13

Numerical Methods

1n

Dynamics

In this chapter several algorithms for the numerical solution of the equations of motion
are presented. These algorithms utilize the numerical methods given in Chap. 12 for
solving ordinary differential equations. If a mechanical system does not have any kine-
matic joints, i.e., if it is an unconstrained system, then these algorithms can be employed
directly. However, if a mechanical system contains kinematic joints, and if Cartesian
coordinates are employed in deriving the equations of motion, then these numerical
integration algorithms must be modified.

The techniques and algorithms that are discussed in this chapter can be applied to
solve the equations of motion when they are derived either in Cartesian coordinates or in
other coordinate systems, such as Lagrangian coordinates. If the Lagrangian coordinates
describing the configuration of a system are the generalized coordinates (i.e., if the
number of Lagrangian coordinates is equal to the number of degrees of freedom), then
the equations of motion are ordinary differential equations with no algebraic constraints,
regardless of the presence or the absence of any kinematic joints. If the number of
Lagrangian coordinates is greater than the number of degrees of freedom, then the
equations of motion are mixed algebraic-differential equations. This is the same type of
equation as in the case of Cartesian coordinates for systems containing kinematic joints.

13.1 INTEGRATION ARRAYS

A numerical solution to the equations of motion may be obtained by utilizing any com-
monly used numerical integration algorithm. These algorithms are useful in solving first-
order differential equations that take the form

y = f(y,) (13.1)

313

314 Numerical Methods in Dynamics Chap. 13

If there are n second-order differential equations of motion, they can be converted to 2n
first-order equations by defining the y and y arrays as follows:

i N W
Although the arrangement of the elements in y and y is quite arbitrary, the two arrays
must follow a similar order. For example, if the jth element of y contains x;, then the jth
element of y must contain x;.
The process of numerical integration at time ¢ = t' can be interpreted by the fol-
lowing diagram:
(integration)

(&) y(t' + Ar) (13.3)

In other words, velocities and accelerations at r = ¢’ yield coordinates and velocities at
t =1t + Ae

13.2 KINEMATICALLY UNCONSTRAINED SYSTEMS

The equations of motion for b unconstrained bodies containing n coordinates are repre-
sented by

Mg=g (13.4)
If there are no mathematical constraints’ on the coordinates, then the number of degrees
of freedom is also n. A numerical solution to Eq. 13.4 can be found in the same manner
as that shown in Example 12.2. In the following algorithm, called the direct integration
algorithm (DI), arrays y and y are defined as follows:

_[d] . _[a
’ [q] ' [q]
(a) Main routine

(a.1) Specify initial conditions for q and q.
(a.2) Transfer the contents of q and q to vector y = [q', ¢']".
(a.3) Enter the numerical integration routine (NI).

ALGORITHM DI-1

(b) Numerical integration routine

(This routine solves initial-value problems of the form y = f(y, #) from an ini-
tial time ¢° to a final time ¢°)

For an unconstrained system of bodies in spatial motion, there are no Kinematic constraints; however,
there is one mathematical constraint for each set of Euler parameters.

Sec. 13.2 Kinematically Unconstrained Systems 315

(b.1) In the process of numerical integration, f(y, 1) must'be evalpated. For this
purpose enter a DIFEQN routine with known y' and #‘ to determine
f(y', .

(c) DIFEQN routine
" (c.1) Transfer the contents of y to q and q.
(c.2) Evaluate M (since M is constant, it needs to be evaluated only once) and g.
(c.3) Solve Eq. 13.4 for q.
(c.4) Transfer the contents of ¢ and § to y.
(c.5) Return.

During an integration time step, the routine DIFEQN is called several times. The
contents of y are changed automatically by the integration routine, according to the al-
gorithm. For example, in the Runge-Kutta subroutine of Sec. 12.2.2, the subroutine
DIFEQN is called four times in every integration time step. The arrays y and y are
named Y and F, respectively, in that subroutine.

13.2.1 Mathematical Constraints

A kinematically unconstrained system may be represented by a set of dependent coordi-
nates. This situation exists when Euler parameters are employed as rotational coordinates.
The complete set of equations of motion is written, from Eq. 11.25, as

plp—1=0 i=1,...,b (13.5)
pip; =0 i=1,...,b (13.6)

[M* PT] [q] = [g* - b*] (13.7)
P 0 o —c

An algorithm for solving Eqgs. 13.5 through 13.7 can be developed by a slight modifica-
tion to algorithm DI-1:

ALGORITHM DI-2

(a) and (b) the same as for DI-1.

(c) DIFEQN routine
(c.1) Transfer y to q and ¢.
(c.2) Evaluate M*, P, g*, b*, and c.
(c.3) Solve Eq. 13.7 for § and o .
(c.4) Transfer ¢ and ¢ to y.
(c.5) Return.

