Commentary

Standardization: teach it correctly (and leave it behind)

| still remember the lecture on standardization at the
beginning of my MPH studies, several weeks into the
first course in epidemiology. The word sounded about
right — standards have always been praised — and the
computation was simple, but | had no clear
understanding why some kind of bias was removed.
The instructor offered a hand-waving explanation
that revolved around “making two groups
comparable”. Who would have dared to question
both “standardized” and “comparable”?

As far as | can tell from epidemiology textbooks on
my bookshelf, matters have not improved much in
the past two decades. Although many authors teach
how to compute standardized rates (or probabilities),
they don’t solidly explain why the difference
between, and the ratio of, two standardized
measures of frequency are unconfounded measures
of association. Nor do they explain the arbitrary
choice of a standard population, and how to reconcile
different estimated effects from an infinite number of
possible “standards”.

Here is an attempt to teach the true logic of the
method — and its faulty component.

Confounding and deconfounding

Figure 1 shows the causal structure of confounding
bias. The marginal association between E and D has
two sources: the causal path E>D that we wish to
estimate, and the confounding path E<C>D, a

source of bias.

Figure 1. Confounding bias

C

E > D

Next, recall a simple principle: Strict conditioning on C
(restricting C to one value) will eliminate the
confounding path, because upon restriction C will not
be associated with any variable. In particular, C will be
disconnected from both E and D (Figure 2). Therefore,
the association between E and D, conditional on C=c,
is an unbiased estimator of the effect E>D.

Lastly, we may estimate the effect of £ on D for each
value of C and then replace the multiple estimates

with a single weighted average (assuming negligible
effect modification). Whichever weights are used, any
such average is free of confounding bias by C.

Figure 2. Deconfounding by conditioning

C

Standardization

Standardization seems to be doing something quite
different (but the truth will be discovered shortly).

In the first step we choose a “standard population”,
which means a population with some distribution of
C. In the simplest case of a binary C, the standard
population contains N;+N, people or person-time,
where the subscripts 1 and 2 denote C=1 and C=2,
respectively.

In the second step we compute a standardized rate
(or a standardized probability) for exposed (R®) and
unexposed (R") as follows:

REN; + REN, N, N,
R =—x7m “Byzw TRy Tna
1 2 1 2 1 2
Ru=R¥N1+ REN, _ Ly M Ry N,
N; + N, LN, + N, 2N, +N,
where

R{ and RS denote the rate of D=1 in exposed people
who belong to the stratum C=1 and the stratum C=2,
respectively.

R} and RY denote the rate of D=1 in unexposed
people who belong to the stratum C=1 and the

stratum C=2, respectively.

To simplify, let

Ny
wy = ———
TN, +N,
2= NN,

Then,
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R¢ = R{w; + RSw,
R" = R}w; + R}w,
wy+w, =1)

Both standardized rates are, therefore, a weighted
average of C-specific rates, using a single set of
weights: the distribution of C in the standard
population.

Finally, we compute the standardized rate difference
(RD&=R°-R") and the standardized rate ratio
(RR=R°/R"), and call them “adjusted” measures. As
far as Cis concerned, both are unbiased.

How does standardization work?

Somehow, standardization has generated
unconfounded measures of effect. But why? We did
not condition the association between E and D on C,
as we should have done (Figure 2). We did not
estimate the effect of £ on D for each value of C and
then computed a weighted average. Or did we?

Yes, we did. A little math shows that standardized
differences and ratios are nothing more than a
weighted average of conditional associations.
Standardization is just an odd way to deconfound in
the classic manner.

The standardized rate difference (RD) can be written
as a weighted average of the C-specific rate

differences (RD, and RD,).

Proposition:
RDS = Re - Ru = RD1W1 + RD2W2

for some weights wy and w, (w; + wy = 1)

Proof:
RDg = R¢ — R% =

= (Rfwy + Riw;) — (Rfwy + R3wy)
= (Rf — R{)wy + (R — RP)w,
= RDyw; + RD,w, QED
Likewise, the standardize rate ratio (RR;) can be
written as a weighted average of the C-specific rate

ratios (RR; and RR,).

