquiring information, analyzing information, and running a trading operation. The higher profit stakes available to larger firms made it worthwhile for them to invest in the fixed costs, but the lower profit stakes for small firms left them with weak incentives to invest. By contrast, subjects in our experiments did not bear any costs of participating in the market except perhaps the opportunity cost of their attention.

This difference in results from the field and the laboratory are interesting. They point to the particular advantages both methods have. On the one hand, the advantage of laboratory control is that it allows us to isolate causal effects when comparing realized-profit-to-optimal-profit ratios across distinct environments. They are less informative about the actual level of such ratios, however. For this, data from the field are more relevant. Moreover, our laboratory data allow us to isolate the effects of production capacity holding other characteristics (such as fixed costs) constant, while the field data allow for a comparison between large and small firms that take into account all differences between the two.

Our laboratory market experiments differ from the ERCOT energy balancing market in several ways. Subjects in our experiments make repeated decisions in markets with stable costs and capacities, and a fixed group of participants. The ERCOT market environment is considerably more complex. It involves costs and capacities that change from day to day (e.g., due to generation outages, fuel cost changes and contractual commitments), several different types of generation, start-up and ramping costs for generation, and changes in the set of market participants over time. Given these differences between our experiments and the ERCOT environment, we would not necessarily expect to see similar ratios of actual to optimal profit.
As a final exercise, we turn to an assessment of the theoretical predictions of market prices that we distinguished between. The SFE and MUA models each provide equilibrium predictions of prices. We do not attempt to compare directly the predictive success of the MUA model to the complete set of equilibria predicted by the SFE model because the latter model predicts large intervals of equilibrium prices for every treatment and MUA equilibrium prices are a small subset of SFE prices for 4 out of 5 treatments. What we do instead is to simply report on test statistics for predictive success for MUA, for unrestricted SFE and for the two refinements of SFE distinguished above.

The following statistical model is the basis for the tests. Let,

\[p_{ij} = \text{average VWAP for group } i \text{ of treatment } j, \quad j \in \{lsl, lsh, hsl, hsh, hah\} \]

\[n_j = \text{number of groups for treatment } j; \quad n = \sum_j n_j \]

The data generating process is assumed to be:

\[p_{ij} = \tilde{p}_j + \varepsilon_{ij}, \]

where \(\tilde{p}_j \) is the latent, underlying price for treatment \(j \) and \(\varepsilon_{ij} \) is a zero mean random error term that reflects decision errors of subjects and/or aspects of subjects’ payoffs that are not controlled in the experiment. Each theory makes predictions about values for the \(\tilde{p}_j \) terms.\(^{26}\)

We assume that error terms are normally distributed with unknown variance, \(\sigma^2 \); let \(f(\cdot) \) be the density function for error terms. Below we develop likelihood ratio tests for the theories.

Each theoretical model makes predictions about prices for the 5 treatments. Let \(P_k \) be the set of prices predicted by model \(k \) for the 5 treatments. The set \(P_k \) is a subset of the set of 5-dimensional vectors of real numbers, i.e., \(P_k \in \mathbb{R}^5 \). Define the following likelihoods:

\[
L_k = \max \left\{ \left(\tilde{p}_1, \tilde{p}_2, \tilde{p}_3, \tilde{p}_4, \tilde{p}_5 \right) \in P_k, \sigma \in \mathbb{R}_+ \prod_{j=1}^5 \prod_{i=1}^{n_j} f(p_{ij} - \tilde{p}_j) \right\}
\]

\[
L = \max \left\{ \left(\tilde{p}_1, \tilde{p}_2, \tilde{p}_3, \tilde{p}_4, \tilde{p}_5 \right) \in \mathbb{R}^5, \sigma \in \mathbb{R}_+ \prod_{j=1}^5 \prod_{i=1}^{n_j} f(p_{ij} - \tilde{p}_j) \right\}
\]

\(L_k \) is calculated by choosing latent prices from the set of predicted prices for the model that are closest to average prices for treatments and by choosing an error variance equal to the average squared deviation from the best predicted prices. \(L \) gives the unrestricted maximum