In this algorithm, the artificial Lagrange multipliers o are evaluated as a by-
product when Eq. 13.7 is solved. This algorithm requires correct initial conditions on p;

316 Numerical Methods in Dynamics Chap. 13

and p;, i = 1,...,b. Since a numerical integration algorithm yields only an approxi-
mate solution to the exact response, the computed values for p; and p; may contain some
numerical error after several time steps. Therefore, Eqs. 13.5 and 13.6 may no longer be
satisfied. If the accumulation of the error is not corrected or controlled, erroneous results
may be obtained. Two methods for correcting the numerical error are discussed in the
following.

Method 1. The numerically integrated values for the Euler parameters of body
i at any time step are denoted by p, which may not satisfy Eq. 13.5; i.e., it may be that
pipf—1=3 (13.8)

where 8 represents the violation in the constraint. In this case, the transformation matrix
A¥, calculated in terms of p¥, will lose the orthogonality condition; i.e., the result will
be that

_ AMA¥ #1
A correction in p by € can be found to yield a corrected set of Euler parameters, as
follows:
p=pfte
which will satisfy Eq. 13.5. An infinite number of & vectors can be found for this

purpose.
A popular method for evaluating the best set of € vectors is to minimize the sum
of squares of the elements of € as follows:

Minimize f, = £’¢

(@)
subject to the constraints of Eq. 13.5
or'
Minimize f, = €’ + (pip; — DA
This yields:
o |"
== =2(p,—pH +2pA=0
[ap,] (p; — pi) + 2pi
or
p* = (1+Mp
Substitution of this equation in Eq. 13.8 gives (1 + X\)* = 1 + & which results in
1
= ———p* 13.9
P=VTssb (13.9)

This is the correction formula for the Euler parameters.i All four parameters are not-
malized by the same quantity, and in such a way that only the angle of rotation ¢ is
affected, not the direction i of the orientational axis of rotation. ,

"In constrained optimization techniques, the constraint equation(s) can be included in the objective
function by the use of Lagrange multipliers.
*The selection of Eq. a as the objective function for the optimization process is rather arbitrary. If other

objective functions are selected, different correction formulas are obtained. Somewhat different formula can be
fonnd in Ref 20

Sec. 13.2 Kinematically Unconstrained Systems 317

The numerical integration error may also yield numerical values for the violation
of Eq. 13.6 by the elements of p;:
ppi=o (13.10)
A process similar to the preceding minimization process gives a correction formula for
the velocities:
p; = P — op; (13.11)
The correction formulas of Eqs. 13.9 and 13.11 can be included in the algorithm
DI-2, step c.1.

Method ll. The constraints of Egs. 13.5 and 13.6 can be treated in much tie
same way as the kinematic constraint equations. This subject is discussed later in this
chapter.

13.2.2 Using Angular Velocities

If the equations of motion are taken in the form given by Eq. 11.37, a considerable amount
of computational efficiency can be gained. In this case, vectors y and y are defined

as follows:
_|a . _ 14

The dimension of y or y is 13 X b, so that each contains b fewer elements than the
arrays of Sec. 13.2. The integration of the velocities and accelerations of a typical
body i is performed according to the following diagram:

I; r;
P; | (integration) p;
-

i, i,
. ! !
® w

The computed values for p; and @, are employed in Eq. 6.109 to find p;.
An algorithm for dynamic analysis using Eq. 11.37 can be stated by a slight
modification to algorithm DI-1:

ALGORITHM DI-3

(a) Main routine
(a.1) Specify initial condition for q and h.
(a.2) Define vectory asy = [q',h"}".
(a.3) Enter the numerical integration routine (NI).
(b) Numerical integration routine
(Same as DI-1)
(c) DIFEQN routine
(c.1) Transfer the translational coordinates and velocities r; and r,,
i=1,...,b, fromytoqandq. Transfer p;,i = 1,...,b, fromytoq
after correcting for the numerical error. Obtain w;,i =1,...,b, fromy,
use Eq. 6.109 to calculate p;, and then transfer to q.

318 Numerical Methods in Dynamics Chap. 13

(c.2) Evaluate M (since M is constant in Eq. 11.37, it can be evaluated only
once), b, and g.

(c.3) Solve Eq. 11.37 for h.

(c.4) Transfer ¢ and h to y.

(c.5) Return.

13.3 KINEMATICALLY CONSTRAINED SYSTEMS

The complete set of equations of motion for a kinematically constrained mechanical
system is given as

®=dq) =0 (13.12)
b=0g=0 (13.13)
b=0g4-v=0 (13.14)
Mj —®A=¢g (13.15)

These equations may represent the planar equations of motion given in Eq. 9.6, or
the spatial equations of motion given in Eq. 11.42. In the case of spatial motion, it is
assumed that the constraints of Eq. 13.12 contain both kinematic constraints and mathe-
matical constraints. Therefore, the Jacobian matrix ®, in Egs. 13.13 to 13.15 contains
the P and B matrices of Eq. 11.42. If Egs. 13.14 and 13.15 are appended together, a set
of algebraic equations, linear in § and A, is obtained:

o W3- L)

It should be clear that g, A, and ¥ in Eq. 13.16 represent g* — b*, o and A, and ¢ and
v, respectively, in Eq. 11.42.

