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Abstract
We present a novel two-dimensional (2D) MAET scanner, with a rotating object 
of interest and two fixed pairs of electrodes. Such an acquisition scheme, with 
our novel reconstruction techniques, recovers the boundaries of the regions 
of constant conductivity uniformly well, regardless of their orientation. We 
also present a general image reconstruction algorithm for the 2D MAET 
in a circular chamber with point-like electrodes immersed into the saline 
surrounding the object. An alternative linearized reconstruction procedure is 
developed, suitable for recovering the material interfaces (boundaries) when a 
non-ideal piezoelectric transducer is used for acoustic excitation. The work of 
the scanner and the linearized reconstruction algorithm is demonstrated using 
several phantoms made of high-contrast materials and a biological sample.

Keywords: Lorentz force tomography, magneto-acousto-electric tomography, 
electric impedance tomography, imaging of conductivity, lead currents, 
synthetic transducer

(Some figures may appear in colour only in the online journal)

1. Introduction

Magneto-acousto-electric tomography (MAET), also known as the Lorentz force impedance 
tomography, is based on measurements of the electrical potential arising when an acoustic 
wave propagates through conductive medium placed in a magnetic field (Wen et  al 1998, 
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Montalibet et  al 2001). The Lorentz force resulting from the motion of free ions (and/or 
electrons) in the magnetic field causes separation of charges and, thus, generates Lorentz 
currents within the tissues. The values of electric potential associated with these currents are 
measured outside of the object of interest and used to reconstruct the conductivity map within 
the tissues.

MAET can be viewed as an attempt to significantly improve the resolution of the better 
known Electrical Impedance Tomography (EIT), that was introduced in the late 1980s as a 
fast, inexpensive, and safe method for mapping the distribution of electrical conductivity in 
biological tissue. In EIT, surface potentials are detected while injecting small levels of cur-
rent through parts of the body (Barber and Brown 1984, Cheney et al 1999, Borcea 2002). A 
variety of medical conditions, including cancer, blood clots, and seizures, are associated with 
large changes in bioimpedance (see Borcea 2002 and references therein). However, despite 
extensive development, EIT has not become a widely used technique in medical imaging due 
to its poor spatial resolution. EIT is based on solving an ill-posed (or unstable) inverse prob-
lem, which makes impossible obtaining high resolution images. In contrast, the stability of 
the inverse problem of MAET is restored by coupling electrical measurements to ultrasound 
waves through the Lorentz force effect. This yields high-resolution spatial information about 
the object, and, as a result, makes MAET a potentially irreplaceable imaging modality.

Few experimental results on MAET have been obtained by now. As a form of biomedical 
imaging, this technique was first introduced in Wen et al (1998), under the name of Hall Effect 
Imaging. By scanning the transducer in the plane perpendicular to its axis, the authors of Wen 
et al (1998) were able to image the interfaces between the regions of different conductivi-
ties, parallel (or nearly parallel) to the scanning plane. In Montalibet et al (2001), accurate 
measurements of the Lorentz force effect within a narrow measuring chamber were performed 
using time-harmonic ultrasound waves; image reconstruction was not attempted in that work. 
An image of a planar face of a simple test object was obtained in Haider et al (2008), again, 
using planar scanning parallel to that face. In Grasland-Mongrain et al (2013), reconstructed 
images of a gelatin phantom and of a beef sample are presented. These images were also 
obtained using planar scanning; material interfaces parallel to the scanning plane and nearly 
perpendicular to the axis of the transducer are clearly visible in the images. In all of the above 
works, only one pair of electrodes was used, and the orientation of the transducer was station-
ary. This made reconstruction of the interfaces not perpendicular to the transducer axis dif-
ficult if not impossible. In the present work the scanned object is rotated with respect to the 
transducer, and two pairs of electrodes are used, thus permitting uniformly accurate detection 
of material interfaces.

In addition to MAET, there exist several other hybrid modalities utilizing various combina-
tions of magnetic field with ultrasound, such as, for example, magneto-acoustic tomography 
with magnetic induction (MAT-MI) (Mariappan and He 2003, Xu and He 2005, Li et al 2007, 
Hu et al 2011), Lorentz force electrical impedance tomography using magnetic field (Zengin 
and Gençer 2016), and some others. Like MAET, all these modalities are very new; they sig-
nificantly differ from the present version of MAET by the physics of the signal acquisition. 
For these two reasons we will not attempt here a comparative analysis of these modalities and 
MAET.

Like almost any other type of tomography, MAET relies on mathematical processing of 
the data in order to recover the desired image. One of the first rigorous image reconstruction 
techniques for MAET has been proposed in Roth and Schalte (2009), under assumptions that 
the conductivity distribution ( )σ x  is a small perturbation of a constant, and that the object is 
tested by planar time-harmonic waves of all possible frequencies and orientations. An implicit 
assumption in this work was that the electric potential was measured by a pair of electrodes 
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located perpendicularly to the propagation direction of the plane wave. The technique was 
tested in a numerical experiment.

A significantly more general 3-dimensional (3D) setup was considered in Kunyansky 
(2012). It was assumed that at least 3 different pairs of electrodes were used (although a signif-
icant freedom was retained in modeling various electrode configurations). The magnetic field 
for simplicity was assumed uniform, with ability to utilize at least two perpendicular orienta-
tions of the magnetic induction. Importantly, it was assumed that the ultrasound illumination 
was done using an ideal transducer, capable of transmitting acoustic waves of all frequencies, 
and the scanning was done using all wave directions. It has been shown in Kunyansky (2012) 
that, if such a rich set of data is available, the conductivity can be reconstructed theoretically 
exactly, using a set of explicit and linear formulas, without any linearization with respect to 
small parameters or other simplifying assumptions. Such a linearity is quite surprising, since 
the original problem of EIT is nonlinear, and since many other hybrid modalities lead to non-
linear inverse problems even when the coupling between the component fields is very weak. 
In addition, all the steps of the reconstruction procedure presented in Kunyansky (2012) are 
stable. These techniques were tested in Kunyansky (2012) in numerical experiments with 
simulated noisy data, confirming the theoretical conclusions of the paper.

A 2-dimensional (2D) reconstruction procedure was developed in Ammari et al (2015) for 
a MAET data acquisition scheme somewhat similar to the experimental setup of Grasland-
Mongrain et al (2013). As in the latter work, only one pair of wide flat electrodes was con-
sidered in Ammari et  al (2015), i.e. smaller amount of measured information is assumed, 
comparing to Kunyansky (2012). However, similarly to Kunyansky (2012), the assumption 
was made that the transducer could generate all frequencies and illuminate the object from 
all the directions within the plane where the object was supported. (Since the experimental 
setup of Grasland-Mongrain et al (2013) does not deliver multi-directional ultrasound excita-
tion, methods of Ammari et al (2015) cannot be combined directly with the data of Grasland-
Mongrain et al (2013).) Since in Ammari et al (2015) only one pair of electrodes was assumed, 
an explicit reconstruction technique (similar to Kunyansky (2012)) could not be applied, and 
a more sophisticated minimization procedure was developed. It has been shown theoretically 
that this procedure converges to the sought conductivity; the corresponding algorithm was 
validated in numerical simulations.

The reconstruction techniques of Kunyansky (2012) and Ammari et al (2015) share the 
first step consisting of reconstruction of the curl(s) of the so-called lead (or virtual) current(s) 
associated with each electrode pair. This step is done using any of the well known methods 
developed for photo- and thermoacoustic tomography (see, e.g. Kuchment and Kunyansky 
(2011a) and references therein). In order for the rest of the MAET mathematics work properly, 
the results of the first step should be quantitatively correct. However, in all of the recent exper-
imental works on MAET, ultrasound waves were generated using piezoelectric transducers. 
Such transducers are popular in the biomedical imaging community due to their high efficiency 
and ability to work as both transmitters and receivers of acoustic signals. However, a signifi-
cant drawback of these devices from the MAET point of view is their narrow bandwidth. A 
frequency response of a typical transducer can be modeled by a bell-shaped curve centered at 
a certain frequency (e.g. 0.5 MHz as in several of the above mentioned experimental works), 
quickly falling off away from that frequency. In other words, such transducers cannot gener-
ate a significant range of lower frequency waves (say, 0 to 0.25 MHz). The application of the 
linear methods of thermoacoustic tomography to such data with missing lower frequencies, 
is equivalent to applying a high-pass (spatial) filter to the reconstructed function. While in 
some other hybrid modalities (e.g. photoacoustic tomography) such high-pass images are still 
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useful, a quantitatively correct image needed for the multi-step MAET reconstruction proce-
dures (Ammari et al 2015, Kunyansky 2012) cannot be obtained this way.

