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Hicks-Allen Partial Elasticities of Substitution

When there are more than 2 inputs, the imposition of a constant elasticity of
substitution across all pairs of inputs is restrictive. The Hicks-Allen partial elasticities
of substitution is one means of introducing flexibility that allows for elasticities of
substitution to vary across pairs of inputs and to vary across time. To begin, we will
denote the cost function by C(wy, ws, ..., w;, Q)), where w; is the ith input price, and
@ is output. The usual restrictions on the cost function are assumed. By Shepard’s

lemma we have the result that
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where X; = fi(wy, wy. ..., Q) is the conditional input demand function for input i. The
cross-elasticity of demand is given by
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0;; is obtained by weighting the cross-elasticity of demand by the inverse of the jth

where C;; =

= (. The partial elasticity of substitution

input’s share of total cost:
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where s; = ij | Tn the presence of more than 2 inputs, o;; 2 0.
It turns out that
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To see this note that
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Next substitute (2) for 31712&)]-) in (1) and collect terms to show
_Os o
Xin 8[71(’(1)]) " . (9Xz
C 5; 85 a 811)]' .



Note that
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From simple substitutions for Cic, and C};, we obtain
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The own partial elasticity of substitution can be derived in a similar fashion. The

own (conditional) input elasticity of demand is given by
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by weighting the own elasticity of demand by the inverse of the own input’s share of

where C;; = . The partial own elasticity of substitution o;; is obtained

total cost:




It turns out that
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Note that

From simple substitutions for 1] and Cj;, we obtain
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Translog Cost Function
A second order approximation to the cost function is given by the Translog Cost

Function:
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where 0 is the returns to scale parameter such that = 1 implies constant returns to
scale, 6§ < 1 implies increasing returns to scale, and # > 1 implies decreasing returns
to scale. Homogeneity and aggregation conditions imply the following parameter

restrictions:
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As an example, suppose J = 3 inputs. Without loss of generality let input 3 refer to
the non-labor inputs where w3 = r. By differentiating the cost function with respect
to the In(w;)’s, applying Shepard’s lemma, and imposing the parameter restrictions,

we obtain the cost share equations:
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Since the equations add to 1, one could drop the third equation and estimate using
3SLS with cross-equation restrictions on the parameters. The variance-covariance
matrix of the disturbances is not singular since we are dropping one of the equations.

The Hicks-Allen partial elasticities of substitution for the Translog Cost function
are given below. In the case of the cross-elasticity, we have
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The own elasticity of substitution is given by

CCy
Oii = 2
aSi
7 . -1
Oln(w;) + (5i)(si )
, ) 1
sl

The original conditional input demand elasticities can easily be recovered:
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