A simple but crude method for obtaining the dynamic response of a system repre-
sented by Eqs. 13.12 to 13.15 is to employ the direct integration algorithm DI-1 with
some minor modifications:

ALGORITHM DI-4

(a) and (b) the same as in DI-1.
(c¢) DIFEQN routine
(c.1) Transfer y to q and 4.
(c.2) Evaluate M (M is constant in Eq. 9.6, but a function of p;, i = 1,...,b,
in Eq. 11.42), ®,, g, and y.
(c.3) Solve Eq. 13.16 for q and A.
(c.4) Transfer ¢ and q to y.
(c.5) Return.

The initial conditions on q and § must satisfy Eqs. 13.12 ahd 13.13. However, on
account of the numerical integration error, these equations may be violated. In the pre-
ceding sections, several methods for circumventing this problem were presented.-

Sec. 13.3 Kinematically Constrained Systems 319

13.3.1 Constraint Violation Stabilization Method

The constraint violation stabilization method' is an extension of feedback control theory
applied to the dynamic analysis of mechanical systems. One of the goals in designing a
feedback controller is to suppress the growth of error and achieve a stable response.

In control systems, it is well known that circuits described by second-order differ-
ential equations such as

y=0 (@)
are unstable, since outside disturbances such as noise (or numerical error, in the case of

a numerical integration process) can be amplified. In contrast to Eq. a, which is said to
be an open-loop system, a closed-loop system, such as

y+2ay+ By =0
is stable if o and B are positive constants. The terms 2ay and B’y are the feedback con-

trol terms that achieve stability for the differential equation.
The violations in the constraints of Eqs. 13.12 and 13.13 are denoted as

®=dg*) =& ®)
and

d=dg*=0o ©
where q* and ¢* are the computed values of ¢ and q. Knowing q* and ¢*, we can find

the acceleration vector § from Eq. 13.16. For these computed vectors, Eq. 13.14 finds
the form

Sd=dgx—y*=0 (13.17)

Vector * is different from the correct acceleration vector q. The errors in the three
vectors are

q* —q = Aq
Q* — 4 =144
a* - 4= 44

Since §* is integrated to obtain ¢* in the next step, any error A§ subsequently adds
to any existing error in the velocity vector. It is ideal to have A4 = 0. But since this is
an open-loop system, it can be replaced, for the integration process, by the closed-
loop system

A4 + 2aAq + B*Aq =0 (d)

Equation b is expanded about q and the second- and higher-order terms are elimi-
nated, to find

I

P ,Aq = &

From Eq. ¢, it is found that
P Aq

q

I
q

Premultiplying Eq. d by ®, ‘yields
@ (G* — §) + 2a® Aq + FD,Aq =0

a;

320 Numerical Methods in Dynamics Chap. 13

or
® G+ — vy + 200 + B =0 ()
If the constraint violations & and o are replaced by constraint symbols @ and ® respec-
tively, then Eq. 13.17 and Eq. e yield
y* =y — 2ad - P
Appending Eq. 13.17 to Eq. 13.15 yields the stabilized form of Eq. 13.16:

M @ || q| g :
[rbq 0] [—x] B [y — 2ad — ;3@] (13.18)

where { represents the computed accelerations. When there is no violation in the con-
straints, Eq. 13.18 becomes identical to Eq. 13.16.

An algorithm CS for the constraint stabilization method can be stated by a slight
modification to the algorithm DI-4:

ALGORITHM CS-1

(a) and (b) are as in DI-1, but in (a) values are assigned to « and .
(c¢) DIFEQN routine

(c.1) Transfer y to q and q.

(c.2) Evaluate M, ®,, g, and .

(c.3) Evaluate ® and calulate b= P4

(c.4) Solve Eq. 13.18 for ¢ and A.

(c.5) Transfer ¢ and ¢ to y.

(c.6) Return.

The effect of introducing the feedback terms in Eq. 13.18 is illustrated in Fig. 13.1,
with some exaggeration, for a typical response. When both a and 3 are given zero values,
which is exactly the method of algorithm DI-4, the numerical result may diverge from
the exact solution. For nonzero values of « and 3, the solution oscillates about the exact
solution. The amplitude and the frequency of the oscillation due to the stabilization
terms depend upon the values of « and 3. Experience has shown that for most practical
problems, a range of values between 1 and 10 for and 8 is adequate. When a = 3,
critical damping is achieved, which usually stabilizes the response more quickly. "

Figure 13.1 Schematic representation of

- the exact and numerical solutions to a typi-
Time cal dynamic response.