Proposition:
e

RRS = ﬁ = RR1u1 + RRzuz

for some weights u; and u, (u; + u, = 1)

Proof:
R¢ Réw; + RSw
RRy=_—=——t 2L

R*  Riw; + Ryw,
RY

u R; u
R Riw; + 5 Ryw,
1

Ry
Riw; + R¥w,

_ RR]_ %Wl + RRzRgWZ
R}w; + R¥w,

RYw, R}w,

2 pu u
R1W1 +R2W2

=RR
! R¥w; + R¥w,

To simplify, let

Riw;
Ut = o u
Riw; + RYw,
R}w,
u T ——
2 R%Wl + R%WZ
(ug +uy =1)

Then,
RR; = RRyu; + RRyu, QED

And that’s why standardization works. No need to
bring up any argument about standardized—adjusted—
expected—predicted—summary—weighted—fictional—
comparable rates.

The story — turned upside down

You can find similar algebra in Modern Epidemiology1
(a dense textbook that should be praised for its
comprehensiveness more than for clarity and order).

On pages 266-7, we read:

“The following algebra shows that a standardized rate
difference is the weighted average of the stratum-
specific rate differences...”

“Note that both RR,, [standardized risk ratio] and IR,,
[standardized rate ratio] are weighted averages of
stratum-specific ratios...”

Peculiarly to my mind, these results are mentioned as
a casual observation, rather than the essence of the
causal matter. The authors don’t link the logic of
standardization to a weighted average of stratum-
specific effects. On the contrary, in various places we
find attempts to inject logic into the original weights
that are used to compute standardized rates or
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standardized probabilities. For example, about 120
pages later (under the heading “regression
standardization”) we read the following claim, the
seeds of which were planted long ago.2

“Ideally, the standardized weights w(z) will reflect the
distribution of the covariates Z in a target population
of subject-matter relevance.” (Page 386)

What exactly is “a target population of subject-matter
relevance”, which contains that ideal distribution of
C? No, it is not what you probably have in mind. “The
target population” is a foggy idea that thrives on
ambiguity on the part of the writer, combined with
misinterpretation on the part of many readers. Yet it
managed to penetrate the literature in various
guises,3 most recently in the form of marginal
structural models.*® The epistemological poverty of
that idea — an idol of deterministic causal inference —
is exposed elsewhere.”?

On the weighting of estimated effects

As the algebra shows, standardization is not
conceptually different from the Mantel-Haenszel
procedure — another method to deconfound, which is
typically taught later in introductory courses. In both
methods we condition on the confounder and
compute a weighted average of the estimated effect
across its strata. The two methods differ only in the
chosen weights. Two questions may therefore be
asked.

e  Should we prefer a weighted average across the
values of C over C-specific estimates?

e How do we choose the weights?

The first question alludes to the possibility of effect
modification by C (RD.#RD,, RR.#RR,, or both). If
effect modification is strong — and we compute a
single estimate rather than two C-specific estimates —
the estimator is plagued with effect modification
bias.” For many weights, neither the effect of £ when
C=1, nor the effect of £ when C=2, is captured
unbiasedly by their weighted average. (And for any
set of weights, the estimator is severely biased for at
least one effect.)

Now to the second question: Assuming no effect
modification, how do we choose the weights? Since
the weighted average is unbiased — for any set of
weights — the answer comes from a different domain:
the weights determine the variance. We can
therefore trace the following trail:

Choosing a standard population is equivalent to
choosing weights for the estimated effect in the strata
of the confounder, which in turn, will determine the
variance of the unconfounded measure of effect.

Needless to say, we always prefer an unbiased
estimator with the smallest variance.

