Appendix A

Euler Angles
and

Bryant Angles

Among the most common parameters used to describe the angular orientation of a body
in space are Euler angles. The angular orientation of a given body-fixed coordinate
system én{ can be envisioned to be the result of three successive rotations. The three
angles of rotation corresponding to the three successive rotations are defined as Euler
angles. The sequence of rotations used to define the final orientation of the coordinate
system is to some extent arbitrary. A total of twelve conventions is possible in a right-
hand coordinate system. For the Euler angles described here, a particular sequence of
rotations known as the x convention is considered. Another convention, known as the
xyz convention, is also discussed here; the parameters associated with this convention
are often referred to as Bryant angles.

A.1 Euler Angles

Euler angles provide a set of three coordinates without any constraint equations. The se-
quence of rotations employed in the x convention starts by rotating the initial system of
xyz axes counterclockwise about the z axis by an angle {s, as shown in Fig. A.1. The
resulting coordinate system is labeled £€'%"{". In the second step the intermediate &"7"("
axes are rotated about £” counterclockwise by an angle 6 to produce another intermedi-
ate set, the £'n’l’ axes. Finally, the £'n’{’ axes are rotated counterclockwise about ¢’
by an angle o to produce the desired £n{ system of axes.” The angles ¥, 0, and o,
which are the Euler angles, completely specify the orientation of the £én{ system relative
to the xyz system and can therefore act as a set of three independent coordinates.

In most textbooks, the third Euler angle is denoted by ¢. Since, in this text, ¢ is used to describe the
angle of rotation about the orientational axis of rotation, o is used here for the third Euler angle instead of .
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Line of Figure A.1 The rotations defining the
nodes g8k Euler Angles.

The elements of the complete transformation matrix A can be obtained as the
triple product of the matrices that define the separate rotations, i.e., the matrices

cp —s¢ O 1 0 O co —sa 0
D=|sy cy O C=|0 co —sb B=|so co O
0 0 1 0 s co 0 0 1

where ¢ = cos and s = sin. Hence, A = DCB is found to be

cfico — sPichso —cyso — sPclco  sPish
A = | sfco + cficIsa  —sPso + cfclco  —cysh (A.1)
sOso sfco co

It can be verified that matrix A is orthonormal, i.e., that A" = A™".

The advantage of having three independent rotational coordinates, instead of nine
dependent direction cosines, is offset by the disadvantage that the elements of A in
terms of the Euler angles are complicated trigonometric functions. Still, a more severe
problem exists. Figure A.2 shows that if § = nm,n = 0,%1,%2,..., the axes of the
first and third rotations coincide, so that s and o cannot be distinguished. This fact is
illustrated by setting 6 = 0 in A to obtain

ca —sa 0
A=]|sa —ca O 0=20
0 0 1

where « = Y + 0.
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Figure A.2 Euler angles for the case
£ 0=nm(n=0%=1,%2,...).

It may be necessary to calculate Euler angles that correspond to a known transfor-
mation matrix. For this purpose, the following formulas are deduced from Eq. A.1:

cos 0 = a3 sin @ = = V1 — cos’ §

—ax dy

cos Yy = — sin | = — (A.2)
v sin 6 4 sin 0
_ ayp . _ 4y
CoS O = — sin o = —
sin 6 sin 0

These formulas show that numerical difficulties are to be expected for values of # that
are close to the critical values nm, n = 0, *1,*2,....

A.1.1 Time Derivatives of Euler Angles

The general rotation associated with @ can be considered equivalent to three successive
rotations with angular velocities wy, = ¥, wg = 0, and w,, = ¢. Hence, the vector &
can be obtained as the sum of three separate angular velocity vectors. This vector sum
cannot be obtained easily, since the directions @,, @4, and @, are not orthogonally
placed: @, is along the global z axis and, @y, is along the line of nodes, while @, is
along the body ( axis. However, the orthonormal transformation matrices B, C, and D
may be used to determine the components of these vectors along any desired set of axes.

Figure A.3 can be used to obtain the components of the velocity vector & in the
én{ axes in terms of Euler angles and rates. Since ys is parallel to the z axis, its compo-
nents along the body axes are given by applying the orthonormal transformation B'C”.

JJ@ = d; sin 6 sin o
IIJ(,,) = s sin 0 cos o

ij = \[1 cos 0
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£ Figure A.3 Euler angle rates.

