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1. Introduction 

In this paper we consider estimation of the parameters of a single equation of 
a simultaneous equations model which is nonlinear both in variables and paar- 
meters. Such a model has never been analyzed in the literature to the best of our 
knowledge. Models in which the nonlinearity appears only in variables or only 
in parameters have been previously considered. For the former case see Kelejian 
(1971) and other references cited in Goldfeld and Quandt (1972), and for the 
latter case see, for example, Zellner, Huang and Chau (1965.) 

We define the nonlinear two-stage least-squares estimator (NL2SLS) for our 
model and derive its asymptotic distribution. Our estimator reduces to the 
NL2SLS of Kelejian if the nonlinearity exists only in variables, to the NL2SLS 
of Zellner and others if the nonlinearity exists only in parameters, and to the 
usual 2SLS estimator if the regression function is linear both in variables and 
parameters. We show that the well-known optimality properties of 2SLS extend 
to NL2SLS in the model that is linear in variables and nonlinear in parameters. 
The question of whether they extend to NL2SLS in the general nonlinear model 
is left for further study. 

2. Main results 

We consider the nonlinear regression equation 

Yt =f(z,,P)+%* (1) 

where yr is a scalar random variable, u, is a scalar random variable with zero 
mean and constant variance tr2, zt is an H-component vector consisting partly 

of endogenous variables (that is, random variables correlated with u,) and 
partly of exogenous variables (that is, known constants), B is a G-component 
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vector of unknown parameters, and f is a possibly nonlinear function in both z 
and /I having continuous first and second derivatives with respect to /I. Our aim 
is to estimate /I and c2 on the basis of observations on y, and z, , t = 1,2, . , ., T. 
We may regard eq. (1) as a single equation of a complete nonlinear simultaneous 
equations model which generates all the endogenous variables that appear 
in eq. (1). 

We define the nonlinear two-stage least-squares estimator (NL2SLS) as 
follows : 

Dejkition. The NL2SLS estimator of /? in model (I), denoted 8, is the value 
of /I that minimizes 

@U) = (Y -f)‘~(X’X) - l X’(Y -f> , (2) 

where y and f are T-component vectors whose tth elements are yt andf(z, ,/I), 
respectively, and X is a TX K matrix of certain constants with rank K. 

We have not specified X because we will consider it later. It is clear that for 
appropriate choices of X, the NL2SLS defined above reduces to Kelejian’s 
NL2SLS, Zellner’s NL2SLS, and Theil’s 2SLS. In Kelejian’s case, X consists of 
the low-order polynomials of all the exogenous variables of the system, and in 
Zellner’s and Theil’s cases, Xconsists of all the exogenous variables of the system. 

We prove the following theorem in appendix 1: 

Theorem. Let fl be the NL2SLS estimator defined above. Then : 

(i) j converges in probability to the true value & , 

and 

(ii) 1/T(fi - &J converges in distribution to 

if the following assumptions are satisfied : 

The parameter space is compact. 

{u,} is i.i.d. 

lim (l/T)X’Xexists and is nonsingular. 

(l/T)(8f’/@)X converges in probability to a constant matrix of rank G 
uniformly in /I. 

(I/T)(?R+VP)~ converges in probability to a constant matrix uniformly 
in/?fori= 1,2,..., G, where Pr is the ith element of p. 
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The minimization of eq. (2) must be done by an iterative procedure. The 
standard procedure is the Gauss-Newton method defined by 

where f and af’l@l in the right-hand side are evaluated at &, -i), the estimate 
obtained in the (n- I)th iteration. Note that in Theil’s and Kelejian’s cases the 
right-hand side becomes independent of &, -1) and eq. (3) reduces to Theil’s 
2SLS and Kelejian’s NL2SLS respectively. For the convergence properties of 
the Gauss-Newton method in general and for its various modifications see 
Draper and Smith (1966) or Jacoby, Kowalik, and Pizzo (1972). 

3. The efficiency 

It is well-known that in the linear case 2SLS has the same asymptotic distribu- 
tion as the limited information maximum likelihood estimator (LIML) and has 
the smallest (in matrix sense) asymptotic variance-covariance matrix in the class 
of instrumental variables method estimators. In our general nonlinear model we 
cannot make similar statements since it is usually difficult to evaluate the 
asymptotic variance-covariance matrix of the maximum likelihood estimator or 
to find a meaningful criterion by which to choose the optimal X. These same 
difficulties apply in Kelejian’s case as well. Thus, the most we can do is merely 
to say, like Kelejian, that it may be a good idea to let X consist of the low-order 
polynomials of all the exogenous variables of the system. This point deserves 
further research. 