Minimizing the variance

Continuing with a binary confounder, let's examine
the variance of an unconfounded, weighted average
of two C-specific measures of effect: rate ratio, rate
difference, probability ratio, probability difference,
log rate ratio, log probability ratio, and so on. To
simplify, let M denotes the measure, and let W
denotes the weights (formerly, w or u). As before, the
subscripts 1 and 2 denote C=1 and C=2, respectively.

M = MW, + M,W,
Var(M) = Var(M,W; + M,W,)
= W2Var(M,) + W2Var(M,)
RecallingW, =1 -W;
Var(M) = W2Var(M;) + (1 — Wy)*Var(M,)

A little algebra takes us to the following quadratic
function of Wy:

Var(M) =

(Var(My) + Var(My) )W — 2Var(M,)W,
+ Var(M,)

Setting the first derivative to zero, we find the value
of W; which minimizes Var(M):

W - Var(My)
r- Var(M;) + Var(M,)

which can also be written as

1
Var(M;)
Wi=—7 i
Var(M;) + Var(M,)
1
Var(M
Wy=1-W,=— ar( 2)1

Var(M,) + Var(M,)

Using these weights, we find



Commentary

1

1 1
Var(M,) + Var(M,)

Var(M)min =

These results accord with intuition. “Good” weights
are typically related to the variance, and the formula
allocates the weights by partitioning the sum of the
inverse of the variance in the two strata of C. (The
proof for any number of strata is shown in Appendix
A)

Var(M,) and Var(M,) can be estimated from the data,
which means that the optimal weights, W, and W,,
can be estimated too. Recalling that the weights are
functions of the standard population (N;, N,), we can
trace the steps back and estimate the proportions of
N; and N, that minimize the variance of M. This is the
distribution of the confounder in the preferred
standard population! Any other choice will result in a
different set of weights and a larger variance of M. It
cannot be justified on statistical grounds.

But why bother? Why use tortuous standardization in
the first place, rather than estimate the optimal
weights directly and compute a weighted average of
C-specific effects? Indeed, that’s exactly what other
methods do. Trying to weigh by the inverse of
stratum-specific variances is the essence of the
Mantel-Haenszel estimator and the Woolf estimator.
Weighting in meta-analysis is another example
(though the issue is not confounding).

Indirect standardization

Standardization has been classified into two types,
“direct” and “indirect”, but the distinction is artificial.
It can be shown that the SMR — the hallmark of
indirect standardization — can be computed according
to the generic procedure that was outlined earlier:
choosing a standard population and dividing one
weighted average of C-specific rates by another.
Hence, the SMR may also be written as a weighted
average of C-specific rate ratios: SMR = RRyu, +
RR,u, for a binary C, and SMR =Y RR;u; in
general. An example of that alternative computation
is shown in Appendix B.

The “indirect” method is distinguished from the
“direct” method only in the choice of the standard
population. In the former, one of the groups serves as
the standard, so we encounter what may be called
“self-standardization”. The rate in one group is
standardized to the confounder distribution in that
group. But self-standardization is a redundant
exercise. Simple math can show that a self-
standardized rate (or probability) is equal to the
crude rate (or probability).

Many authors write that indirect standardization is
preferred when one of the two groups is small, and
that the smaller group should be chosen as the
standard. Under some assumptions, that choice might
approximate better the optimal weights than many
arbitrarily chosen standards, but it is still not better
than the optimal weights — those weights that
approximate the inverse of the variance of stratum-
specific estimated effects. Since the variances in
question can be estimated from the data, indirect
standardization is not needed either.

Some authors argue that the computation of the SMR
is justified when C-specific rates are missing in one
group. Not so. In that case, standardization also
willfully opens the door to effect modification bias:>*
The missing rates preclude the estimation of stratum-
specific effects (RR;), and a single weighted average —
the SMR — might conceal dissimilar effects in the
strata of C. (No, it is not analogous to unintentional
omission of unknown effect modifiers: the fact that
bias might unknowingly creep into science is no
excuse for knowingly letting a possible bias creep in.)