Sec. 13.3 Kinematically Constrained Systems 321

13.3.2 Coordinate Partitioning Method

The coordinate partitioning method" controls the accumulation of the numerical error
quite differently from the constraint stabilization method. This method makes use of the
fact that the n coordinates ¢ are not independent. If the n coordinates are partitioned into
m dependent coordinates u and k independent coordinates v, then the velocity vector ¢
can be partitioned accordingly into @ and v. The integration arrays y and y are defined in
terms of the independent variables:

[el

where V is the vector of independent accelerations. The two arrays y and y each have a
dimension of 2k.
The kinematic constraints and velocity equations of Eqs. 13.12 and 13.13 can be
expressed as _
®D(u,v) =0 (13.19)
and
Qua=-Pyv (13.20)
Equations 13.19 and 13.20 each represent m independent equations in terms of u and
respectively. Having v and v from y, we can solve Egs. 13.19 and 13.20 for u and w;
then vectors q and ¢ are completely known. At this point Eq. 13.16 is solved for g
and A.
An algorithm for the coordinate partitioning method (CP) can be stated, in its
simplest form, as follows:

ALGORITHM CP-1

(a) Main routine
(a.1) Specify initial conditions on q and q.
(a.2) Specify the independent variables v (and V).
(a.3) Define vector y as y = [v/,v']".
(a.4) Enter the numerical integration routine (NI).

(b) Numerical integration routine
(same as for DI-1)

(c) DIFEQN routine
(c.1) Obtain v and v from y.
(c.2) Solve Eq. 13.19 for u using the Newton-Raphson method; q is found.
(c.3) Solve Eq. 13.20 for u; q is found.
(c.4) Solve Eq. 13.16 for ¢ and A.
(c.5) Transfer v and v (from) to y.
(c.6) Return.
"The coordinate partitioning method was first developed in a planar-motion computer program called

DADS-2D (dynamic analysis and design system) by Wehage and Haug in 1982." The three-dimensional mo-
tion version of this program for DADS-3D was first developed by Nikravesh and Chung, 1982."

322 Numerical Methods in Dynamics Chap. 13

The most troublesome part in this algorithm is step c.2. In this step, independent
coordinates v' are known and the constraint equations are solved for the dependent coor-
dinates u'. Since the constraints are nonlinear algebraic equations, iterative methods
must be employed. These require an estimate for u' in every time step. The estimate
cannot be too far from the correct solution, since if it is it may cause divergence.
An estimate for w', at time #/, can be found by using the information from the previous
time " "; ‘

u'=u""+ ™"+ 0.5h% !
where & is the time step from ' to ¢'.

Proper partitioning of the coordinates q into u and v is critical in controlling the
accumulation of the numerical error. In order to keep this error under control, it might
be necessary to switch from one set of independent coordinates to a different set during
the integration process. For example, consider the single pendulum shown in Fig. 13.2.
Since this is a 1-degree of freedom system, the dimension of v is 1. For the pendulum
(the moving body), with coordinates q = [x, y, ¢]", two equations can be written:

x =d cos ¢
y =d sin ¢
If the numerical error in the coordinates is denoted by 8x, 8y, and 8¢, then
Oox = —d sin ¢ 8¢
8y = d cos ¢pd¢p
In the selection of the independent coordinates, three cases may arise:

Il

1. v = [x], u = [y, ¢]". An error 8x causes errors in y and ¢, as follows:

1
% =~ sing >
cos ¢
8y = —— 8
Y sin ¢ *
—— ¢ ¢=0

¢ = —45°

¢ =—90° Figure 13.2 A single pendulum.

Sec. 13.3 Kinematically Constrained Systems 323

2. v=[y],u = [x,¢]). An error Oy causes errors in x and ¢, as follows:
1

o = d cos ¢ o
_ _ sin d)
ox = cos d)

3. v = [¢], u = [x,y]". An error in 8¢ causes errors in x and y, as follows:
6x = —d sin ¢p6¢p
dy = d cos ¢ 6

A comparison of the three cases reveals that for ¢ = 0 or ¢ = 77, case 1 yields large
errors in ¢ and y for even a small error in x. However, the errors of the other two cases
are bounded. Therefore, for these values of ¢, or any value of ¢ in these neighbor-
hoods, the selection of x as the independent coordinate is the worst case. Similarly, in
the neighborhood of ¢ = x7/2, the y coordinate is the worst choice for the indepen-
dent coordinate. If the pendulum starts from the initial condition ¢ = 0 and the y coor-
dinate is selected as the independent coordinate, then around ¢ = =*/4 the independent
coordinate must be switched from y to x in order to keep the error under control. The
third case shows that if ¢ is selected as the independent coordinate, the error remains
bounded regardless of the orientation of the pendulum, and therefore there is no need to
switch to another coordinate at any time.]

An automatic technique for partitioning the coordinates into the dependent and in-
dependent sets is shown in Sec. 13.3.3. During the integration process, some criteria
must be used to indicate whether the independent coordinates must be redefined. Such
criteria can be based upon the following observations:

1. The number of iterations in the corrector step of a predictor-corrector integration
algorithm keeps increasing from one time step to the next.

2. The number of iterations in the Newton-Raphson process of step c.2 keeps in-
creasing from one time step to the next, i.e., the estimated values for u are getting
too far from the solution.

A conservative but safe process is to automatically redefine vector v once every few
time steps.

A modified version of algorithm CP-1 can be stated that allows for redefining the
independent and dependent coordinates.’