In our opinion, MAET will be able to yield quantitatively correct, high-resolution images 
of conductivity if wide-band acoustic sources are used, and a sufficiently rich 3D set of data 
is collected. However, before an advanced 3D MAET scanner can be built, the feasibility of 
MAET needs to be demonstrated in lower-budget experiments utilizing conventional piezo-
electric transducers and other readily available measuring devices. In particular, the goal of 
the present work is to build a prototype 2D MAET scanner and to develop theoretical and 
algorithmic tools for image reconstruction from the MAET data. We will show that even using 
a relatively simple experimental MAET scheme one can reconstruct boundaries between the 
regions of contrasting conductivity uniformly well, independently of their orientation. The 
work of the scanner will be demonstrated using tissue-mimicking phantoms and a bovine 
sample.

In the present paper we concentrate on the engineering aspect of MAET and limit the pres-
entation of the underlying mathematics to the main results that are needed to understand the 
design and work of our scanner. A more rigorous study of the mathematical side of this work 
can be found in the companion paper (Kunyansky et al 2017).

2. A prototype 2D MAET scanner

To this end, the authors have built the first 2D fully-tomographic prototype MAET scanner, 
and tested it on several simple test objects. The purpose of this work is to show that even in 
a minimal configuration MAET can recover boundaries of bodies with different conductivi-
ties, with the resolution close to the wavelength corresponding to the central frequency of the 
transducer.

2.1. General scheme of the experiment

The main part of our scanner is a cylindrical scanning chamber placed between two cylindrical 
neodymium permanent magnets, situated coaxially above and below the chamber, and creat-
ing a near vertical magnetic induction. The chamber is filled with a saline (NaCl) solution and 
the object of interest is placed inside the chamber and completely submerged into the saline. 
An ultrasound transducer (whose axis is horizontal) sends short pulses into the object through 
a side window in the chamber. The horizontal cross-section of the chamber and the top view 
of the data acquisition setup are shown in figure 1.

The interaction of the magnetic field with horizontal motion of the charged particles gener-
ates Lorentz currents oriented horizontally. The secondary Ohmic currents propagate through 
the object and the conductive saline. Two pairs of electrodes placed in the saline near the 
chamber’s walls pick up differential values of the resulting electric potential. The electrodes 
are made of vertical copper wires, and the boundaries of the test object(s) were also made 
vertical when possible. This results in Ohmic currents propagating mostly horizontally, and 
allows us to use a simplified 2D mathematical model to accurately model our experimental 
data and to pose the 2D inverse problem.

In order to obtain a sufficiently rich set of data the test object(s) is (are) suspended from 
a turntable rotating around the vertical axis of the chamber, and electrical measurements are 
repeated for different angular positions of the object. In addition, the transducer scans the 
object horizontally, as shown in the figure 1. Such a scanning pattern guarantees that each 
segment of the object’s boundary is touched tangentially by a propagating acoustic front at 
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least once. This, in turn, stabilizes the inverse problem solved as the first step of the image 
reconstruction procedure, see section 3.4.

2.2. Details of the data acquisition scheme

The chamber, turntable, and spur gears driving the turntable were 3D printed of non-conduc-
tive plastic, so that the electrical currents were restricted to the near cylindrical interior of 
the chamber. In order to facilitate propagation of acoustic waves generated by the transducer 
into the chamber, both the chamber and the transducer are placed inside a larger tank filled 
with water. The interior of the chamber is electrically isolated from the water in the tank by 
a Tegaderm film covering the chamber’s window. This film does not significantly interfere 
with the propagation of ultrasound, although a weak acoustic reflection from the film is reg-
istered by the transducer. The transducer we use has a central frequency 0.5 MHz (Olympus 
Panametrics-NDT V389, f  =  54.6 mm, dia  =  38 mm), and is driven by a rectangular pulse 
transmitter/receiver (Olympus Panametrics-NDT V3077PR).

The inner diameter of the chamber is 75 mm and the width of a window is 50 mm. The 
Neodymium magnets used in the scanner are 75 mm in diameter and 25 mm tall. The vertical 
distance between magnets is 50 mm; the direction of the magnetic induction is near vertical 
across the chamber. Measured in the center of the chamber, the magnetic induction is 0.35 T 
with gradual decrease away from the central axis of the scanner.

In our experiments, the test objects were suspended from a turntable rotated about the 
vertical axis of the scanner. Rotation is driven by a Velmex rotation stage, connected to the 

Figure 1. A propotype MAET scanner, horizontal cross-section.

L Kunyansky et alPhys. Med. Biol. 62 (2017) 3025



3030

turntable through a set of spur gears (Such a setup eliminates magnetic interaction between 
the electric motor and the strong field of the magnets.).

The interior of the chamber is filled with a saline solution, to provide both electrical and 
acoustic contact with the tested object. Most of our experiments were done with 0.9% and 
0.45% saline; stronger or weaker concentrations did not yield improvement in the signal, 
but both somewhat decreased the signal-to-noise ratio (SNR). A partial explanation of this 
phenom enon is attempted in section 3.4.

The electric potential in saline is picked up by four copper electrodes (see figure 1) made 
of straight vertical copper wires (1 mm in diameter) running through the whole height of 
the chamber. The wires are simply the naked ends of a solid core RG59 radio-frequency 
cables connecting these electrodes to the amplifiers. Two high-impedance differential ampli-
fiers (Teledyne LeCroy, 1855A) are used to capture and amplify by a factor of ten the poten-
tial difference between electrodes #1 and #3, and between electrodes #2 and #4. The two 
amplified signals are registered by two channels of a multifunctional DAQ card (National 
Instruments PXI 6289, sampling rate 20 ms per second).

Thus, in each experiment we collected two time sequences, ( )θU t y, ,1,3  and ( )θU t y, ,2,4  rep-
resenting the potential differences between electrodes #1 and #3, and between #2 and #4, 
for each position y of the transducer and angular position θ of the turntable. The angle θ was 
sampled between 0 and 360 degrees, x2 was scanned between  −25 and 25 mm. These two sets 
of data were used to reconstruct a MAET image, as described below.

3. Mathematics of the 2D MAET

3.1. Electric potential

It has been shown (Montalibet et al 2001) that if the tissue with conductivity ( )σ x  moves in 
a 3D space with velocity ( )t xV ,  within the constant magnetic field ( )xB , the arising Lorentz 
force will generate Lorentz currents ( )t xJ ,L  given by the following formula

( ) ( ) ( ) ( )σ= ×t x x x t xJ B V, , .L (1)

Throughout the paper we will make the following simplifying assumptions. The magnetic 
induction B is constant and oriented vertically, i.e. →= BeB 3 (where →e3 is the unit vector par-
allel to the x3 axis, which, in turn, is perpendicular to x1 and x2 axes shown in figure  1). 
The conductivity ( )σ x  is non-zero and depends on the 2D variable ( )=x x x, .1 2  The chamber 
walls are vertical, and the acoustic excitation is x3-independent, with velocity ( )t xV ,  oriented 
horizontally4. Under these assumptions the Lorentz currents JL and the secondary Ohmic cur-
rents JO flow horizontally, and the mathematics of the problem becomes two-dimensional, 
i.e. ( ) ( )( )=t x J J t xJ , , , ,L L L

1 2  ( ) ( )( )=t x J J t xJ , , , ,O O O
1 2  ( ) ( )( )=t x V V t xV , , ,1 2 , etc. Under these 

assumptions equation (1) takes the following form:

( ) ( ) ( )σ= ⊥t x x B t xJ V, , ,L (2)

where ( )⊥ t xV ,  is the left normal to ( )t xV , , i.e. ( ) ( )( )= −⊥ t x V V t xV , , , .2 1

The Ohmic currents ( )t xJ ,O  are related to the electric potential u(t, x) in the medium by 
the Ohm’s law

σ= ∇uJ .O

4 If the velocity field is not strictly horizontal, then, due to the properties of the cross product in equation (1), the 
vertical component of the velocity will have no effect on JL—if B is strictly vertical, as we assume. If B is also not 
strictly vertical, there will be some blurring of the boundaries in the image.
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Since the propagation of charges is divergence-free and ( )+ =J Jdiv 0,L O  we obtain

σ∇ ⋅ ∇ = −∇ ⋅u J .L (3)

Let us consider an acquisition scheme that involves a circular chamber and a set of N 
equispaced electrodes (Our actual set-up is a particular case of this more general scheme, with 
N  =  4.). We assume that the interior of the chamber is a disk of radius R1 as shown in figure 2 
where the means of delivering ultrasound excitation are omitted. The N electrodes are placed 
at the points yj lying on the concentric circle of radius R in an equispaced fashion:

( ) ( )
ψ ψ ψ

π
= = Ψ+

−
=y R

j

N
j Ncos , sin ,

2 1
, 1, ..., ,j j j j (4)

where Ψ angle determines the angular position of the first detector. We will denote the disk (of 
radius R1) describing the interior of the chamber by Ω , and its boundary by ∂Ω . The object 
of interest is contained within a smaller concentric circle of radius R0; the interior of the latter 
circle will be denoted by Ω .0  The ring \Ω Ω0 is filled by the saline with constant conductivity 
σ .0

The chamber walls are non-conductive, therefore, there are no currents through ∂Ω and the 
normal component of the total current ( ) ( )+t x t xJ J, ,L O  vanishes on ∂Ω :

( ) ( )σ
∂
∂

= − ⋅ ∈ ∂Ω
n

u t z n z zJ, , ,L
0 (5)

where n(z) is the exterior normal to ∂Ω at point z.
We assume that the speed of sound c in the tissues and the density ρ of the tissues are 

constant and coincide with those of the surrounding saline. The pressure of the sound waves 
p(t, x) satisfies the standard linear wave equation:

( ) ( ) R∂
∂

= ∆ ∈
c t

p t x p t x x
1

, , , .
2

2

2
2

Additionally, p(t,x) is the time derivative of the velocity potential ( )ϕ t x,  (see, for example 
(Colton and Kress 2001)), so that

( ) ( ) ( ) ( )
ρ
ϕ ϕ= ∇ =

∂
∂

t x t x p t x
t

t xV ,
1

, , , , . (6)

The above formulas show that not only the components of the model velocity satisfy the wave 
equations, but that the velocity itself is a gradient vector field. This property needs to be taken 
into account when modeling the acoustic fields of a transducer; otherwise, the total model of 
MAET measurements may give non-physical results.

3.2. Lead currents

The measurements of the electric potentials u(t, yj) made by point-like electrodes at the points 
∈Ωy ,j 0  (see equation (4)) are combined with weights Wj to obtain a measurement functional 
( )M t W, :

( ) ( ) ( )∑= =
=

M t W u t y W WW W, , , , ..., .
j

N

j j N
1

1 (7)

From the engineering standpoint, if N is even, this can be accomplished by combining sev-
eral standard differential measurements. In our scanner, for example, we measure the voltage 
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differentials ( ) ( )−u t y u t y, ,1 3  and ( ) ( )−u t y u t y, ,2 4 , out of which various combinations in the 
form (7) can be generated.

The only restriction we impose on the choice of weights Wj is that their sum should equal 
to 0:

∑ =
=

W 0.
j

N

j
1

 (8)

This requirement is needed, in part, because potential u(t, x) is defined only up to an arbitrary 
constant. If (8) is satisfied, measured values ( )M t W,  (equation (7)) do not depend on the 
choice of this constant. The simplest example of such a measurement is a standard differential 
measurement with N  =  2, W1  =  1 and W2  =  −1.

As it is usually done when investigating MAET, we introduce the notion of the lead 
(or virtual) current. This is the current that would propagate through the chamber (contain-
ing the saline and the object of interest) if one injected currents Wj through the electrodes. 
Quantitatively, the density and direction of the lead current also describes the sensitivity of 
the system of electrodes to a unit electrical dipole placed at the varying locations within the 
chamber, if the potential recorded on each electrode is weighed with a weight Wj. As a result, 
the MAET measurements can be expressed in terms of the lead currents, as explained below.

Let us consider an auxiliary problem of finding the electric potential w(x) within Ω in 
the absence of Lorentz currents, but with currents injected in the medium through the point 
electrodes placed at the same points yj as defined above, with currents Wj injected through 
the electrodes placed at yj, j  =  1,...,N. As explained in the appendix, such a lead potential 

( )w xW  satisfies the conductivity equation in Ω with punched out points yj, j  =  1, ..., N (where 
it becomes singular)

⋃( ) ( ) \σ∇ ⋅ ∇ = ∈Ω =x w x x y0, ;j
N

jW 1 (9)

it also satisfies the Neumann boundary condition on the regular (non-conductive) boundary

( )∂
∂

= ∈∂Ω
n

w z z0, ,W (10)

Figure 2. An idealized MAET chamber.
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and the asymptotic growth condition at the singular points 

( ) ( ) →O
πσ

= | − | + =w x W x y x y j N
1

2
ln 1  as  , 1, ..., .j j jW

0 
(11)

(The big O notation in the last equation  indicates that the difference between ( )w xW  and 

| − |
πσ

W x ylnj j
1

2 0
 remains bounded in the limit →x yj).

Solution wW of the equation (9) with boundary conditions (10) and (11) can be found as the 
sum of two functions ( )w xW

sing  and ( )w x ,W
smooth

( ) ( ) ( )= +w x w x w x ,W W W
sing smooth (12)

where wW
sing is defined by the following formula

( ) ∑πσ
≡ | − |

=

w x W x y
1

2
ln ,

j

N

j jW
sing

0 1
 (13)

and ( )w xW
smooth  is found as the solution of the following boundary value problem in Ω:

( ) ( ) ( ) ( )σ χ σ∇ ⋅ ∇ = − ∇ ⋅ ∇ ∈Ωw x x x w x x, .W W
smooth sing (14)

( ) ( )∂
∂

= −
∂
∂

∈∂Ω
n

w z
n

w z z, ,W W
smooth sing (15)

where the indicator function ( )χ x  is defined as as follows

( )
\

⎧
⎨
⎩

χ =
∈Ω
∈Ω Ω

x
x

x
0, ,
1, .

0

0

Equation (14) with boundary conditions (15) has a unique solution if condition (8) is satisfied 
(Kunyansky et al 2017). It is easy to see that, since wW

smooth is bounded in Ω, the sum (12) satis-
fies equations (9) and (10) and has the desired behavior (equation (11)) at the singular points.

The lead current σJW,  (corresponding to a particular choice of weights W and given ( )σ x ) 
is now defined in Ω through the lead potential wW as follows

( ) ( )( ) ( ) ( )σ= = ∇σ σ σx J J x x w xJ , .W, W, W,
W1 2 (16)

Below we will have to deal with the 2D curl ( )σC xW,  of this current defined as

( ) ( ) ( )≡
∂
∂

−
∂
∂

σ σ σC x
x

J x
x

J x .W, W, W,

1
2

2
1

The lead current analyzed above can be physically realized by applying a set of voltages 
to the point-like electrodes. In addition to such currents we will need to analyze currents that 
would be excited in our medium by an external potential win that would exist in a medium with 
uniform conductivity. Such a potential can be represented by a function harmonic in Ω . We 
thus consider the following problem: given a function ( )w xin  harmonic in Ω , find the solution 
wout to the following boundary value problem

( ) ( ) ( ) ( )σ χ σ∇ ⋅ ∇ = − ∇ ⋅ ∇ ∈Ωw x x x w x x, ,out in (17)

( )∂
∂

= ∈∂Ω
n

w z z0, .out (18)
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It is shown in Kunyansky et al (2017) that this problem has a unique solution wout, and the sum 
+w win out solves the conductivity equation in Ω:

( ) [ ( ) ( )]σ∇ ⋅ ∇ + = ∈Ωx w x w x x0, .in out

Thus, we define a virtual current σJw ,in
 induced by the potential win in Ω filled with the medium 

with conductivity ( )σ x , by the formula

( ) ( )( ) ( ) [ ( ) ( )]σ= ≡ ∇ +σ σ σx J J x x w x w xJ , .w w w,
1

,
2

, in outin in in
 (19)

We, in particular, are interested in the 2D curl ( )σC xw ,in

 of this current defined as follows

( ) ( ) ( )=
∂
∂

−
∂
∂

σ σ σC x
x

J x
x

J x .w w w,

1
2

,

2
1

,in in in

 (20)

We notice that both curls σCW,  and σCw ,in

 are finitely supported within \Ω Ω0 and vanish within 
Ω ,0  since ( )σ σ=x 0 in Ω .0

Finally, by substituting (19) into (20) we obtain for future reference, the following equation:

[ ] [ ]σ σ σ σ
=
∂
∂
∂
∂

+ −
∂
∂
∂
∂

+ =
∂
∂

−
∂
∂

σ σ σC
x x

w w
x x

w w J
x

J
x

ln lnw w w,

1 2

in out

2 1

in out
2

,

1
1

,

2

in in in

 (21)

3.3. Lead currents and MAET measurements

The lead current JW (given by (16)) plays an important role in the analysis of the MAET mea-
surements ( )M t W, . It can be shown (Kunyansky et al 2017) that

( ) ( )∫= − ⋅
Ω

⊥M t B t x xW J V, , dW
 (22)

The above equation (22) shows that the weighted measurements ( )M t W,  can be expressed 
through the magnetic induction and velocity of the medium physically present in the system, 
and through the lead currents that are not. This seeming contradiction is easily explained: the 
lead current describes the sensitivity of our measuring system to the Lorentz potential (2) 
within the medium.