In retrospect

Why did so many minds fail to recognize the faulty
feature of standardization as described here, namely,
deconfounding with arbitrary weights and penalized
variance? At least three explanations may be offered,
none of which have to do with “a target population of
subject-matter relevance”.

First, many authors don’t present the algebra which
shows that a standardized measure of effect is a
weighted average of stratum-specific effects (and
those who do, note it in passing). Some authors don’t
even end the story with the computation of a
measure of effect. They just tell the reader that the
standardized rates “are comparable”, “may be
compared”, “account for different distributions”, and
the like.

Second, a weighted average across the strata of a
confounder is always constrained between the
smallest and the largest stratum-specific estimates. If
these two estimates are not too far apart (i.e.,
modest effect modification is estimated), a weighted
average will not vary much, no matter which weights
are used. Similarly, small departures from the optimal
weights will result in only a slight increase in the
variance of a weighted average.11 Therefore, in many
examples both the estimate and the variance are not
very sensitive to the arbitrary choice of a standard
population. The faulty component of the method
doesn’t leave its mark.
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Third, many authors teach that the inverse of the
variance is the appropriate weight for a weighted
average of stratum-specific effects, but they don’t
offer a full explanation. They don’t state that the
ultimate goal is to minimize the variance of an
unconfounded measure of effect, and they don’t
show the math that satisfies that goal. Read, for
example, a typical explanation in a well-written book,
Statistics for Epidemiology, of why we should use
inverse-of-variance  weights to compute the
unconfounded odds ratio:*

“The weights account for the fact that the stratum
Odds Ratios are estimated with different precision. In
averaging quantities that are subject to varying levels
of random uncertainty, it is best to use weights that are
proportional to the reciprocal of the variance of the
underlying estimator, so that imprecise components
are given low weight.” (Page 129)

Not a word on minimizing the variance of the
unconfounded odds ratio. Not a word on the
connection between that variance and the weights. It
is best because imprecise components are given low
weight and precise components are given high
weight. True, but not the whole truth.

Epilogue

Standardization is founded on two valid ideas:
conditional associations and their weighted average.
Nonetheless, the choice of the weights does not
follow the expected logic, namely, minimizing the
variance of a weighted average.

We may teach standardization as a historical method
to deconfound that contains a kernel of wisdom and
its statistical flaw is now understood. There is no
justification, however, for continued use of this
method in epidemiology. Standardization should be
abandoned, along with the empty term “the target
population of subject-matter relevance”. As for the
latter: either there is no such thing (which is obvious
in many examples of standardization), or such a thing
is irrelevant to causal knowledge.7'8

Acknowledgement: Doron Shahar - for writing
Appendix A and for comments on a draft manuscript.
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Appendix A

Let C be a confounder for the effect £ — D that is not an effect modifier. Let 1,...,n be the values
of C, and let M; be the estimated effect of £ on D in the stratum C' = ¢. The observations are
assumed to be independent, and therefore, the M; are independent. (M; may be any measure of
effect.) Then, any weighted average M = > "  W;M; (3.1, W; =1 and W; > 0, Vi) is an estimate
from an unbiased estimator of the effect E — D (as far as C' is concerned). Since the estimator is
unbiased regardless of the weights, we want to choose weights that minimize the variance of M

Proposition: For independent {M;}!' | where n > 2, Var(>_; | W;M;) is minimized when W; =
Var(M +—, and its minimum value is
] 1 Var(]\] ) i=1 Var(]\])

The first proof uses the method of Lagrange multipliers.

Proof 1: Var(}.r, WiM;) = Y Var(W; M;) = S°°, W2Var(M;), because the M; are indepen-
dent. We wish to minimize the previous expression under the constraint that > . ;, W; = 1 and
W; > 0,Vi. The set T' of all (W1, ...,W,) € R™ for which > | W; =1 and W; > 0, Vi is closed and
bounded. The extrema in the interior of T can be found by considering only the first constraint,
which may be written as ) ;" ; W; — 1 = 0. Later we shall find the extrema on the boundary of T'.