ALGORITHM CP-2

(a) and (b) are the same as in CP-1.
(c) DIFEQN routine
(c.1) Obtain v and v from y.
(c.2) Solve Eq. 13.19 for u.

(c.3) Is it necessary to redefine the independent coordinates?
If yes, then return to step a.2.
If no, then continue.

324 ' Numerical Methods in Dynamics Chap. 13

(c.4) Solve Eq. 13.20 for u.

(c.5) Solve Eq. 13.16 for 4 and A.
(c.6) Transfer v and V to y.

(c.7) Return.

13.3.3 Automatic Partitioning of the Coordinates

In step a.2 of algorithm CP-2, an automatic process can be employed to partition the
coordinates into dependent and independent sets. A matrix factorization technique, such
as the Gaussian elimination with full or partial (column) pivoting, can be performed on
the Jacobian matrix for this process. For a mechanical system with m constraints and n
coordinates, the Jacobian is an m X n matrix. The order of the columns of the matrix
corresponds to the order of the elements in vector q. After pivoting, the order of
the columns determines the reordering of the elements of q. The first m elements of the
reordered q can be used as the dependent coordinates u, and the remaining k elements
represent the independent coordinates v.

Example 13.1

Consider the single pendulum with the oscillating mass shown in Fig. 13.3. Con-
straint equations for the ground and for the revolute and translational joints are

written as
x;, =0
»n=0
¢, =0

X, — X% +05sin¢, =0

yi — ¥, — 05cos ¢, =0

sin ¢o(y; = ¥2) + cos hy(x; = X)) =0

b~ ;=0
The first three equations are the ground constraints on body 1, the fourth and fifth
equations are the revolute joint constraints from Eq. 4.9, the sixth and seventh
equations are the translational joint constraints from Eq. 4.12. The first transla-
tional constraint is obtained by defining three points on the line of translation
having local coordinates &5 = 0, 5 =0, £2=0,n5 =1, £, =0, 9% = 0.

If the vector of coordinates is defined as
q = [x1, Y1, D15 X2, Y2, b2, X3, V3, ¢l

then the Jacobian matrix is written as

1 00 o0 0 0 0 0 o0
010 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 00 -1 0 0.5 cos ¢, 0 0 0
010 0 -1 0.5 sin ¢, 0 0 0
0 0 0 —cos ¢, —sin ¢, cos ¢, sing, O

0 00 0 0 1 0 0 -1

Sec. 13.3 Kinematically Constrained Systems : 325

(b)

Figure 13.3 A single pendulum with an oscillating mass in two different orientations.

where

@ = —sin ¢,(x; — x,) + cos ¢p,(y; — ¥2)

For the configuration in Fig. 13.3(a), the coordinates of the moving bodies
are:

x, = 0.43, y, = —0.25, $, = 60°
x; = 0.69, y; = —0.40, ¢, = 60°
With these coordinates, the Jacobian matrix becomes

1 2 3 4 5 6 7 8 9
[T 0 0 o 0 0 0 0 0]
010 O 0 0 0 0 0
001 0 0 0 0 0 0
1 00 -1 0 025 0 0 0
010 0 -1 043 0 0 0
0 0 0-0.5-0.87 -03 0.5 087 0
000 0 0 1 0 0 -1

326 Numerical Methods in Dynamics Chap. 13

The column indices corresponding to the order of elements in q are shown at the
top of the matrix. A Gaussian elimination with partial (column) pivoting yields

1 23 458 6 7 9

1 0 0 000 O 0 O]
01 00O0O0 O 0 0
001000 O 0 0
00010 0-025 0 0
00001 0-043 0 O
0000 0 1-092 0580
0 00000 1 0 -1

The order of the column indices shows the reordering of the elements of q as

q =[x, 1, 1y X2 Y20 V3o B2, X3, ¢3]T
Since m = 7 and k = 2, vectors u and v are defined as
u =[xy, y;, b5 X2, Y25 V3o ¢2]T

v = [x;, ¢)3]T

For the configuration shown in Fig. 13.3(b), the moving bodies have the
coordinates

x2 = _0.21, y2 = _0.45, (b2 = _250
x; = —0.42, y; = —0.91, ¢y, = —25°
With these coordinates, the Jacobian matrix becomes

1 23 4 5 6 7 8 9
1 0 0 O 0 0 0 0 0]
010 O 0 0 0 0 o0
001 O 0 0 0 0 0
1 0 0 -1 0 045 O 0 0
010 O -1 =021 0 0 0
0 0 0-091 042 —0.5 091 —-0.42 0
0 00 © 0 1 0 0 -1

A Gaussian elimination on this matrix yields
1 23 45 6 9 8 7

1 0000 O 0 O 0]
01000 0O 0 O 0
00100 0 0 O 0
0001 0-045 0 O 0
00001 020 0 0
00000 1 0 042-091
0 0000 O 1 0.42 —0.91}

Sec. 13.3 Kinematically Constrained Systems 327

In this configuration, the appropriate sets of dependent and independent coordi-
nates are

u= [xl’yl’ ¢l’x2’y2’ 4’2’ ¢3]T

V= [)’3,xs]T

The Gaussian elimination with pivoting suggests that for Fig. 13.3(a) the
appropriate independent coordinates are x; and ¢, but for Fig. 13.3(b) the appro-
priate independent coordinates are x; and y,. Note that the coordinates of the non-
moving body always become part of the set of dependent coordinates.