Let us recall that our velocity field is given by (6); using integration by parts one obtains

( )

( ) ( ) ( ) [ ( ) ( ) ( ) ( )]

⎛
⎝
⎜

⎞
⎠
⎟∫

∫ ∫

ρ
ϕ ϕ

ρ
ϕ

ρ
ϕ

= −
∂
∂

−
∂
∂

= + −σ

Ω

Ω ∂Ω

M t
B

x
J

x
J x

B
t x C x x

B
t z n z J z n z J z z

W, d

, d , d ,

W W

W, W W

1
2

2
1

2 1 1 2

 (23)
where ( ) ( )( )=n z n n z,1 2  is the exterior normal to ∂Ω . In many important situations the above 
equation can be further simplified. For example, if the object is illuminated by ultrasound 
pulses (as is done in our scanner), there is a time interval during which velocity potential 

( )ϕ t x,  is supported strictly inside Ω (i.e. it vanishes on the boundary ∂Ω). If t lies within this 
time interval, (23) simplifies to

( ) ( ) ( )∫ρ ϕ= σ

Ω

M t
B

t x C x xW, , d .W,
 (24)
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3.4. Basic properties of MAET measurements

It is easy to check that within any region ⊂Ω Ωc  in which ( )σ x  is constant, the lead current 
σJW,  is curl-free, i.e. =σC 0W,  in Ω .c  Indeed, similarly to (21) one obtains

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟σ σ

σ σ σ σ

=
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

−
∂
∂

σ

σ σ

C
x

x
x

w x
x

x
x

w x

w x

x

x

x

w x

x

x

x
J

x
J

x

ln ln
.

W,
W W

W W W, W,

1 2 2 1

2 1 1 2
2

1
2

2

If ( )σ x  is constant, in the above equation the partial derivatives containing ( )σ x  vanish, yield-
ing =σC 0W, . Therefore it follows from equation (24) that at any time t when the ultrasound 
pulse is supported strictly within Ω ,c  the MAET signal ( )M t W,  is equal to zero. In other 
words, there is no MAET signal from regions of constant conductivity; if the object consists of 
such regions, the signal will be generated only when the pulse propagates through the bound-
ary between these regions. Nevertheless, if a sufficient amount of information is acquired, the 
conductivity can, in theory, be reconstructed exactly at each point in Ω, from MAET measure-
ments (see Ammari et al (2015) and Kunyansky (2012) and the explanation given below).

Another interesting observation has implications to modeling and testing MAET. Suppose 
w(x) is a lead potential satisfying equation (9) with boundary conditions (10) and (11), and 
with given conductivity ( )σ x . Then the same equations are also satisfied by a lead potential 

w1(x)  =  Cw(x) with conductivity ( ) ( )σ σ=x x ,
C1
1  where C is an arbitrary non-zero factor. The 

lead current ( ) ( ) ( ) [ ( )] ( )( )σ= ∇ = ∇ =σx x w x Cw x xJ Jx

C1 1 1  clearly remains the same. Therefore, 

MAET measurements with ( )σ x  replaced by ( )σ x1  will remain unchanged, according to (22). 
There is no contradiction between this fact and our ability to reconstruct ( )σ x  from MAET 
measurements, since it is assumed that we know the values of ( )σ x  on the boundary ∂Ω. This 
property also explains, at least partially, why we obtain approximately the same strength of 
the signal and the SNR, when using saline with different concentrations of NaCl in the range 
of, say, from 0.3% to 2% (However, one has to keep in mind that the currents depend on the 
conductivity non-linearly, and a more quantitative analysis of this phenomenon is far beyond 
the scope of the present paper.).

If one assumes that a sufficiently rich set of acoustic illuminations can be applied to the 
stationary object while doing MAET measurements (e.g. the object can be illuminated from 
all the directions and the bandwidth of the acoustic signal is infinite), then the curl σCW,  in 
(24) can be reconstructed exactly. Indeed, such an ideal acoustic illumination implies that an 
arbitrary set of functions ( )ϕ t x,  can be formed either directly, or by combining the measure-
ments corresponding to several different propagating waves (so called synthetic focusing, 
see Kuchment and Kunyansky 2010 and Kuchment and Kunyansky 2011b). For example, 

one can focus ( )ϕ t x,  to approximate at t  =  t0 a Dirac delta-function ( ) ( )ϕ δ= −t x x y, ;0  then 

equation (24) yields value ( )σC yW,  (up to a known factor 
ρ
B). Alternatively, one can gener-

ate monochromatic plane waves of different frequencies and directions, thus recovering the 
Fourier transform of σC .W,  This procedure is described in Kunyansky (2012), and is alluded to 
in Ammari et al (2015). After σCW,  is recovered at each point of the domain, one can recover 
the corresponding lead current. In the case when two or more lead currents are measured, 
one can use such currents as a local basis and reconstruct the gradient of σln , and thus the 
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conductivity σ (Kunyansky 2012). If only one current is measured, the problem can be solved 
by the optimization procedure developed in Ammari et al (2015).

The above reconstruction procedures are not directly applicable to the present MAET scan-
ner. First, in order to obtain a multi-directional acoustic illumination the object is rotated, 
while the electrodes remain stationary. Therefore, at each position of the turntable a new lead 
current is present, and the synthetic focusing in the form assumed in the previous works can-
not be applied. Moreover, the use of piezoelectric transducers leads to a loss of significant 
part of low-frequency information about the curl σC .W,  Thus, the lead current(s) cannot be 
accurately reconstructed (even if all illumination directions were utilized), invalidating the 
known methods of reconstruction. Below we develop exact and approximate reconstruction 
techniques that can be used for processing the real data we have.

4. MAET with a rotating object

In this section we describe reconstruction techniques that can be used with our MAET scan-
ner where the object is rotated, the electrodes are stationary, and the transducer does not emit 
lower frequencies.

4.1. Synthetic flat transducer

In spite of the frequent use of focusing transducers in ultrasound imaging, for a given trans-
ducer the precise space- and time-dependent velocity field of an acoustic wave in a liquid is 
not easy to obtain. Direct application of our MAET techniques, however, would require such 
an information, since the direction of Lorentz currents is closely related to the velocity of the 
wave in a given point. We circumvent this obstacle by utilizing a synthetic flat transducer, as 
follows. For a given angular position of the object, we average electric measurements for all 
transversal positions of the transducer (i.e. we average in x2, see figure 1). Since our measure-
ments depend on the velocity potential ( )ϕ t x,  linearly, the averaged values we obtain are equal 
to the electric response to a field produced by a very wide flat transducer.

In order to formulate a mathematical model for the corresponding ( )ϕ t x,  we take into 
account that the (relatively small) vertical components of the velocity do not produce Lorentz 
currents (V is perpendicular to B,) and that the transducer is activated by a very short unipolar 
electric pulse that can be approximated by the Dirac’s delta function in time. The resulting 
acoustic wave can be modeled as a short plain wave propagating in the x1 direction away from 
the transducer.

Within the present section (section 4) we assume for simplicity that our synthetic transducer 
has an ideal frequency response. A more realistic, band limited (with absent low frequencies) 
model is considered in section 5). Thus, our present model for ( )ϕ t x,  has the following form

( ) ( )ϕ δ= − + +t x C x x ct, ,tran tran 1 (25)

where δ is the Dirac’s delta function, Ctran is a constant depending on the transducer that we 
assume to be known, and xtran is the x1 coordinate of the transducer. From a physical stand 
point the latter formula implies a flat frequency response (for ϕ as a function of excitation), 
and yields the following expressions for the velocity and pressure

( ) ( )δ= − + +′p t x C c x x ct, tran tran 1 (26)
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( ) ( )→

ρ
δ= − + +′t x

C
e x x ctV , .tran

1 tran 1 (27)

The above formula for ( )t xV ,  yields values that integrate to 0 in t, which properly represents 
the fact that the working surface of the transducer returns to the initial position after the pulse. 
We notice that formulas (25)–(27) cannot be valid outside of the range of positions of the 
transducer in x2 variable; however, we will only need these approximations to be valid inside 
the region \Ω Ω ,0  where the curl of a lead current is not zero.