To find the extrema in the interior of T', let F'(W1, ..., Wy, A) = > W2Var(M;) = >, Wi —1).

By the method of Lagrange multipliers, the values of Wy, ..., W,, for which 68‘/5], = 0 are the critical

points of Var(d" ; WiM;). (These contain all the extrema of Var(>" ; W;M;) in the interior of

T.) W = 2W;Var(M;) — X. If we set S~ equal to zero, we find that W; = Va;\(/]\%[.). Since
J
_ )\/2 A A2
1= E] Wi = Z] 1 Var(M EJ 1 Var(M)’ then A =2 j= 1W' Thus, W = Var(Mj) —
Var(l\lj)

> 0. (W1,...,W,) is indeed in the interior of T" for those values of W;. By changing

Zn 1
J=1 Var(Mj})

1
our index, W; = —2iJ __ For these values of W, Var(30, W;M;) = Y0, W2Var(M;) =

J=1 Var(Mj)

Zn ) Var(JVI )2 Var( ) Z’L 1 W _ 1
=

J—l Var(]VI )) (Z? 1 Var(M ))2 N Zib:l Var(llwi) '

The boundary of T' is characterized by having some of the W; equal zero. For any point on the
boundary, let S = {i : W; # 0}. At such a point, Var(}_ ;" W;M;) = Var(>_,. ¢ WiM;). Using the
method of Lagrange multipliers again, the critical points of Var(3 ! WiM;) = Var(3, . WiM;)

1

Y ifie S
are found to be (W1, ..., W,,) where W; = jes WMJ)

0 ifi¢ S
(These contain all the extrema of Var(} . , W;M;) on the boundary of T.) For these values

1 _ 1
of Wi, Var(y, Wibli) = Y1, WEVar(M:) = ieg s Pl Var(M) = s Wi
(zjes WM])) (ZjES WMJ))
1 1 n 1
Yics W > S W because ZzeS Var( Mz) S Zi:l Var(M;)
1
Thus, of all critical points, Var(}_; , W;M;) is smallest when W; = —2xMi) - Therefore,
j=1 Var(Mj)



1
Var(3>7_, W;M;) is minimized when W; = <" and its minimum value is !

2i=1 Var(ary) S vny
QED
The second proof is done by induction.

Proof 2: The case n = 2 will be our base case for the induction. (This was shown in the article.)

2
Var( 3 WiMZ) = Var(Wy M, + WaMy)
=1

= WiVar(M;) + Wi Var(Ms) because M; and M are independent
= WiVar(My) + (1 — Wp)*Var(Mo)
= WE(Var(My) 4 Var(Ms)) — 2W; Var(My) 4 Var(Mo)

The above expression has a minimum when W; = % Dividing the numerator and de-
1 1
nominator by Var(M;)Var(My) we find that W, = — 2 and Wy = 1-W; = — M)
) Var(iy) t Var(adp) . ) Var(ary) + Var(atg)
s : : 2 Var(M,)? Yi=1 Var(81)
The minimum variance is then » 7 ; %Var(l\/fi) = (25:11 \:r (1(;2 )))2 =5 ;r(lMi) .
1
For the induction step, suppose that Var(Z?zl VVZMI) is minimized when W; = =2 for
j=1 Var(]\/fj)
some n > 2, and its minimum value is ——~——. Then,
i=1 Var(i1;)
n+1 n
Var( 3 WiMZ) - Var(z Wi M; + Wn+1Mn+1>
i=1 i=1
n
= Var(z WZMZ) + Var(W, 41 Mp41) because the M; are independent
i=1
= Var((Z Wj) <Z ﬁMz>> + Var(Wy41Mp 1)
j=1 i=1 ~j=1""J
= (Z Wj) Var(z ﬁ”ﬂ) + Wi Var(My1)
j=1 i=1 ~5=1""J
n
Wi 2
— (1~ Wis1) Var( > W'Mi) + W2, Var(My41)
=1 Jj=1""J
n .
=(1—Wpt1) Var(z UiMZ-) + WT%HVar(MnH) where U; = —;;———— are weights
i—1 Zj:l W
n n n
— W2, (Var(MnH) + Var ( 3 UZ-Mi)> — 9Wpi1 Var ( 3 UiMi> + Var ( 3 UZ-Mi)
i=1 i=1 i=1