Several factors influence the selection of the independent coordinates. One such
factor is the choice of the unit system. Since not all of the elements of the Jacobian
matrix have the same physical dimension, their numerical values may form different
ratios when different systems of unit are employed (e.g., SI units versus the U.S. cus-
tomary FPS units). This in effect yields a different pivoting process, and hence a differ-
ent set of dependent and independent coordinates.

The second factor is the type of pivoting. A partial (column) pivoting may yield a
different result from that given by a full pivoting. Matrix factorization with full pivoting
may have some advantage, in terms of the numerical error, over the partial pivoting.
However, it cannot be said that the partitioning of the coordinates through a full pivoting
process yields a better (in the physical sense) set of independent coordinates.

Possibly the most influential factor in an automatic partitioning of coordinates is
the method of matrix factorization. If an L-U factorization process is employed on the
constraint Jacobian matrix, instead of the standard Gaussian elimination, different sets
of dependent and independent coordinates may be obtained. The original coordinate par-
titioning algorithm with L-U factorization was suggested by Wehage.'® A brief discus-
sion on coordinate partitioning with L-U factorization can be found in Appendix C. In
recent years, several other matrix factorization techniques have been employed by other
researchers, such as the singular-value decomposition, the QR decomposition, and the
Gram-Schmidt process. These techniques offer some advantages over L-U factorization,
although the main idea remains basically the same. *'*"!

13.3.4 Stiff Differential Equation Method

The method of solving a mixed system of algebraic and differential equations of motion
presented in this section is completely different in principle from the methods discussed
in the preceding sections. This method considers the algebraic constraint equations to be
a special form of differential equation in which the time derivatives of the variables do
not appear. This assumption has proved to cause the system equations to become numer-
ically stiff. Therefore, a stiff numerical integration method must be applied to solve the
equations.”

"This algorithm has served as a forerunner in the development of the numerical methods in the area of
mechanical systems.'® The algorithm has been formulated into a computer program for three-dimensional mo-
tion known as ADAMS.

328 ' Numerical Methods in Dynamics Chap. 13

In Sec. 13.1, it was stated that the standard numerical integration algorithms are
designed to solve systems of differential equations of the form

y = fly, 1) (13.21)
The modified approach taken here allows for the simultancous solution of mixed alge-
braic and differential equations of the form

gy, y,t) =0 (13.22)
where some components of y may not appear in some of the equations. When none of
the components of y appear in an equatxon that equation is an algebraic equation; other-
wise it is a differential equation.

The kth order Gear algorithm and its corresponding corrector formula are given by
Eqs. 12.23 and 12.24. In order to modify these formulas to solve a mixed system of
algebraic and differential equations, Eq. 13.22 is written as

gz,1) =0 (13.23)
where z = [y, §"]". The Newton-Raphson formula for this equation is
g’ Az’ = ~g¥ (13.24)

where [is the iteration number. When the substitution z = [y y "™ is made in
Eq. 13.24, it is found that

g(y" Ay‘” + g(y’) Ay(” — _g(l) (13.25)
For the Ith and / + 1st Newton-Raphson iterations, Eq. 12.23 can be rewritten as

k—1
()0 — hb_ (5 no - S (ajyiﬁj) =0 (13.26)

j=0

. A k=1 o
(y,+1)(l+1) _ hbnl(ylﬂ)(lﬂ) — 2 (ajy’“l) =0 (13.27)
j=0

The summation terms in these equations are not a function of the iteration number —
they are a function of the information from the ith and previous time steps, so they
remain constant at each iteration. Subtracting Eq. 13.26 from Eq. 13.27 yields

(yi+1)(i+1) _ (yi+l)(l) _ hb_l(yi“)(m) + hb_](ym)(!) =0
or

Ay? = —Ay” (13.28)

hb_,

which holds true for the i + 1st or any other time step. Substitution of Eq. 13.28 into
Eq. 13.25 results in the corrector formula

(l)+ (I)A(l)___() 13.
(g hb_gy> y g (13.29)

If Eq. 13.22 is of the form

gy,y,2) = Py + p(y,t) = 0 ‘ (13.30)
where P is a constant matrix or a time- dependent matrix, then Eq. 13.29 can be written
in a simpler form as

Sec. 13.3 Kinematically Constrained Systems 329

hb_,

At each time step, the iterative corrector process of Eq. 13.29 or Eq. 13.31 is con-
tinued until all of the Newton differences Ay" are below a specified tolerance level. At
each Newton-Raphson iteration, arrays y and y are updated:

yor = g 4 Ay0

<p§’> + LP) Ay? = —g® (13.31)