By combining equations (24) and (25) we obtain

( ) ( ) ( )

[( ) ]→ →

R

∫

∫

ρ
δ

ρ

= − + +

= − +

σ

σ

Ω

M t
BC

x x ct C x x

BC
C x ct e se s

W, d

d ,

W

W

tran
tran 1

,

tran ,
tran 1 2

 (28)

where we, for convenience, extended σCW,  by 0 to R .2  The latter formula represents a set of 
integrals of σCW,  over a family of vertical lines; this set can be viewed as a Radon projection 
of σC .W,  In the next section we briefly review basic properties of the Radon transform.

4.2. Basic facts about the Radon transform in 2D

Suppose a function f(x) is finitely supported within a disk D of radius R0. The Radon transform 
Rf  is the values of line integrals of f over all straight lines:

( ) ( )( ) ( ) R S
R

R ∫ω ω ω ω ω≡ = + ∈ ∈⊥g p f p f p s s p, , d , , ,1

where ω⊥ is the left unit normal to ω (For convenience we extended the definition by zero to 
the lines that do not intersect the support of f.).

The Radon transform can be inverted, i.e. f can be reconstructed from projections g. We will 
do this using the well-known filtration backprojection algorithm (see, e.g. Natterer (1986)) 
consisting of applying the ramp filter to g:

( ) ( ) ( )
R R

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫ω

π
ρ ω ρ≡ | | ρ ρ− ⋅ ⋅g p g p h x p,

1

2
, e d e d ,M

p xi i (29)

and back-projecting the filtered projections ( )ωg p,M :

( ) ( ) R
S
∫ ω ω ω= ⋅ ∈f x g x x, d , .M

2

1
 (30)

It follows from formula (28) that

( )( )→R ⎜ ⎟
⎛
⎝

⎞
⎠

ρ
=

−σC p e
BC

M
x p

c
W, , ,W,

1
tran

tran

i.e. from one set of electric measurements one can recover one Radon projection (corre sponding 
to →ω = e1) of curl σC .W,  In order to recover a full set of projections of a function describing an 
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object, one usually rotates a detector with respect to the object, or the object with respect to the 
stationary detector. In our case, the function we would like to reconstruct represents the curl 

σCW,  of a lead current. If we turn the object but leave weights W unchanged, the new current 
will not be a rotation of the original one. We address this problem in the next section.

4.3. Synthetically rotating the currents

Our circular domain Ω with the fixed set of electrodes at points yj (see figure 2 and equa-
tion (4)) is invariant with respect to rotations by any angle /θ π= k N2 ,k  Z∈k . This means that 
if a lead current is generated by a set of weights W, then by rotating the object by the angle θk 
and by properly re-assigning weights, one will rotate the original current by θk. By doing this 
with k  =  0, ..., N  −  1 one could obtain a total of N projections of σC .W,  However, the number 
of projections needed for a high resolution reconstruction is usually measured in hundreds; 
it would be impractical to have so many electrodes. Therefore, a more sophisticated approxi-
mate technique is developed below.

Let us consider virtual current and the corresponding 2D curl induced by the excitation 
potential win, determined by formulas (17)–(20). We will utilize the current γ σJ ,  and curl γ σC ,  
that correspond to the linear excitation in the form

( ) ( ) β γ= ≡ ⋅γw x w x x ,in

where ( )γ α α= cos , sin  is a given unit vector, and β is a constant to be defined below. We 
notice that such current may not be easy to physically obtain in our system, since ( )γw x  does 
not satisfy the zero Neumann boundary conditions. However, as we discuss below, γ σC ,  can 
be approximated inside \Ω Ω0 by a lead current corresponding to a certain combination of 
weights W. Moreover, if the object is rotated, one can also excite a rotated version of the cur-
rent γ σC ,  by changing the weights W.

In order to explain this idea in detail, consider a linear operator Rϕ on R2 that rotates a 
vector clockwise by the angle ϕ. Then the curl ( )( )R Rγ σϕ ϕ−C xx,  corresponding to the rotated 
conductivity ( )Rσ ϕx  and the rotated potential

( )R R Rβ γ β γ≡ ⋅ = ⋅γ
ϕ ϕ ϕ−w x x x (31)

is the counterclockwise rotation of the original current γ σC , :

( ) ( )( ) ( ) RR R =γ σ γ σ
ϕ

ϕ ϕ−C x C x .x x, ,

Let us now consider a set of weights ( )W=γ γ γWW , ..., N1  subordinated to vector γ and 
given by the following formula:

( )
⎜ ⎟
⎛
⎝

⎞
⎠γ

π
α≡ ⋅ =

−
+ Ψ−γW

NR
y

N

j

N

1 1
cos

2 1
.j j (32)

Correspondingly, for the rotated γ the weights =γ γ γϕ ϕ ϕ− − −WW , ..., N1( )R R RW  will have 
values

( )
RR ⎜ ⎟

⎛
⎝

⎞
⎠γ

π
α ϕ≡ ⋅ =

−
+ Ψ− +γ

ϕ−
ϕ−W

NR
y

N

j

N

1 1
cos

2 1
.j j (33)

As shown in the companion paper (Kunyansky et  al 2017), the resulting function R γϕ−wsing  
(see equation  (13)) approximates within \Ω Ω0 the linear potential ( )Rγ ϕw x  (equation 
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(31)). Further, the resulting 2D curl 
R ϕγ σ−

CW ,

 of the lead current 
R ϕγ σ−JW

,
 (as defined by the  

 equations (12)–(16)) approximates the curl ( )( ) Rγ σ
ϕC xx,  excited by potential ( )Rγ ϕw x :

( ) ( ) \( ) R
R

≈ ∈Ω Ωγ σ
ϕ

ϕγ σ−
C x C x x, .xW ,

0
,

Such approximations become more accurate if the number of electrodes N is increased, or the 
ratio R/R0 becomes large. For fixed values of these parameters a certain error is introduced 

when ( )
R ϕγ σ−

C xW ,

 is used instead of ( )( ) Rγ σ
ϕC x .x,  From the practical point of view, such an 

error was acceptable in our experiments. The technique of rotating currents synthetically, as 
presented above, allows us to obtain the Radon projections of the rotated current without rotat-
ing the electrodes physically.

Thus, if we measure the corresponding acoustic response ( )R γϕ−M t W,  given by 
equation (28)

( ) (( ) )

(( ) )

( )(( ) )

( )

( )

→ →

→ →

→

R R

R

R
R

R

R

R

∫

∫

ρ

ρ

ρ

= − +

≈ − +

= −

γ

γ σ
ϕ ϕ

γ σ
ϕ

ϕ
ϕγ σ

−
−

M t
BC

C x ct e se s

BC
C x ct e s e s

BC
C x ct e

W, d

d

, ,

x

x

Wtran
tran 1 2

tran ,
tran 1 2

tran ,
tran 1

,

then the Radon projections ( )ωg p,  of ( )γ σC x,  can be approximately computed from M as 
follows

( ) ( )( )( )→ →R R RR ⎜ ⎟
⎛
⎝

⎞
⎠

ρ
≡ ≈

−
ϕ

γ σ
ϕ

γϕ−g p e C p e
BC

M
x p

c
W, , , .x

1
,

1
tran

tran
 (34)

Now, if the measurements are done for all values of ϕ in the interval [ ]π0, 2 , curl ( )γ σC x,  
can be reconstructed from ( )ωg p,  by using the Radon inversion formula (equations (29) and 
(30)). This represents the first step of the reconstruction procedure in Ammari et al (2015) or 
Kunyansky (2012) allowing one to find the conductivity by using one of the algorithms pro-
posed in the above mentioned papers.

4.4. Summary of the algorithm

To summarize, this reconstruction procedure involves the following steps:

 • Select two perpendicular directions ( )( )γ α1
1  and ( )( )γ α2

2  with /α α π= + 2;2 1  choose the 
number of object’s angular positions N, and set /δϕ π= N2 .

 • For each j  =  1,...,N:

 1. rotate the object to the position ϕ δϕ= j ;j
 2. form vectors 

( )R γϕ−W j
1
 and 

( )R γϕ−W j
2
 with components given by equation  (33) with 

ϕ ϕ= j and α α= ,1  α ;2

 3. measure ( )( )R γϕ−M t W, j
1

 and ( )( )R γϕ−M t W, j
2

 by averaging all measurements made by 
scanning the transducer in x2 direction;
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 4. compute ( )( ) →Rϕg p e,1
1j

 and ( )( ) →Rϕg p e,2
1j

 by applying formula (34) to ( )( )R γϕ−M t W, j
1

 
and ( )( )R γϕ−M t W, j

2
.