\(^{26} \) The data generating process could be modified so that actual prices are the minimum of the RHS and the price cap. This would be important if the data (group average prices) included observations equal to the price cap. Price is equal to the price cap for some individual rounds in experiments, but none of the observed group average prices are at the price cap.
likelihood; latent prices are equal to treatment average prices and error variance is equal to
sample variance. The likelihood ratio statistic for model k is $\lambda_k = L_k/L$. For large n, the
distribution of the test statistic $-2\ln(\lambda_k)$, approaches the chi-square distribution with 6
degrees of freedom. Table 8 reports results for tests of the hypothesis that latent prices for
treatments are in the set of equilibrium prices predicted by theoretical models. We use a 95
percent confidence interval for the tests. Values of the test statistic that are larger than $\chi^2_{0.05,6}$
therefore reject the null hypothesis that our data are generated by the model concerned.

We observe that the only model that is not rejected by the test is the unrestricted SFE
model, for which we calculate $\lambda_{SFE}=0.993$, yielding a test statistic close to zero. This result
reflects that there are SFE equilibrium price predictions that are either equal to or close to
average observed prices for each treatment. For the restricted SFE models and the MUA
model we find that the test statistics exceed the χ^2 statistic and therefore reject the hypothesis
that observed group average prices are drawn from distributions with mean values in the
equilibrium sets for these models. As mentioned above, this higher predictive power if the
unrestricted SFE model comes at a cost, however. The unrestricted SFE model is far less
parsimonious than either of its refinements or the MUA alternative. The bottom line remains,
however, that we have found no more parsimonious model capable of organizing our data in
a satisfactory way.

5. Concluding Discussion
We set out to experimentally study the effects of pivotal power, motivated both by the results
of empirical field data studies and by the predictions of recent theoretical models. A first
conclusion from our experiments is that the more fundamental intuitions about the impact of
pivotal power are supported by our data. Prices are higher when (some) firms are pivotal. The
existence of aggregate excess capacity is not enough to guarantee competitive prices. This

<table>
<thead>
<tr>
<th>Model</th>
<th>Test Statistic $-2\ln(\lambda_k)$</th>
<th>(\chi^2_{0.05,6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUA</td>
<td>57.44</td>
<td>12.59</td>
</tr>
<tr>
<td>SFE</td>
<td>unrestricted</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>midpoint</td>
<td>19.98</td>
</tr>
<tr>
<td></td>
<td>Pareto dominant</td>
<td>69.52</td>
</tr>
</tbody>
</table>

Notes. Test results are based on the likelihood functions described in eq. (1). Prices used
are group averages, therefore $n = 28$ observations.
general result is accordance both with the predictions of the intuitive RSI and of the SFE model based on divisible output and MUA model based on discrete output units.

Our experiments also permit us to assess in more detail the predictive power of these theoretical models as well as of two refinements of the SFE model. The MUA model provides sharp equilibrium predictions for 4 out of our 5 treatments; for these treatments the MUA predicts either competitive pricing or monopoly pricing. The SFE model predicts a larger set of equilibria that includes the sharp MUA equilibria as well as additional equilibria based on upward sloping supply functions. One can see the SFE model prescriptions as a more modest proposal for organizing observed behavior, in contrast to the more stringent prescriptions of the MUA model and of the two refinements of SFE that we considered. On the other hand, as we argued above, this more general SFE model is not very parsimonious. It appears that none of the three ways that we tried to achieve more parsimony were able to maintain the SFE’s ability to capture our data. Naturally, one could consider alternative refinements. We can think of no obvious one, however. As discussed above, the MUA and the two we consider come easily to mind.

We find that the additional equilibria of the SFE model proved necessary for explaining observed behavior in two principle ways. First, for treatments with no market power, observed supply functions are upward sloping and prices tend to remain above the competitive price prediction of the MUA. The implicitly collusive equilibria of the SFE capture this behavior. Neither of the two (other) SFE refinements we considered captures these patterns, however. The movement of prices toward marginal cost for most markets in two of our treatments, however, does appear to show dynamics in the general direction of the MUA prediction. Only in this weak way does the basic insight obtain support in our data, that the ‘implicitly collusive’ equilibria that arise with infinitely divisible offer prices and quantities are eliminated once some discreteness is introduced.