The line of nodes, which is the direction of 6, coincides with the &' axis, and so the

components of 8 with respect to the body axes are furnished by applying only the final
orthonormal transformation B”:

é(f) = é coS o
é('ﬂ) = "'é sin o
Op =0

No transformation is necessary for the component of &, which lies along the { axis.

When these components of the separate angular velocities are added, the components of
@ with respect to the body axes are

w(§)=(llsin9sin0'+ocoso'
w(,,)=lbsin000s<r—asina

oy =Ycos b+ o
or, in matrix form,

o sinfsinoc coso O ll!
we | =|sinf@coso —sinoc 0 0 (A.3)
Wy cos 6 0 1

In addition, the Euler angle rates can be expressed in terms of @), @, and wy,. Since
Euler angle rates are not orthogonal, the inverse of the matrix of Eq. A.3 yields
U} sin o cos O 0

|| e
= - cos o sin § —sin o sin 0 0 Wy (A.4)
sin 0

—sin o cos § —cos o cos 0 sin 6 || gy
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Similar techniques may be applied to express the components of @ along the xyz axes, in
terms of Euler angles and rates. Equation A.4 shows, again, that numerical problems
will arise if 6 is close to the critical values nmr, n = 0,=x1,....

A.2 BRYANT ANGLES"

The Bryant angle convention considers rotations about axes other than those for the Eu-
ler angles. The first rotation may be carried out counterclockwise about the x axis
through an angle ¢,; the resultant coordinate system will be labeled &'"", as shown in
Fig. A.4. The second rotation, through an angle ¢, counterclockwise about the 5" axis,
produces the coordinate system ¢'n’(’. Finally, the third rotation, counterclockwise
about the {' axis through an angle ¢,, results in the én coordinate system. The trans-
formation matrices for the individual rotations are

1 0 0 ch, 0 s¢, ch; —sdp; 0
D=]|0 c¢, —so, C= 0 1 0 B=|s$; cp; 0
0 s, co, | —sh, 0 co, 0 0 1

Hence, the matrix of the complete transformation, A = DCB, is

chycd; _Cd?zSd’a s,
A = | chisd; + sdspcd, chicd; — sdisd,sd, —s,c, (A.5)
shish; — chisch;  sdicd; + Chi5,5¢hs chico,

Again, it may be necessary to calculate Bryant angles that correspond to a known
transformation matrix. This can be done, with the help of formulas derived from
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Figure A.4 Rotations defining Bryant
angles.
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Eq. A.5, to obtain

sin ¢, = ap cos ¢, = V1 — sin’ ¢,
. (5] a3
sin = - cos = A.6
(bl cos ¢2 d)l cos d)z ( )
. ap a1
sin p; = ———— Cos py = ——
s cos ¢, %5 cos ¢,
It can be observed again that there exists a critical case, namely, when ¢, = 7/2 + nm,
n =0,%=1,+2, ..., in which the axes of the first and third rotations coincide, so that

the rotation angles ¢, and ¢, become indistinguishable.

A.2.1 Time Derivative of Bryant Angles

The relationship between angular velocity @ and Bryant angles and rates can be found in
a similar fashion to that for the Euler rates. The transformation matrix for the velocity
components is

W, cos ¢, cos ¢y sinp; 0 d)l
wey | = | —cos ¢, sin 3 cos ¢ 0 b, | (A7)
@) sin ¢, 0 1 bs
The inverse transformation can be found to be
‘?’1 | cos ¢, —sin ¢, 0 o
b, | = cos b sin ¢; cos ¢, cos ¢, cos P, 0 w, (A.8)
&, 2] —cos ¢, sin ¢, sin ¢, sin p, cos ¢, o

It can be seen that Eq. A.8 fails numerically in the vicinity of the critical values
¢, =m/2+ nm,n =0,+1,....



Appendix B

Relationship between
Fuler Parameters

and Euler Angles

In some kinematics problems, the angular orientation of a body with respect to the
global coordinate system is described in terms of Euler angles and it is desired to deter-
mine the corresponding set of Euler parameters, or vice versa. There are simple formu-
las that can be used directly to find one set of variables if the other set is known.

