Explaining the hazard function, h(t), through statistical lenses

Let F(t) denotes cumulative distribution function (c.d.f.)

0 ≤ F(t) ≤ 1

In our case, t is time and F(t) is cumulative probability of an event up to time t.  The longer the follow up time, the greater is the probability that the event will happen.  In other words, c.d.f. is simply the “cumulative incidence” (for incident events) or a proportion.
Let S(t) = 1 – F(t).  Evidently, S(t) is the survival probability: the probability that the event will not happen until time t.

Here I drew an example of F(t).  For the moment, ignore the equation behind the graph.
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If we take the first derivative of a cumulative distribution function, we get the probability density function (p.d.f.).  Let’s call it f(t).  

F’(t) = dF/dt = f(t).   Draw a small triangle on the graph.

That’s a basic relation between a cumulative distribution function, and a probability density function.

Here is the first derivative of that F(t)
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Keep the c.d.f and p.d.f. in the background for a moment.  Now, we define the hazard at time t, h(t), as the probability of an event at the interval [t, t+Δt], when Δt(0.   To find an expression for h(t), we should realize that h(t) must be a “conditional probability”: it is conditional on not having the event up to time t (or conditional on surviving to time t.)   

From probability calculus, we know the formula of a conditional probability:



Pr (A and B)

Pr (A / B) =  


=  



    Pr (B)

Where A=”having the event at time t”; “B”=”not having the event by time t” 

Here:  
Pr(A and B) =  ΔF/Δt = dF/dt   That’s the “delta probability of the event per unit time.”  Allison explains nicely why we have to use that ratio (we want to eliminate the influence of Δt and we can’t compute the probability at exactly time “t”—it is zero.)

Pr(B) = S(t), as defined earlier.
Therefore,

dF/dt   

F’(t)

 f(t)

h(t) = 

 =   
 
=

S(t)

S(t)

S(t)

Check the units of h(t):  “dF” is the difference between probabilities. “dt” is the difference in time (time units).  “S(t)” is probability.  So the units of h(t) are “probability/probability/time”, which is 1/time (or time-1).    The hazard is not a probability!  It is counts per time (which is rate).  Some people call it “probability rate”.

Now, all of this was generic.  We have nothing specific until we make an assumption about F(t).  What is that function?  What function did I use to create the graph above?
One possible function is exponential.  (I used it to draw the graphs.)

F(t) =
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λ is a constant, but we don’t know yet what it means.  The function behaves reasonably, however: When t tends to 0, F(t) tends to 0, as it should: the cumulative probability of the event is small.  When t tends to infinity, F(t) tends to 1: the event will happen, “eventually”.  I showed that function in the graph for λ=0.2.

Now, derive f(t), S(t), and h(t)

f(t) = F’(t) = λ e –λt
S(t) =  e –λt

   f(t)
           λ e –λt
h(t) = 

=  

 =  λ


  S(t) 

e –λt
So, we discovered that λ in F(t), as defined above, is what we called the hazard.

Notes:

Allison’s book explains this nicely, but he starts from the hazard and moves to the other functions.  I think that the c.d.f. is the best starting point, pedagogically. From c.d.f. we get to p.d.f. and then to hazard.

There are other hazard functions that are not constant: 

Exponential: 
h(t) = λ    (This is what we did above)
Gompertz:
h(t) = exp( λ + α t)

Weibull:
h(t) =  λtα

If we allow for predictors, and define log h (t) = μ,  then:

Exponential: 
log h(t) =  μ + (X
Gompertz:
log h(t) =  μ + α t + (X
Weibull:
log h(t) =  μ + α log (t) + (X

Maximum partial likelihood (Cox) makes no assumption about h(t).  

Additional notes on August 25, 2006:

Here I show the similarity between the hazard (rate) and the probability when the follow up is short and the rate is low.  (Inspired by Symons MJ: Hazard rate ratio and prospective epidemiological studies: J Clin Epidemiol 2002;55:893-899).  For this reason, the hazard rate ratio and the proportion ratio (and the odds ratio) tend to be similar.
Focus on a short interval since the start of follow-up [0, t]:

The hazard of death, h(t) =  λ.  

And the cumulative hazard function is ∫0t h(t) dt = – ln S(t)   =   – ln (e–λt) = λt
=============================================================

Aside: One way of proving the first equality above is proving that the derivative of         “ln S(t)” is  –h(t), keeping  the rule of calculus below in mind.
	d
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dx
	ln (u) 
	=
	1
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dx


 d ln S(t)        1  d S(t) 
d S(t) / dt
   d[1 – F(t)] / dt        – f(t)
                 =   

=    

      =


   =

=  –h(t)
      dt            S(t)   dt

    S(t)


S(t)

S(t)
=============================================================
The probability of death in that interval is simply F(t), the cumulative distribution function



F(t) =   
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  = 1–(1–λt)]  = λt      [based on the famous approximation: e–x = 1–x when x is small]
So, for a small λ (low hazard rate) and a small t (short interval), namely a small λt, the following holds:
F(t) (the probability of death) ≈‍ λt  = cumulative h(t).  BUT I DON’T UNDERSTAND.  HAZARD is λ, not λt.   NEED TO THINK SOME MORE.
That paper also shows the following strict relation between HR, RR, and OR for a small λt.

1 < RR < HR < OR

1 > RR > HR > OR

(The inequalities between OR and RR is well known, but the middle position of the HR is not well known.)  Of course, when follow up is long, the whole story breaks and the RR and OR become useless.  Because proportion and odds mix causal forces with follow up time (chapter 3).
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