We will show below that we can extend the well-known efficiency properties of 
2SLS to the case where the regression function is nonlinear only in the 
parameters. 

In this case eq. (1) becomes, in vector notation, 

Y = ZQ)+u, (4) 

where 2 is the matrix whose tth row is z, , a is an H-component vector (H > G) 
each element of which is a function of /I. From (ii) of the Theorem, the asymp- 
totic variance-covariance matrix of NL2SLS is 

Z~X(X~Y~-~XZ a0r -l 
plim 

T' ap,,, ' II (5) 

Hence, it is obvious that (5) is minimized (in matrix sense) when X is the matrix 
of all the exogenous variables of the system, denoted X,, . 

The log likelihood function concentrated in fi is 

logL= 
const +z *og (Y -Z@)‘M(Y--Za) . 2 

(y-Zcr)‘o,-Zcc) ’ 
(6) 
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where M = l-X,(X&)-lX~. The LIML estimator of /I, denoted #I*, is the 
value of /? that maximizes eq. (6). The first and second derivatives of log L with 
respect to j3 are given in appendix 2. Using the same line of proof as in appendix 1, 
we can prove that under the same assumptions as those of the Theorem, the 
limit distribution of d/T@* -PO) is normal with zero mean and variance- 
covariance matrix equal to eq. (5). Thus, NL2SLS has the same asymptotic 
distribution as LIML in this case. 

Appendix 1 

Proof of the theorem 
We need the following lemma, which is proved in Amemiya (1972). 

Lemma. Let QT(w, 0) be a measurable function on a measurable space R and 
for each w in R a continuousfunction for 8 in a compact set 0. If QT(o, 0) converges 
to Q(O) in probability uniformly for all 8 in 0, and if &co) converges to OO in 
probability, then Q&o, i&.(o)] converges to Q(&,) in probability. 

Proof of(i). By a Taylor expansion we have 

Xf(/%--f(80) = X$1 + (B--/M, 
B 

(7) 

where /I + lies between fi and PO . Substituting y- u for f (j?,,) and premultiplying 
eq. (7) by (TX’X)-*, we obtain 

v+w = (TX’X)-+X’$ 
B 

+(fl+J, 

where 

and 

v = (TX’X)-3X’u 

w = (TX’X)-+[X’f(&- X’y] . 

But plim u = 0 because of assumptions (B) and (C), and plim w = 0 because 

w’w = f@(j) 6 f@&) = v’v. 

Therefore, plim fl = PO because of assumptions (C) and (D). 

Proof of (ii). We have 

(8) 
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where j lies between fl and &, . We also have 

a(s -= 
ap 

-2Jf +(x’x)-lx.(y-f) 

and 

a2a 
- = -@ x(x’x)-‘x 
vw 

2 aff I$, -2A, 

(9) 

where A is the matrix whose ith row is 

Therefore, by assumptions (B), (C) and (D), using Corollary 2.6.1 of Anderson 

(1971), 

i af 
0,a2plimTgP0 I af 

JVx)- ‘x aS’ B. II (ll> 
and by assumptions (B), (C), (D) and (E), 

i a2a 
iplim-- 

T agag’ B0 
(12) 

But, by assumptions (A), (B), (C), (D) and (E), the consistency of fl, and the 
Lemma, we have 

i a% 
plim -- 

i a% -- 
T agap = slim Tapapt B. * 

Thus, (ii) follows from eqs. (8), (1 l), (12) and (13). 

Appendix 2 

The first and second derivatives of eq. (6) 

From eq. (6) we have 

a 10gL T 
PC 

afi ?fI (Z’MZa - Z’My) 
(y-Za)‘M(y-Za) aj3 

T F (Z’Za -zly) 
-(y-Za)‘O,-Za) ap 

(13) 

(14) 
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and 
a2 log L T 
- = [(y_za)‘M(y_za)12 am’ 

(Y--a)‘mY-z4 

B 

1 

- 2 f$ Z'M( y -Za)(y - Za)‘MZ (15) 

where B is the matrix whose ith column is 

-$$ z'M(y-Za) , 
I 

and C is the matrix whose ith column is 
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