Second, the MUA model predicts monopoly pricing (at the price cap) for two of our market power treatments. Observed behavior in these two treatments is inconsistent with this sharp MUA prediction; behavior is more consistent with additional equilibria from the SFE that involve upward sloping supply functions and lower market prices. Once again, it is inconsistent with the two SFE refinements, however. As mentioned above, we do not think that the fact that prices stay away from the extreme predictions of the MUA can be simply explained by a behavioral tendency not to choose prices at the edges of the choice space. In double-auction experiments with the box demand design prices often do go all the way to the extremes. An additional consideration here is that our design involves a repeated game, albeit
a finite one. Given that repeated interaction can facilitate tacit collusion in experimental oligopoly settings (Abbink and Brandts, 2008), it is noteworthy that in our case it does not lead to the attainment of a monopoly price one-shot equilibrium.

As noted in the introduction, market power due to the presence of pivotal suppliers has been documented to contribute to high prices and inefficiency in wholesale electricity markets and is a significant concern for public policy toward the electric industry. Our experimental results are consistent with evidence from naturally occurring electricity markets that pivotal power contributes to higher market prices. An important finding, however, is that the exercise of market power by pivotal suppliers in our experiments was not as severe as equilibrium predictions of the MUA model. These predictions require that agents adopt strategies that support an asymmetric equilibrium with payoffs that differ substantially across agents (even for agents with identical costs and capacities). Experimental results for treatments with pivotal suppliers were more consistent with SFE predictions involving lower prices.

A final result that we wish to highlight here pertains to the effects of increasing the load factors. We find that when both models suggest that it will affect prices it does have this effect. We interpret this as indicating that the models do identify a potential influence factor, but that it only shows up in the data when it is a strong force. Stronger variations in demand reduce market power, in a situation where this power is otherwise strongest.
Appendix 1

This appendix gives the English translation of the original Dutch instructions for the sessions with symmetrical high capacity (12 units per producer) and low load factor. The instructions were programmed as html pages. Horizontal lines indicate page separations.

INSTRUCTIONS

You are about to participate in an economic experiment. The instructions are simple. if you follow them carefully, you can make a substantial amount of money. Your earnings will be paid to you in euro’s at the end of the experiment.

In the experiment, we use the currency 'franc'. At the end of the experiment, we will exchange the francs for guilders. The exchange rate to be used is 1 euro for 250 francs. For each 1000 francs, you will therefore receive € 4.

We will use numerical examples in these instructions. These are only meant to be an illustration and are irrelevant for the experiment itself.

In these instructions, you may click on the links at the bottom of each page to move forward or backward. Sometimes, there will be more text on a page than can fit onto your screen. When that is the case, you can use the scroll bar on the right to move down.

next page

ROUNDS AND PERIODS

The experiment will consist of 25 rounds today, preceded by 5 practice rounds.

In the 25 rounds, you will be a member of a group. Aside from you, the group will consist of 3 other people. The composition of the group is anonymous. You will not know who is in the group with you. Others will not know that you are in their group. The composition of your group is the same for the whole experiment. You will have nothing to do with people in other groups.

In the experiment, you will participate in a market, in which fictitious goods will be produced and sold. The final consumers of the good will be simulated by the computer. All participants will be producers of the good. There are 4 producers in each group.

In the practice rounds, you will not be in a group with other participants. The computer will simulate the choices of other group members. It does so in a completely random manner. You cannot learn anything about others' behavior from these simulated choices.

Each round will consist of 5 periods. In each period, the computer will decide how many of the goods to buy. You do not need to do anything between periods. At the beginning of the round, you will decide how many units you are willing to produce and sell.
This choice will be valid in each of the 5 periods in that round. The remainder of these instructions will explain the market and the rules you must abide by.

SIMULATED BUYERS

In this experiment, the decisions to buy (fictitious) goods are not made by participants but by the computer. This will be done as follows.

In each period, the computer will buy between 20 and 35 units of the good. Each number between 20 and 35 (inclusive) is equally likely. Because there are 16 integer numbers between 20 and 35, in each period there is a probability of 1/16 that any one of these number will be drawn. After a number has been drawn, it may be drawn again in a next period of a round.

