Rule Governance in a Probabilistic Selection Task setting – A Mortality Salience and Life History Paradigm
Cesar Augusto Medina, JeanMarie Bianchi, Rafael A. Garcia, William J. Jacobs PhD
The University of Arizona
The Psychology Department

Abstract

Hypothesized Acquisition of Probabilistic Contingencies

Methods and Tasks

Participants
1) 44 Participants (% from an Undergraduate Arizona psychology Course were pulled for the study.

2) A short form variant of the Arizona Life History Battery that measures Life History traits on a fast to slow continuum (Figueredo et al., 2006)

3) A questionnaire that functions as a cognitive-behavioral stressor.

4) The MS was administered to twenty-two participants.

Rule Governance

Participants were randomly assigned between a Wrong Instructions (WI) and No Instructions (NI) group.

6) They were then asked to work through the Probabilistic Selection Task (PST).

Figure 2.1 This graph depicts the performance curves of the E-F pair within the first 20 presentations (blocked into groups of five). Each acquisition curve corresponds to a Stress condition and “level” of LH (determined by a median-split). Fast LH participants, generally, abandoned the incongruent instructions in favor of the objective, experimental contingencies. Slow LH participants, however, are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Results

The results of this pilot study question the assertion that Mortality Salience functions as a stressor. While we need to collect a larger sample to be more confident of that finding, which are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Pretest

Data

Acquisition of Probabilistic Contingencies

Hypothesized Acquisition of Probabilistic Contingencies

Discussion

The results of this pilot study question the assertion that Mortality Salience functions as a stressor. While we need to collect a larger sample to be more confident of that finding, which are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Reference

Acknowledgements

I would like to thank the Minority Health Disparities Summer Research at the University of Arizona for this project. I also would be thankful for the facilitation, effort, and effort of the University of Arizona who helped throughout the program. For funding student participation in the Minority Health Disparities Summer Research program comes from a variety of sources. I would like to thank the research assistants and graduate students in Dr. William J. Jacobs’ Lab: Anxiety Research Group, for assistance in the project, in addition to Dr. Bradley Dill from New York University for assistance in the analysis phase.

Figure 2.2 This graph depicts the performance curves of the E-F pair within the first 20 presentations (blocked into groups of five). Each acquisition curve corresponds to a Stress condition and “level” of LH (determined by a median-split). Slow LH individuals had smaller slopes but no trend of Stress or the interaction between LH and Stress (FI[1, 44] = 1.0 in both cases).

Participants

Probabilistic Selection Task Continued

Probabilistic Selection Task

Training

A (80%) B (20%) C (70%) D (30%) E (60%) F (40%)

Figure 1.1 The above figure is composed of Japanese Hiragana characters. They are divided into pairings: A and B, C and D, E and F. Each pairing has a fixed probability of one of the characters being correct. Japanese Hiragana figures were used in the study to exclude the possibility that participants would be familiar with the characters. (Frank et al, 2004)

ACKNOWLEDGEMENTS

The above figure is composed of Japanese Hiragana characters. They are divided into pairings: A and B, C and D, E and F. Each pairing has a fixed probability of one of the characters being correct. Japanese Hiragana figures were used in the study to exclude the possibility that participants would be familiar with the characters. (Frank et al, 2004)

Figure 1.1 This graph depicts the performance curves of the E-F pair within the first 20 presentations (blocked into groups of five). Each acquisition curve corresponds to a Stress condition and “level” of LH (determined by a median-split). Fast LH participants, generally, abandoned the incongruent instructions in favor of the objective, experimental contingencies. Slow LH participants, however, are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Methods and Tasks

Participants
1) 44 Participants (% from an Undergraduate Arizona psychology Course were pulled for the study.

2) A short form variant of the Arizona Life History Battery that measures Life History traits on a fast to slow continuum (Figueredo et al., 2006)

3) A questionnaire that functions as a cognitive-behavioral stressor.

4) The MS was administered to twenty-two participants.

Rule Governance

Participants were randomly assigned between a Wrong Instructions (WI) and No Instructions (NI) group.

6) They were then asked to work through the Probabilistic Selection Task (PST).

Figure 2.1 This graph depicts the performance curves of the E-F pair within the first 20 presentations (blocked into groups of five). Each acquisition curve corresponds to a Stress condition and “level” of LH (determined by a median-split). Fast LH participants, generally, abandoned the incongruent instructions in favor of the objective, experimental contingencies. Slow LH participants, however, are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Results

The results of this pilot study question the assertion that Mortality Salience functions as a stressor. While we need to collect a larger sample to be more confident of that finding, which are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Pretest

Data

Acquisition of Probabilistic Contingencies

Hypothesized Acquisition of Probabilistic Contingencies

Discussion

The results of this pilot study question the assertion that Mortality Salience functions as a stressor. While we need to collect a larger sample to be more confident of that finding, which are expected to persist in following our incongruent instructions, resulting in poorer performance overall.

Reference

Acknowledgements

I would like to thank the Minority Health Disparities Summer Research at the University of Arizona for this project. I also would be thankful for the facilitation, effort, and effort of the University of Arizona who helped throughout the program. For funding student participation in the Minority Health Disparities Summer Research program comes from a variety of sources. I would like to thank the research assistants and graduate students in Dr. William J. Jacobs’ Lab: Anxiety Research Group, for assistance in the project, in addition to Dr. Bradley Dill from New York University for assistance in the analysis phase.