 • Reconstruct curls 
( )γ σC ,1

 and 
( )γ σC ,2

 by applying the inverse Radon transform (equations 

(29) and (30)) to the data ( )( ) →Rϕg p e, ,1
1j

 j  =  1, .., N, and ( )( ) →Rϕg p e, ,2
1j

 j  =  1, .., N.
 • Reconstruct lead currents 

( )γ σJ ,1
 and 

( )γ σJ ,,1
 and the conductivity ( )σ x  from 

( )γ σC ,1
 and 

( )γ σC ,2
 by following either procedure presented in Kunyansky (2012) or the algorithm of 

Ammari et al (2015).

5. Linearized reconstruction

The reconstruction procedures developed in the previous sections and elsewhere, are all based 
on the assumption that the acoustic excitations are rich enough to allow for the quantitatively 
accurate reconstruction of the curl(s) of the lead current(s). However, piezoelectric transduc-
ers commonly utilized in practical implementations of MAET cannot emit a wide range of 
lower frequencies. This disallows the use of the above mentioned methods. In the present 
section we develop a rather crude approximate reconstruction technique that recovers bound-
ary of the objects from the band-limited measurements delivered by the real scanner we have 
built.

Our scanner has four electrodes located at the points ( )ψ ψ=y R cos , sin ,j j j  ψ = Ψ+ π j,j 2
 

  Ψ = −π ,
4

 j  =  1, ..., 4. We consider two vectors, ( )( )γ α α= cos , sin ,m
m m  m  =  1, 2, with 

/α π= − 41  and /α π= 4,2  and seek to reconstruct (as a first step) 2D curls 
( )γ σC ,j

 of the virtual 
currents excited by linear potentials ( ) ( )( ) ( )( )

β γ= ≡ ⋅γw x w x x ,m min, m
 m  =  1, 2. By applying 

formula (33) with such parameters, one obtains the following values for weights 
( )R γϕ−W
1
 and 

( )R γϕ−W
2
:

( ) ( )( ) ( )R Rϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − − = − −γ γϕ ϕ− −W W
1

4
cos , sin , cos , sin ,

1

4
sin , cos , sin , cos .

1 2

 (35)
Equation (34) with the above choices of 

( )R γϕ−W
1
 and 

( )R γϕ−W
2
 yields approximate Radon 

projections, and the filtration backprojection algorithm ((29) and (30)) then yields (approxi-
mately) curls 

( )γ σC ,1
 and 

( )γ σC .,2

We would like to have a reconstruction technique that (unlike (Kunyansky 2012)) does 
not require explicit reconstruction of the lead currents. Let us consider a situation where the 
conductivity is a slight perturbation of a constant, i.e.

( ) ( )σ σ εσ= +x x .0 1 (36)

Recall that curl 
( )γ σC ,m

 corresponds to the solution of the problem (17) and (18) with the right 
hand side win equal to the linear potential ( )β γ⋅x .m  If ε = 0 then corresponding =w 0out  and 
current ( )( )γ σ xJ ,m

0  is a constant vector:

( ) ( )( ) ( )( ) σ β γ σ βγ= ∇ ⋅ = =γ σ x x mJ , 1, 2.m m,
0 0

m
0

Then, for ε> 0,

( ) ( )( ) ( )( ) σ βγ ε σ βγ= + ≈ =γ σ x O mJ , 1, 2.m m,
0 0

m
 (37)

By applying formula (21) to ( )( )γ σC x,m
 we obtain
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( ) ( ) ( ) ( ) ( )( ) σ σ
=

∂
∂

−
∂
∂

=γ σ σ σC x J x
x

x
J x

x

x
m

ln ln
, 1, 2.w w,

2
,

1
1

,

2

m in in

 (38)

By combining (37) and (38) we relate 
( )γ σC ,m

 to directional derivatives of σln :

( ) ( ) ( )( ) ( )( ) ⎡
⎣⎢

⎤
⎦⎥

σ β γ
σ

γ
σ

≈
∂
∂

−
∂
∂

=γ σC x
x

x

x

x
m

ln ln
, 1, 2.m m,

0 2
1

1
2

m

We have chosen vectors ( )γ m  so that ( )γ 2  is the right normal to ( )γ ,1  i.e. ( ) ( )γ γ= −1
2

2
1  and 

( ) ( )γ γ= .2
2

1
1  Taking this into account yields

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )
( )

( )

( )

σ βγ σ σ β
σ
γ

σ βγ σ σ β
σ
γ

≈ − ⋅ ∇ = −
∂
∂

≈ ⋅ ∇ =
∂
∂

γ σ

γ σ

C x x
x

C x x
x

ln
ln

,

ln
ln

.

,
0

1
0 1

,
0

2
0 2

1

2

By computing directional derivatives of the last two equations one can find the Laplacian of 
σln :

σ β γ γ
σ

γ

σ

γ
σ

∂
∂

−
∂
∂

≈
∂

∂
+
∂

∂
= ∆γ σ γ σ

⎛
⎝
⎜

⎞
⎠
⎟C x C x

x x
x

1 ln ln
ln .

0
2

,
1

,
2

1 2

2

2 2

2 1( ) ( ) ( )
( )

( )
( )

( )( ) ( ) ( ) ( )
( ) ( )

 

(39)

In other words, under the assumptions that the conductivity is close to a constant, and that 
the transducer is ideal, equation (39) reconstructs the Laplacian of the conductivity logarithm 
σ∆ ln . The advantage of this procedure in comparison with the existing, more accurate MAET 

reconstruction techniques, is that it still can be applied when the transducer is significantly 
band-limited, since it foregoes the reconstruction of the lead currents. Moreover, it is quite 
easy to understand what exactly is reconstructed in the band-limited case. Indeed, if the trans-
ducers response is not ideal, equation (25) should be replaced by

( ) ( )ϕ η= − + +t x C x x ct, tran tran 1

where the 1D Fourier transform of ˆ( )η ρ  is the frequency response of the transducer. This 
in turn, results in measuring the convolution ( ) ( )ω η∗g p p,  in the first variable, instead of 
( )ωg p,  given by the equation (34). It is well known, that when the filtration/backprojection 

formula is applied to projections of a function convolved with a given function η, the result 
of reconstruction is represented by the convolution of the true reconstruction with a function 

( )Ξ x  whose 2D transform equals to ˆ( )η ξ| | . In other words, instead of 
( )γ σC ,m

 we obtain the con-
volution of ( )( )γ σC x,m

 with the function ( )Ξ x . Further, the derivatives in equation (39) commute 
with convolutions. Therefore, instead of ( )σ∆ xln  our method will reconstruct the convolu-
tion ( ( ))σ∆ ∗xln  ( )Ξ x . In particular, if the transducer does not reproduce lower  frequencies, 
the reconstructed image will represent a high-frequency version of ( )σ∆ xln  resulting in a 
further emphasis of the boundaries, and amplification of oscillations in the image.

5.1. Summary of the algorithm

To summarize, the linearized algorithm involves the following steps:

 • Select two perpendicular directions ( )( )γ α1
1  and ( )( )γ α2

2  with /α π= − 41  and /α π= 42 ; 
choose the number of object’s angular positions N, and set /δϕ π= N2 .

 • For each j  =  1, .., N:
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 1. rotate the object to the position ϕ δϕ= j ;j

 2. form vevctors 
( )R γϕ−W j
1
 and 

( )R γϕ−W j
2
 with components given by equation  (35) with 

ϕ ϕ= ;j
 3. measure (( )( )R γϕ−M t W, j

1
 and ( )( )R γϕ−M t W, j

2
 by averaging all measurements made by 

scanning the transducer in x2 direction;
 4. compute ( )( ) →Rϕg p e,1

1j
 and ( )( ) →Rϕg p e,2

1j
 by applying formula (34) to ( )( )R γϕ−M t W, j

1
 

and ( )( )R γϕ−M t W, j
2

.

 • Reconstruct curls 
( )γ σC ,1

 and 
( )γ σC ,2

 by applying the inverse Radon transform (equations 

(29) and (30)) to the data ( )( ) →Rϕg p e, ,1
1j

 j  =  1, .., N, and ( )( ) →Rϕg p e, ,2
1j

 j  =  1, .., N.
 • Reconstruct an approximation to ( )σ∆ xln  from 

( )γ σC ,1
 and 

( )γ σC ,2
 using formula (39).