To determine the price that the computer will pay per unit bought in a period, it is determined at what (minimum) prices the group members are willing to sell each unit. Below, we will explain how this determines the price paid by the computer.

The computer will never pay more than 25 francs per unit, however. If not enough sellers are willing to sell for a price lower than 25, the computer will buy as many as it can for 25 francs.

PRODUCTION AND COSTS

At the beginning of the experiment, each participant will receive 1250 francs as a starting capital. You will see this amount on your screen when the experiment starts.

In each round, each participant is a producer who must decide how many units of the good he or she wishes to produce. No producer is allowed to produce more than 12 units.

For each unit a producer is willing to produce, he or she must determine the minimum price that he or she wishes to receive for that unit. We will call this the 'ask price'. How this is reported, will be explained shortly.

There are costs related to producing goods. For each unit you produce, you must pay 5 francs.

ASK PRICES
For each unit you would like to offer, you need to indicate at what price (the 'ask price') you are willing to sell it. You may ask different prices for distinct units. For this, the following rules apply.

If you offer a unit for sale, you must also offer all preceding units. For example, if you indicate a minimum price asked for unit 3, you must also offer units 1 and 2.

Your price asked for a unit must always be higher than or equal to the price asked for the preceding unit. So: your ask price for the second unit may not be lower than for the first unit. Your ask price for the third unit may again not be lower than your ask price for the second unit, etc. Each producer can produce at most 12 units.

Your ask price may be lower than the costs. Note that you may make a loss on that unit in that case. For example, assume that your price asked for the first three units is 3. Assume that the three units are bought by the computer at a price of 4. For each unit, your production costs are 5 and your revenue is 4, so you make a loss of 1. For the three units together, your loss is 3.

All units for which you ask a positive price are offered on the market. However, a unit is only sold if the computer is willing to pay your ask price for that unit. How this is determined will be discussed shortly.

SUBMITTING YOUR ASK PRICES

<table>
<thead>
<tr>
<th>nr</th>
<th>cost</th>
<th>cumm</th>
<th>ask price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

To enter your ask prices, you will use a window that looks like this. Note that you can only see the first 4 units. In the experiment, you will be able to scroll down to the other units. This is not possible in these instructions.

The first column (nr) indicates the number of the unit. The second column (cost) gives the cost per unit (5). The next column (cumm) gives the total costs for that level of production. The last column (ask price) will be used to enter the minimum price you wish to receive for that unit.

You indicate your willingness to sell units by entering the amount you want to receive in the column ask price. It is up to you to decide how many different numbers you wish to enter, as long as no ask price is lower than the preceding one. You may enter a different number for
each unit, the same for all units or anything in between. It is also up to you to decide how many units you want to offer. There is a maximum of 12, however.

To help you when entering numbers, the following happens. If you enter a price for a unit, the same number is automatically entered in all previous units for which no number had been entered yet. For example, if you start by entering a price of 12 in unit 3, 12 is also entered in units 1 and 2. If you then enter 22 for unit 5, 1-3 stay at 12 but 22 is entered for unit 4. You may practice this in the practice rounds. Units where you do not enter a number are not offered for sale.

When you are satisfied, you must confirm your choice. As long as you have not done so, you can still change every and any price asked. Note that your decision is not valid until you have confirmed. The experiment will not proceed until everyone has confirmed her or his production decision. You must also confirm if you wish to produce zero units. You do so by clicking the confirmation button without entering any numbers.

DETERMINING THE PRICE PAID

The price paid by the computer for any unit bought is often not equal to the ask price. The price paid is never lower than the ask price, however.

After the computer has determined how many units it wants to buy in a period, it considers all the ask prices in your group of producers. It first buys the unit offered at the lowest price, then the second lowest price, etc. The price it pays is the same for all units bought.

In each period of a round, the number of units the computer wants to buy is some randomly drawn quantity between 20 and 35.