The U; do not depend on W,,;;. So for any possible values of U;, the above expression is mini-
Var ( S UM,

Var(My+1)+Var ( > UiMZ')

mized when Wy, = . Furthermore, we assumed that Var(Z?zl UiMi>

1
is minimized when U; = <) Therefore, Var( Z"'H W, M; ) is minimized when
j=1 Var(IM )

Var( ST UiMi>

WnJrl -
Var(M,+1) —|—Var(zl 1 UM)
_ > iy UPVar(M;)
Var(Mn1) + 3232 UP Var(M;)
1 2
Y () Var(M)
o J=1 Var(Mj)
= 1 2
Var(My41) + >y (%) Var(M;)
j=1 Var(M;)
1
j=1 Var(ary)
Var( Myi1) + =—2—
j=1 Var(]Mj)
1 1 D
= —XﬂMHi) after mulitplying by Var(]\l/["H) iL_ Var(le )
Zj:1 Var(Mj) Var( n+1) Zjil Var(Mj)
and when
W= (> w;)u,
j=1
=(1—-Wy1)U;
1 1
_ ( _ Var(Mn41) Var(M;)
- n+1 1 1
2541 V0T D=1 Var(igy)
N (Z?I Var(Mj) Var( M) )
- n+1 1
Zjil Var(M;) ] 1 Var
1
Var(M:) for i € {1,...,n}

= Zn+1 1
j=1 Var(Mj)

1
Therefore, Var( Z?:Jrll I/V1M1> is minimized when W, = Zn‘ﬁﬂf%i The minimum variance is then
j=1 Var(Mj)
1 n+1 1
2 2 varan . . .
Z?:Jrll %V&r(lm) = nHl Yar(M;) = = =T L This completes the induction step.
(2521 vartaryy) (2521 vartaryy) 2i=1 Var(A)

1
So for all n > 2, the weighted average Var(3 ), W;M;) is minimized when W; = o™il and

ST v
j=1 Var(Mj)

its minimum value is ﬁ QED
i=1 Var(M;)



Appendix B

An example of indirect standardization, written as a weighted average of RRi*

Age

20-24
25-29
30-34
35-44
45-54
55-59
Total

* The example (on the left) was taken from an online epidemiology course (http://ocw.jhsph.edu/courses/FundEpi/PDFs/Lecture?7.pdf)

N
74,598
85,077
80,845

148,870

102,649
42,494

534,533

Miners (exposed)

Deaths (observed)

10
20
22
98
174
112
436

Rate (per 10°)

13.41
23.51
27.21
65.83
169.51
263.57

General
population
(unexposed)

Rate (per 10°) Deaths (expected)

12.26
16.12
21.54
33.96
56.82
75.23

9.15
13.71
17.41
50.56
58.33
31.97

181

241
SMR

RRi
1.09
1.46
1.26
1.94
2.98
3.50

RY;
12.26
16.12
21.54
33.96
56.82
75.23

Standard
population

Wi ok

0.14
0.16
0.15
0.28
0.19
0.08
1.00

R x w;
1.71
2.57
3.26
9.46

1091
5.98
33.88

where the classic computation of the SMR is shown. On the right, I computed the SMR as a weighted average of age-specific rate ratios,

following the notation in the commentary

** The miners serve as the standard population

uj
0.05
0.08
0.10
0.28
0.32
0.18
1.00

RRyy;
0.055
0.110
0.121
0.541
0.961
0.618
241
YRRy,
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