(The reader is reminded that, if the transducer is band-limited, instead of ( )σ∆ xln  our method 
will reconstruct the convolution ( )σ∆ ∗xln  ( )Ξ x .)

6. Examples of reconstruction

In this section we demonstrate performance of our scanner and the reconstruction algorithm of 
section 5 in several experiments involving some high-contrast phantoms and a real biological 
object. In all of the experiments the number of the Radon projections (i.e. angular positions 
of the object) was 200. The number of steps in the transducer’s movement in the transversal 
direction was 40 for each projection. In order to increase the SNR of the signal, each measure-
ment was averaged several hundred times (256 to 1024, depending on the experiment). The 
pulse repetition rate was 1 KHz. Depending on the amount of averaging, the total scan would 
take from approximately an hour to two and a half hours.

Our phantoms were made to have a significant contrast of conductivities, and had vertical 
boundaries to adhere to the two-dimensional nature of the measurements. All the test objects 
were immersed in a 0.9% saline solution.

In general, we do not expect such a prolonged immersion in saline to have significant 
effect on conductivity of tissues in biomedical applications, since we use the physiological 
concentration (0.9%) that naturally occurs in human blood. However, we believe it did have 
an adverse effect on those of our test objects that were made of agarose gel (see the discussion 
of the ‘layered phantom’ below). This, however, is a difficulty facing the experimenters, and 
not a drawback of the method.

The measured signal was pre-processed by applying a band pass filter ( )η ξ  in the frequency 
domain. The filter was a product of two function, ( ) ( ) ( )η ξ η ξ η ξ= 1 2  with

( )
( ( / )) ⩽

( )
( / )) ⩽⎧

⎨
⎩

⎧
⎨
⎩

η ξ
πξ ξ ξ ξ

ξ ξ
η ξ

πξ ξ ξ ξ
ξ ξ

=
− | |

| | >
=

| |
| | >

0.5 1 cos ,

1,
,

cos 0.5 ,

0,
,1

1 1

1
2

2 2

2

where the typical values of the cut-off frequency ξ2 and parameter ξ2 were 0.85 MHz and 0.3 
MHz, respectively.

6.1. Lard phantom

The first phantom we present is a lard cylinder, 28 mm in diameter, shown in figure  3(a) 
mounted on the turntable. The cylinder was intentionally mounted in an off-center position, 
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to demonstrate that we do not take advantage of the radial symmetry of the object. The lard is 
practically non-conductive, yielding a very high electric contrast with the surrounding saline. 
The reconstruction representing a high-frequency approximation of ( )σ−∆ xln , is shown in 
figure 3(b) as a color image and in figure 3(c) using a gray scale (The size of the reconstruction 
square (here and below) is approximately ×64 64 mm.). Figure 3(d) demonstrates intensity 
profile of the image along the vertical line shown in part (c). The boundary of the cylinder is 
clearly visible in the images. The absence of the lower frequencies leads to oscillations in the 
reconstruction. This is clearly seen in figure 3(b): the boundary is represented by two yellow/
red circular contours (depicting positive values) and a blue circle (showing negative values). 
The same oscillations are also clearly visible in figure 3(d).

6.2. Layered phantom

Our next phantom is a cylinder consisting of several layers of different materials, shown in 
figures 4(a) and (b). The middle layer of the phantom consists of (non-conductive) lard. The 
red layer is made of agarose gel containing 3% salt (NaCl). The conductivity of this material is 
quite close to the 3% saline, i.e. it is significantly higher than the conductivity of the surround-
ing 0.9% saline. The blue layer is also made of agarose gel without adding any salt; its con-
ductivity is close to that of tap water, i.e. significantly lower than that of surrounding saline, 
but higher than that of lard. A significant drawback of agarose gel as a material for MAET 
phantoms is that it is water-based. This leads to a quick diffusion of the salt contained in the 
gel, which makes the electrical interface between the gel and surrounding saline blurred, and 
destroys sharp contrast we seek for our experiment. Such a diffusion was noted in the recent 
work on MAT-MI (Li et al 2007), where the authors used thin film to separate conductive and 

Figure 3. First test object: a lard cylinder (a) phantom attached to the turntable  
(b) color map of the reconstructed image σ−∆ ∗ln  Ξ x( ) (c) grey scale image of the 
image (d) intensity profile of the image along the vertical line shown in part (c).

L Kunyansky et alPhys. Med. Biol. 62 (2017) 3025



3044

Figure 4. Reconstruction of a phantom consisting of layers of lard, red gel (3% NaCl)  
and blue gel (0% NaCl) (a) the phantom (b) inner structure of the object and its 
positioning on the holder (c) reconstruction shown using color scale (d) grey scale view 
of the reconstructed image.

Figure 5. Average intensity profiles through the reconstructed image (a) location of 
rectangular regions supporting the profiles (b) profiles corresponding to the rectangles 
marked by letters H and V in part (a).
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non-conductive gels. While such a technique is acceptable in MAT-MI, in MAET an applica-
tion of a dielectric film would create an artificial dielectric boundary producing a strong signal 
of its own. We, therefore, cannot utilize the film, and can only remain aware of this effect.

The reconstructed images ( representing σ−∆ ∗ln  ( )Ξ x ) are shown in figures 4(c) and (d).  
Figure  5 presents the intensity profiles through the image. Since the image is noisy, in 
 figure 5(b) we demonstrate the average horizontal profile over the rectangle marked by letter 
H in part (a), and the average vertical profile over the rectangle marked by letter V.

As one would expect, the most visible boundary in figures 4 and 5 is that between non-
conductive lard and highly conductive red gel. The boundary between red gel and saline is 
less visible, partially (we believe) due to the above-mentioned dissolution of the gel/saline 
interface, and partially due to lower contrast of the conductivities. The boundary between the 
non-conductive gel and saline is almost invisible; it is weaker than reconstruction artifacts 
present in the image.

6.3. Bovine sample

The third object we imaged was a beef sample containing both muscle and fatty tissues. The 
sample is demonstrated in figure 6(a); it was placed in the holder as shown in figure 6(b), 
with the slit tightly stitched together to avoid creating an additional jump in conductivity. The 
size of the sample can be estimated by comparing it to the diameter of the holder (38 mm). 
The thickness of the sample (in the vertical direction was 25 mm. The reconstructed image is 
presented in figure 6(c). The outer boundary of the sample is clearly seen in the image, with 
the interface between the non-conductive fat and the saline visible the best due to the high 
electrical contrast between these materials. The bright dot in the middle of the image corre-
sponds to the plastic axis of the holder. This axis was located at the end of the slit; however, 
there is no line in the location of the slit (as intended). In order to better understand the nature 
of other details in the reconstruction we slit the sample horizontally. The comparison between 
the reconstruction and the sliced sample can be done with the help of figures 7(a) and (b). The 
yellow arrows in these images highlight the boundary between the fat and muscle; inside the 
sample it has slightly different shape than that suggested by the image in figures 6(a). The blue 
arrows highlight two lines inside the sample clearly visible in the reconstruction: they, appar-
ently, are produced by the narrow slivers of connecting tissue visible in figure 7(b).

Figure 6. A meat sample and the reconstruction (a) the sample (b) sample placed in the 
holder (c) grey scale reconstruction.
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7. Conclusions and further remarks

We have presented the 2D prototype MAET scanner, described its theoretical foundations, 
and demonstrated the first experimental results obtained using the scanner and the linearized 
reconstruction technique. One of the novel features of our scanner is the use of two pairs of 
electrodes, allowing for a simpler image reconstruction algorithm. While the advantage of 
having multiple electrodes was demonstrated theoretically in Kunyansky (2012), all existing 
experimental implementations of MAET have used one pair of electrodes.

Another important innovation in our scanner is the rotation of the investigated object, which 
allows us to obtain a uniformly good reconstruction of material interfaces independently of 
their orientation. In order to permit such a free rotation, the electrical contact with the object is 
implemented by the electrodes submerged in the surrounding saline, rather than by attaching 
them to the object. This novel data acquisition scheme, in turn, required new reconstruction 
techniques. We, thus, developed the theory of the 2D MAET reconstruction with point elec-
trodes submerged in the saline and with the use of a synthetic flat transducer and synthetic lead 
currents. The more general part of the theory is presented in section 4 (the mathematics here 
is discussed on an engineering level; a more rigorous study can be found in the companion 
paper (Kunyansky et al 2017)). In that section, as in all existing theoretical papers on MAET, 
we assumed that the acoustic excitation is wide-band, i.e. the signal contains both very low 
and high frequencies. Under this assumption, theoretically accurate reconstructions can be 
obtained using our technique, if the number of electrodes is sufficiently large.