1 (13.32)
S VS (R S W ()
y y hb_, y
The total-system equations of motion of Eqs. 13.15 and 13.12 are written as
Ms — DA =g (13.33)
q=s (13.34)
P(g) =0 (13.35)
Equations 13.33 to 13.35 may be expressed in the form of Eq. 13.30, where
(M 0 0
P=}]0 I 0
0 0 0
T—(I)gz\ - g
P= -s
b

y — [ST, qT, AT]T
and

y = [ST, (']T, A'T]T
The corrector formula of Eq. 13.31 can be employed to solve for the unknown y at
every time step. In this case, Eq. 13.31 provides 2n -+ m equations in 2n + m
unknowns. :

It must be expected that the iterative solution of 2n + m equations, using the
Newton-Raphson method, may not be successful for every problem. For large systems
of equations, this method may not be considered efficient. One major drawback of this
algorithm is the initial estimate on the variables at time ¢ = ¢°. At the starting time, the
initial condition on q and ¢ might be available. However, at ¢ = ¢°, for almost every
practical problem, no information on the Lagrange multipliers A can be found. There-
fore, starting the Newton-Raphson iteration at t = ¢° for an arbitrary estimate on A may
cause divergence.

It was noted at the beginning of this section that treating algebraic equations as
special forms of differential equations yields numerically stiff systems. This causes arti-
ficially high-frequency components in the solution. The high-frequency components of
the response do not represent the physical system —they are introduced into the solution
numerically. Because of the presence of the high-frequency components in the re-

330 Numerical Methods in Dynamics Chap. 13

sponse, the time increment ~ must be chosen relatively small. For small values of 4, the
term 1/h in the algorithm can become substantially large. Experience has shown that
this algorithm cannot be implemented on machines with small word length (4 bytes or
single precision). Either a machine with a word length of 8 bytes is needed, or double
precision must be employed.

13.4 JOINT COORDINATE METHOD

In Table 1.1 of Sec. 1.4.1, a comparison was made among three different coordinate
systems in terms of various aspects of formulating the equations of motion. The table
showed, in a relative sense, that if a set of generalized coordinates (in which the coordi-
nates are equal in number to the number of degrees of freedom) is employed, derivation
of the equations of motion can be quite difficult. However, computational efficiency in
solving these equations is gained. In contrast, employing Cartesian coordinates yields
easy derivation of the equations of motion, but computational efficiency is lost. The
joint coordinate method takes advantage of Cartesian coordinates for easy formulation,
and Lagrangian coordinates for computational efficiency. This is done by numerically
combining the two schemes of formulation. This method is based on the velocity trans-
formations developed by Jerkovsky.’

Consider two bodies i and j connected by a revolute joint as shown in Fig.
13.4(a). If the relative angle between the two bodies about the joint axis is denoted by 6,
then, for known coordinates of body i and known 6, the coordinates of body j can be
found; i.e.,

q; = f%q;, 6)

If the two bodies are connected by a translational joint, as in Fig. 13.4(b), a similar for-
mula can be found:

qj = f(')(qiv 0)
where @ indicates the relative distance between the two bodies. If there are 2 degrees of

freedom between the two bodies, as there are for the universal joint shown in Fig.
13.4(c), then there are two relative angles, 6, and 6,, denoted by 6, = [6,, 6,1":

q; = f“(q,, 0;)
4 A 4@&
X N
3o,
6 \
(a) (b} (c)

Figure 13.4 Two bodies connected by (a) a revolute joint, (b) a translational joint, and
(c) a universal joint.

Sec. 13.4 Joint Coordinate Method 331

In general, if two bodies i and j are connected by a kinematic joint having relative (joint)
coordinates @;, then the coordinates q; can be expressed as follows:

ij?
q; = f(c)(q," oij) (13.36)
The number of relative coordinates in @ is equal to the number of relative degrees of
freedom between the two bodies, which is dependent only on the kinematic joint con-
necting the bodies.

A similar expression can be stated for velocity calculation. If the relative velocity

between bodies i and j is described as ()ij, then q; can be expressed as follows:

4, = £7(q,, 6,) (13.37)
A similar but inverse expression can be stated for the accelerations. If it is as-

sumed that the absolute accelerations ¢, and §; are known, then the relative acceleration
can be found as

8; = £°(4,) (13.38)
Explicit formulas for coordinate, velocity, and acceleration computations (Eqs.

13.36 through 13.38) can be derived for a variety of kinematic joints.” This is left as an
exercise to the interested reader.

13.4.1 Open-Chain Systems

Consider the open-chain system shown in Fig. 13.5(a), containing one branch and one
grounded body (called the base body). Consecutive bodies are connected by kinematic
joints. The system may contain force elements that are not shown in the figure. If the
bodies are numbered from 1 to b, in any desired order, then relative coordinates 6; are
defined between every two adjacent bodies. In this system, the coordinates of the base
body q, are constants. A vector of relative coordinates @ is defined as follows:

0= [072’ 053’ s o(Tb—l)b]T

For numerical integration, the two vectors y and y are then defined:

(13.39)

(a) (b)

Figure 13.5 A single-branch open-chain system with (a) a fixed base body, and (b) a
floating base body.