Example
Let's say that in some period, the computer wants to buy 29 units. It then checks whether it can buy all 29 units at a price of 25 francs or less. If there at least 29 ask prices less than or equal to 25, the computer will buy all 29 units. If not, it will buy as many units as it can for 25 francs. If there are at least 29 ask prices lower than or equal to 25, the computer chooses the 29 lowest ask prices. The price paid is then equal to to the 29th ask price. For example, if 12 units are offered for 10 francs, 10 units for 12 francs, and 10 units for 18 francs, the 29th price is 18 francs. All 29 units will be sold for 18 francs. Note that some units for which the ask price is 18 remain unsold, however.

The same procedure holds for any other quantity (randomly) chosen by the computer. One way to picture how the price paid is determined is as follows. Consider all of the ask prices submitted by members of your group. Order them from low to high. Then count how many units can be sold for 25 francs or less.

If this is less than the number chosen by the computer, then the price is 25 and all units with ask prices less than or equal to 25 are sold.
If this is more than or equal to the number chosen, the computer is able to buy the units it wants. It looks for the lowest price at which it can by all of these units. This is the price the computer pays for all units. Note that this price paid is the ask price of the last unit bought. For all other units bought the ask price is lower. For all units not bought, the ask price is at least as high as the price paid.

5 PERIODS

After everyone has confirmed their ask prices at the beginning of the round, the computer orders these from low to high. If two ask prices are equal, the computer randomly determines their order. Then, it runs the 5 periods of the round. In each period, it randomly determines the number of units it wants to buy.

In every period, it determines which units are bought and what price is to be paid. It will show you the results for a few seconds and then move on to the next period. After the 5th period, you will be able to review all of the periods of the round at your own pace. The experiment will only proceed to the next round after all participants have indicated that they are ready.
RESULTS OF A PERIOD

This is an example of how the results of a period will be shown to you.

These are the results of period 5, which can be seen from the yellow square with a '5' in the bottom right corner. In this period, the price paid was 12 and the computer wanted to buy 20 units. This participant sold 7 of these units. This information is given in the bottom left corner.

The bars in the graph are the ask prices submitted by this participant. Notice that this participant offered (all) 12 units. The ask prices ranged between 5 and 16. Red bars indicate units that were sold in this period and grey bars indicate unsold units. The location of a bar is determined by its place relative to the ask prices of all participants, ordered from low to high. For example, the bar indicating an ask price of 5 is the 5th unit. This means that there were five units offered by other participants at ask prices of 5 or lower.

The graph shows more details. The number of units the computer wanted to buy (20) is shown by the black line. This line also shows the maximum price of 25 francs. The price paid (12) is given by the horizontal yellow line in the graph. Notice that in this example the computer was able to buy all 20 units at a price lower than 25, because there are unsold units with an ask price less than 25.

Note that you will not see what prices were asked by the other participants, only your own. Also note that this participant offered a unit at a price of 12 that was not sold, even though the price paid is 12. This can only be the case if at least one other producer entered an ask price of 12 and the computer (randomly) put that other unit before this one.
After everyone has entered and confirmed their ask prices, a graph like this is shown for each of the 5 periods. Each period is shown for a few seconds. After the 5th period, you will be able to review any period by clicking on the numbers in the bottom right corner.

You will have to indicate that you have finished reviewing all of the information of a round by clicking on a 'Ready' button (not shown here). We will not proceed to the next round until everyone has indicated that they are ready.

Here you see the 'Ready' button where you can indicate that you have finished reviewing the periods of a round.
You also see a table summarizing the results of a round. This will appear after period 5 has been completed by the computer. The table has one row for each period. The first column gives the period. The second column (demand) shows the quantity that the computer wants to buy in that period. If the number is in black, it was able to buy all units. If it is in red, there were not enough ask prices smaller than or equal to 25.

Under the header 'price' you will find the price paid per unit in that period. The number of units sold by you is given in the column 'sold'.

Your production costs (the number sold times 5) are given in the column 'costs'. Finally, your profit in this period (the price multiplied by the number sold minus your costs) is given under 'profit'.

Between the table and the 'Ready'-button, we give your aggregate earnings in this round. This is the sum of your profits in the five rounds.

AGGREGATE EARNINGS

During the whole experiment, a window in the top left corner will keep track of the round and period you are in. It also gives your aggregate earnings in francs. At the end of the experiment, your francs will be converted into euros.