When MAET is implemented using a piezoelectric transducer, a significant portion of 
lower frequencies is absent in the acoustic pulse. In this case the assumption of a wide-band 
excitation is no longer valid, making all existing theoretical studies inapplicable. In particular, 
this makes impossible a qualitatively correct reconstruction of the lead currents which is a 
required step in (Kunyansky 2012) or in the method of section 4. This represents a serious 
challenge to quantitatively accurate reconstruction of conductivity ( )σ x  in MAET. For the 
purposes of this paper, we decided to forego such an accurate reconstruction and, in section 5 
we developed a simplified, linearized version of the reconstruction procedure, where the lead 
currents are assumed approximately uniform (up to a small perturbation) and known. This 
algorithm yields approximate reconstruction of ( ) ( )σ∆ ∗ Ξx xln , where ( )Ξ x  is determined 
by the bandwidth of the transducer. This technique shows the boundaries between the regions 

Figure 7. Comparison of the reconstructed image of the meat sample and the horizontal 
cut (cross-section) of the sample.
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with different conductivities, and/or small details whose conductivities are different from that 
of the surrounding medium (such as, for example, the plastic post clearly visible as the white 
dot in figure 6(c)).

Interestingly, a similar effect was observed in the recent works on MAT-MI (Mariappan 
and He 2003, Hu et  al 2011), where only the boundaries of the regions with contrasting 
conductivities were also clearly visible in the reconstruction. In the latter modality the piezo-
electric transducer is used in a receiving mode. However, the absence of low frequencies in the 
received signal has the same effect on the image as in MAET.

At least a couple of ways can be suggested for of overcoming this drawback in MAET. The 
first approach consists in the use of wideband acoustic sources. So far all the experimental 
work on MAET and MAT-MI was done using off-the-shelf diagnostic piezoelectric transduc-
ers. Instead, one could try to use custom made transducers with a wider bandwidth, or to 
use several transducers with different central frequencies in succesion. Alternatively, wide-
band acoustical pulses can be generated photoacoustically (see, e.g. Wurzinger et al (2013)). 
Similarly, for MAT-MI one could try optical (interferometric) registration of the ultrasound 
signal, as it is done in photoacoustic tomography (e.g. Paltauf et al (2007)).

Another possible approach is to use available a priori information in combintion with non-
linear reconstruction algorithms to compensate for the absence of low spatial frequencies. For 
example, if the object is known to consist of regions with constant conductivities, methods 
based on total variation regularization (Rudin et al 1992) might improve the image. Feasibilty 
and practical usefulness of such techniques requires further investigation.

Practical results of reconstruction using our present setup were demonstrated in section 6. 
They show that using the present prototype 2D MAET scanner in combination with our image 
reconstruction algorithm, one can image vertical boundaries of the regions with contrasting 
conductivities. The boundaries are recovered uniformly well, independently of their orienta-
tion, both in tissue mimicking phantoms and in a bovine sample.

A significant and well-known issue that prevents wide practical use of EIT is a severe 
loss of resolution in the center of the measured field. Hybrid imaging techniques, such as, in 
particular, MAET and MAT-MI, overcome this difficulty by using utrasound waves to extract 
high-resolution spatial information about the object of interest. Since utrasound pulses can 
propagate quite deep into soft tissues without losing the intensity or coherence, the loss of 
sensitivity toward the center of the object is minimal5. The results of the present paper confirm 
this.

We would like to view the present work as one of the first steps toward the development of 
the fully 3D MAET scanner capable of a quantitatively accurate reconstruction of conductiv-
ity in the tissues. The promising directions of the further research, in our opinion, are:

 • the use of stronger magnetic fields to improve SNR;
 • experimentation with alternative acoustic sources capable of wide band excitation;
 • the development of alternative nonlinear procedures yielding accurate reconstruction of 

conductivity from MAET data obtained using existing piezoelectric transducers;
 • the design of a fully 3D MAET scanner.

5 On the other hand, presence of strong acoustic scatterers or absorbers (such as, for example, bone tissues) is likely 
to have a significant adverse effect on the image.
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Appendix

In this appendix we explain our model of the lead current wW given by equations (9)–(11). 
Within the punctured domain Ω ∪ = y ,j

N
j1\  function ( )w xW  satisfies the standard  conductivity 

 equation (9), and the usual Neumann boundary condition (10) is satisfied on the non- conductive 
boundary ∂Ω . However, at the vicinity of a point yj the potential must become singular, since 
a finite current is flowing through a point whose length is zero. Therefore, standard Dirichlet 
or Neumann boundary conditions cannot be prescribed at such points. Instead, we will pre-
scribe the asymptotic behavior of ( )w xW  near these points, as explained below.

Consider, for simplicity, a one-point electrode immersed in the conductive medium 
at x  =  0, with a current W flowing into the medium. Let us assume that in a small disk D  
(of radius d) surrounding the electrode the conductivity is constant and equal to σ0 (as is the 
case with electrodes in our problem). Then in the punctured disk \ { }D 0  the corresponding 
potential u satisfies the equation

σ σ∇ ⋅ ∇ = ∆ =u u 0,0 0

i.e. u solves the Laplace equation and is a harmonic function. In a punctured disk, a general 
solution of the Laplace equation can be obtained by the standard technique of separation of 
variables in the polar coordinates r and θ, yielding

( ) ( ) [ ]∑ ∑θ θ π= + + ∈ ∈
θ

θ

=−∞
≠

∞

| |
=−∞

∞
| |u r a r a

r
b r r d, ln

e
e , 0, , 0, 2 .

k
k

k

k

k
k

k
k k

0

0

i
i

 (A.1)
The total current W through the (outer) boundary ∂D of D can be easily computed:

( ) ( )  ( ) ( ) ( )∫ ∫ ∫σ σ θ θ σ θ π σ= ∇ ⋅ =
∂
∂

=
∂
∂

=
π π

∂

W u x n x l x
r

u r
r

a r ad , d ln d 2 ,

D

0 0

0

2

0

0

2

0 0 0

where n is the exterior normal to ∂D and ( )l xd  is the arclength. This immediately yields the 
needed value for the coefficient a0

πσ
=a

W

2
.0

0

The last sum in equation (A.1) describes the part of the solution ( )θu r,harmonic  that is harmonic 
in the whole D, including the origin. It is bounded by its maximum and minimum values 
attained somewhere on the boundary ∂D.
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The singular behavior of ( )θu r,  for small r is dominated by the terms 
θ

| |ak r

e k

k

i

 with largest 

values of | |k  (if any). This implies that in our problem all ak except a0 should be set to zero, 

otherwise the solution will be non-physical (For example, the real part of the term 
θ

| |r

e k

k

i

 (equal 

to ( )θ
| |

k

r

cos
k ) describes a current flow that is directed toward the electrodes at those angles θ where 

( )θkcos  is positive, and away from the electrode for θ with negative ( )θkcos ). Therefore,

( ) ( ) ( ) [ ]θ
πσ

θ θ π= + ∈ ∈u r
W

r u r r d,
2

ln , , 0, , 0, 2 .
0

harmonic

Correspondingly, the singular behavior of ( )w xW  that is physically meaningful and yields the 
correct currents through the electrodes can be described by the equation (11). The fact that 
equations (9)–(11) lead to a solvable model is established by equations (12)–(15) that present 
such a solution.

Finally, one needs to verify that by imposing conditions (10) and (11) we guarantee the 
uniqueness of the solution up to an additive constant term (unless an additional condition is 
imposed, potentials are only defined up to a constant). Suppose ( )( )w xW

1  and ( )( )w xW
2  are two 

solutions of equation (9) satisfying conditions (10) and (11). Clearly, the difference ( ) ≡v x  
( ) ( )( ) ( )−w x w xW W

2 1  satisfies Neumann condition (10) on ∂Ω and equation (9) in the punctured 

domain Ω ∪ = y .j
N

j1\  In the vicinity of points yj function v(x) remains bounded. Therefore, 

as our analysis of equation  (A.1) shows, v(x) is actually harmonic in the vicinity of these 
points including the points themselves. Therefore, v(x) satisfies the conductivity equation in 
the whole of Ω , subject to the zero Neumann boundary conditions on ∂Ω . Any constant v(x) 
is a solution of such an equation; but it is well known that the are no other solutions (see 
Miranda (1970), Thm 5.IV). Therefore, ( )( )w xW

2  and ( )( )w xW
1  can differ only by a constant. Thus, 

our model of the lead potential wW represented by equations (9)–(11) has a unique solution  
(up to an additive constant term). Correspondingly, currents σJW,  are defined by equation (16) 
uniquely.
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