B.1 EULER PARAMETERS IN TERMS OF EULER ANGLES

If the angular orientation of a local coordinate system is described in terms of three
Euler angles ¢, 6, and o, it is possible to find the corresponding Euler parameters. The
trace of matrix A in terms of Euler angles, from Eq. A.1, is

+ o
o ¥

-1
2

(7]
trA=4coszzco

Then, Eq. 6.25 yields

+
€y = COS — COS b+ o (B.1)

2 2

From Egs. 6.26a—c with a,;, a,,, and ay, taken from the transformation matrix of Eq.
A.1, it is found that

e = singcos i ; g (B.2)
0 J—

e, = sin > sin Ld > g (B.3)
+

€3 = COS 5 sin 4 2 g (B.4)
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Note that the four Euler parameters can always be determined if the three Euler angles
are known.

B.2 EULER ANGLES IN TERMS OF EULER PARAMETERS

The Euler angles can be determined from the Euler parameters by comparing the trans-
formation matrices in terms of Euler angles and Euler parameters: i.e., Eqs. A.1 and
6.19. Equating the a5, elements of the two matrices yields

cos O = 2(eZ + €} — 1 (B.5)
Equating a,, and a,;, we get
_ 2(6’2@3 + e4e))

cos o -
sin 8

(B.6)

_ 2eses — epey)

B.7
sin ¢ (B.7)

cos =

It is clear that for sin # = 0, cos o and cos Y cannot be evaluated. In this case, from
Eq. B.5, cos 8 = 1 yields

el +e;=1 (B.8)
Then, from the constraints between Euler parameters, i.e., Eq. 6.21, it is found that

el+ei=0 (B.9)
which can be true only if

e,=¢ =20 (B.10)

Since e = [e,, e,, e;]" consists of the components of ¢ along both the xyz and én{ coor-
dinate axes, Eq. B.10 indicates that the orientational axis of rotation, denoted by Z, is
along the z or the { axis. The ambiguity for § = km,k = 0,1, ..., is discussed in Ap-
pendix A in more detail. However, if the a,, elements of the two transformation ma-
trices are used when cos 8 = 1, it is found that

sin(p + o) = 2e4e, (B.11) .
Now, if either  or o is given an arbitrary value, the value of the other can be deter-
mined.



Appendix C

Coordinate Partitioning

with L-U Factorization

Crout’s algorithm LU-I from Sec. 3.3.3 can easily be modified to perform L-U factor-
ization on nonsquare matrices. If L-U factorization with full pivoting is performed on an
m X n matrix A, it may result in the following partitioned form:

A S U ‘

_ N |
ol 4 | —m ot FANN
s{I] S TD
—— N
n m-—s n—m-++s

It is assumed that there are s redundant rows in the matrix that have ended up as the
bottom s rows after factorization as a result of full pivoting. The rank of this matrix is
m — 5. The L and U matrices occupy the (m — s) X (m — s) top left eIements, and D
is a submatrix all of whose elements begin at approximately zero (i.e., smaller than a
specified tolerance). The left m — s columns of the factored matrix are called the basic
columns, and the remaining n — m + s columns are the nonbasic columns. If all of the
rows of A are independent, i.e., if s = 0, then L-U factorization with full or partial
(column) pivoting partitions A as follows:

|
\\Ul
m A —m \\:R
L \
n m n—m

Without any loss of generality, it can be assumed that A represents the Jacobian
matrix @,, where all of the m constraints are independent. Since the elements of q cor-
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respond to the column indices of (I)q, the indices of the columns of L (or U) define the
dependent (basic) coordinates u, and indices of the columns of R define the independent
(nonbasic) coordinates v.™®
Partitioning of q into u and v also corresponds to the partitioning of ®, into ®,
and ®,. In terms of the L, U, and R matrices,
o, = LU (C.1)
®, = LR (C.2)
In some well-developed L-U factorization subroutines, matrix R is replaced by a matrix
H, as follows:

\\\UER — \\\UEH
N N
L N L \,
where
H=-U"R (C.3)
This yields
®, = -LUH
= - H
or
H=-0,'®, (C.4)

The matrix H is called the influence coefficient matrix. This matrix relates variations of
u to variations of v. This is obtained by taking the differential of the constraint equations
P =0:
8P =P 6q =0
or
®,6u + @5, =0
which yields
Su=-@;'P,ov
= Hév (C.5)
The kinematic velocity equations also yield
u = Hv (C.6)