This brings you to the end of the instructions. You may now take your time to reread parts of the instructions. When you are satisfied that you understand them, you can indicate to us that you are finished, by clicking the 'ready' button at the bottom of this screen. After that, you may still page through the instructions. However, when everyone has indicated that they are ready, we will move on to the practice rounds.
Appendix 2 – Equilibria of the MUA

Treatments hsh and hsl:

Each seller has 12 units of capacity in these treatments. In hsh demand quantities have a discrete uniform distribution from 30 to 35; the distribution is from 20 to 35 for hsl. No seller is pivotal in these treatments. As a consequence, each seller offering all their units at marginal cost ($c = 5$) is a Nash equilibrium.

For our experimental environment with discrete price offers there are also equilibrium strategies involving some offers at 6 (one tick above marginal cost) that yield equilibrium prices equal to 6 for at least some demand realizations. Consider treatment hsh. Suppose that sellers select strategies such that

1) 29 units are offered at 5,
2) 19 units are offered at 6, and
3) each seller offers at least 2 units at 5.

Then the market clearing price is 6 for each demand outcome (since $d \geq 30$). First, note that no seller has an incentive to switch a unit offered at 5 to 6. When offered at 5 this unit is sold with probability one and has profit equal to one. When offered at 6 this unit is sold with probability less than one, with profit equal to one if sold. Second, one can show that no seller has an incentive to switch a unit offered at 6 to 5. While this switch increases the probability that the unit will be sold, this switch also reduces the average price and hence average profit on other units. On balance the impact of a lower average price outweighs the increased probability of selling the unit.

For treatment hsl there are equilibria that yield a market clearing price of 6 for high demand outcomes, but not for low demand outcomes.

Treatments lsh and hah:

In lsh each seller has 9 units of capacity and demand quantities are $d \in \{30,31,\ldots,35\}$, with equal probabilities. Let seller j offer its entire capacity at the price cap; that is, $p_{lk}^* = p_{\text{max}} = 25$, for $k = 1,\ldots,9$. Let sellers $l \neq j$ choose offers, $p_{lk}^* \leq 17$, for $k = 1,\ldots,9$. Then the market price is 25 for each demand realization. Expected profit for seller j is,

$$E[\pi_j] = (25 - 5) \left(E[d] - \sum_{l \neq j} s_k \right) = 110.$$

Sellers $l \neq j$ earn the maximum possible profit for a seller in this environment:
$E[\pi_j] = (25 - 5)s_j^{\text{max}} \geq 180$ Seller j has no incentive to defect since she would have to reduce her offers to 17 or less in order to increase her quantity sold. Even if seller j sold her entire capacity at a price of 17 her payoff would be 108, which is less than the payoff of 110 associated with the high price strategy. So the asymmetric strategies described above are Nash equilibrium strategies; see Fabra, et al (2006) for more details. There are four asymmetric equilibria of this type, with a different seller acting as the high price seller in each equilibrium.

In hah there are two small sellers, each with 5 units of capacity, two large sellers, each with 19 units of capacity, and demand quantities are $d \in \{30, 31, \ldots, 35\}$, with equal probabilities. Suppose that one of the large sellers offers their entire capacity at the price cap. This would ensure that the market price is at the price cap (25) for each possible demand realization. If the other three sellers offer all of their units at prices less than or equal to 8, the high price seller has no incentive to change their strategy. These strategies are a Nash equilibrium. There are two asymmetric Nash equilibria for hah, with one of the large sellers acting as the high price seller in each equilibrium.

Treatment lsl:

The only equilibrium is in mixed strategies. By offering all of its capacity at the price cap, a single seller can guarantee itself expected profit of,

$$E[\pi] = \sum_{d=20}^{35} \delta (25 - 5) \max \left[0, d - \sum_{i \neq j} s_i^{\text{max}} \right] = 45,$$

where $\delta = 1/16$ is the probability of each possible demand level for lsl. This expected profit is a lower bound for a firm’s mixed strategy equilibrium profit. This bound on profit permits us to bound a measure of expected equilibrium price.

Given the definition of $p(d)$ in the main text, total expected equilibrium profit for the four firms in the market is defined by:

$$\text{Total profit} = \sum_{d=20}^{35} \delta d \left(p(d) - c \right).$$

Since each firm must earn at least $\bar{\pi}$ in equilibrium, we have the following inequality:

$$\text{Total profit} = \sum_{d=20}^{35} \delta d \left(p(d) - c \right) \geq 4\bar{\pi}.$$

This implies that:
\[
\sum_{d=20}^{35} \delta d \left(p(d) \right) \geq 4\pi + cE[d],
\]
and this permits us to place a lower bound on the volume weighted average price:
\[
\bar{P}^c = \sum_{d=20}^{35} \frac{\delta d \left(p(d) \right)}{E[d]} \geq \frac{4\pi}{E[d]} + c \approx 11.55
\]
Appendix 3 – Equilibria of the SFE Model

In the derivations for the SFE model we treat both price and quantity as continuous variables.

Treatments hsh and hsl:

There are no pivotal suppliers for these two treatments. Consider the profit for firm i in the event that demand is d, given that rival firm j chooses a differentiable supply function $s_j(p)$ for $j \neq i$. If the clearing price is p and firm i supplies the residual demand, $d - \sum_{j \neq i} s_j(p)$, then its profit is:

$$\pi_i(p, d) = (p - c) \left(d - \sum_{j \neq i} s_j(p) \right)$$

We seek a supply function $s_i(p)$ for firm i that has the property that the clearing price p maximizes $\pi_i(p, d)$ with $s_i(p) = d - \sum_{j \neq i} s_j(p)$, for each possible $d \in [d, \bar{d}]$. The necessary conditions for an (interior) optimal price for d for each firm i yield a system of ordinary differential equations for supply functions:

$$\sum_{j \neq i} s_j'(p) = \frac{s_i(p)}{(p - c)}$$

for $i = 1, \ldots, 4$. There is a continuum of symmetric solutions to this system of the form:

(*) $$s_i(p) = \frac{d}{2} \left(\frac{p - c}{p' - c} \right)^{\frac{1}{2}}$$

where p' is a price parameter that can take on any value in the interval, $\left(c, p^{\max} \right)$; p^{\max} is the market clearing price associated with equilibrium supply strategies in (*) at maximum demand quantity, \bar{d}. Figure 2 in the main text illustrates aggregate supply functions based on the strategies in (*). Note that in the limit as p' approaches c the supply strategy in (*) converges to the Bertrand strategy of offering all units at marginal cost.

Treatments lsh and lsl:

For these treatments any one of the sellers is pivotal for some or all demand quantities. When pivotal suppliers are present a strategy of offering capacity at prices close to marginal cost will not be a symmetric equilibrium strategy. If a seller’s rivals use strategies in (*) with p' close to c then the seller would prefer to offer all of their capacity at the price cap rather than use strategy (*). Genc and Reynolds (2010) show that the symmetric supply function
strategies in (*) are equilibrium strategies for capacity constrained pivotal sellers for a restricted set of p' parameters. For treatment lsh the supply functions in (*) are equilibrium strategies for $p' \in [21.7, 25]$; for treatment lsl the supply functions in (*) are equilibrium strategies for $p' \in [17.7, 25]$. The equilibria associated with these price parameters are the basis for the (volume weighted) average equilibrium price predictions that we provide in Table 3 of the main text.

Treatment hah:
In this treatment there are two small sellers (each with 5 units of capacity) and two large sellers (each with 19 units of capacity). There are quasi-symmetric supply function equilibria of the following form. The small sellers each offer their capacity at a low price (e.g., at or near marginal cost). The two large sellers compete for the remaining residual demand ($d - 10$) by choosing supply functions that are increasing in price. By using arguments similar to those used earlier in this Appendix one can show that there is a supply function equilibrium in which each large seller i uses the linear strategy:

\[
s_i(p) = \frac{1}{2} \left(d - 10 \right) \left(\frac{p - c}{p' - c} \right)
\]

where the price parameter satisfies, $p' \in [11.9, 25]$. As in the other treatments there is a continuum of equilibria.
References:

Sheffrin, A. (2002), “Predicting Market Power Using the Residual Supply Index”, Mimeo, Department of Market Analysis, California ISO.