332 : Numerical Methods in Dynamics Chap. 13

If, like the system shown in Fig. 13.5(b), the mechanical system does not have a
fixed (grounded) base body, then a base body has to be chosen for the system; the result-
ing base body is called a floating base body. If, for example, body 1 is chosen to be the
floating base body, then vectors y and y are defined as follows:

q, ('1'1
1]
y= f) y=1. (13.40)
q.1 (!_1
(/] 0

The dimension of y or ¥ in the form of either Eq. 13.39 or Eq. 13.40, is twice the num-
ber of degrees of freedom of the system.

For systems with no grounded body, there is at least one floating base body. Al-
though the selection of the floating base body is not unique, one body may be a better
candidate for the floating base body than another. If the mass of one body is substan-
tially greater than the mass of any of the other bodies, then that body should be selected
as the floating base body. It should be noted that the floating base body is not necessar-
ily one of the end bodies in the chain. If no one body has a mass substantially greater
than the others, a floating base body can be selected by employing a simple procedure.
Each joint is given a number, called the distance, which represents the number of its rel-
ative degrees of freedom. For some commonly used three-dimensional kinematic joints,
the following data can be found:

Joint Symbol Distance
Spherical (globular) G 3
Revolute R 1
Universal U 2
Cylindrical C 2
Translational (prismatic) P 1
Screw S 1

Each body in the system is treated momentarily as a candidate for the floating base. The
sum of distances from branch to branch starting from the body under consideration is
calculated and recorded. When the next neighboring body becomes the candidate, the
sum of distances decreases in the direction of the move and increases in the other direc-
tion. For example, consider the system shown in Fig. 13.6. The following table can be
found for the sums of distances for all the bodies:

Floating base Sum of distances Sum of distances
candidate to left to right
1 0 11
2 1 10
3 2 9
4 3 8
5 5 6
6 8 3
7 11 0

Sec. 13.4 Joint Coordinate Method 333

Figure 13.6 An open-chain system.

This table shows that the difference between the left and right distances is smallest for
body 5, and therefore body 5 is the best candidate for the floating base body. This selec-
tion minimizes the propagation of numerical error in the computation. For example, if
body 5 is selected as the floating base body, then the coordinates of body 1 contain the
numerical error accumulated from five relative coordinates. But if body 6 is selected as
the floating base body, then body 1 contains the numerical error from eight relative co-
ordinates. Applying this observation to both left and right subbranches for each of the
bodies shows how the total error can be minimized by this process.

Some systems may have multiple branches, such as the system shown in
Fig. 13.7, which has two branches. For position and velocity computation, the process
starts from the base body and moves toward the last body in each branch. For multi-
branch systems, after the process is completed for the first branch, the process can start
on the second branch from the branching body (in Fig. 13.7, body 3).

The order of connectivity between the bodies of a system is called the system to-
pology. The topology of a system either ¢an be defined by inspection or can be done au-
tomatically through graph theory. The topology of the system can be set up in the for of
a table showing the direction to move in calculating the coordinates (or velocities) of
body j, once 6, and coordinates (or velocities) of body i are known. For the system of
Fig. 13.7, this table can have the following entries:

Body i Body j
1 (base) 2
2 3
3 4 branch 1
J
j+1
jt+1 jt+2
j+2 .. branch 2
b

This table also serves as a directive for calculating é,-j from ¢; and §;.

At this point, an algorithm can be stated for the joint coordinate method. At the
beginning of each time step, the numerical values for (., Qu., @, and 0 are known.
Equations 13.36 and 13.37 yield q and ¢ for all of the bodies in the system. The coeffi-
cient matrix and the right-side vector of Eq. 13.16 can be evaluated, since they are func-
tions of q and q. Then the solution of Eq. 13.16 yields ¢ and A. Since { is known for all

334 Numerical Methods in Dynamics Chap. 13

(Branch 2)

0
i+ 9(; +NG+2)

.— @ (Branch 1)

Figure 13.7 A multibranch open-chain
system.

of the bodies, Eq. 13.38 yields . Then the numerical integration routine moves the pro-
cess to the next time step.

ALGORITHM JC-1

(a) Main routine
(a.1) Specify initial conditions for q and {.
(a.2) Specify (or automatically determine) the topology of the system.
(a.3) Compute initial conditions for 6 and 0.
(a.4) Transfer the initial values to y (Eq. 13.39 or 13.40).

(b) Numerical integration routing
(Same as DI-1)

(c) DIFEQN routine

(c.1) Transfer the contents of ¥ t0 Qpaes Qase (if there is a floating base body), 6,
and 6.

(c.2) Compute q and q for all of the bodies (Eqs. 13.36 and 13.37).
(c.3) Evaluate M, @, g, and y.

(c.4) Solve Eq. 13.16 for ¢ and A.

(c.5) Compute & (Eq. 13.38).

(¢.6) Transfer quq., (e (if there is a floating base body), @, and to .
(¢.7) Return.

In this algorithm, since the coordinates of a body are found from the coordinates
of the adjacent body and the interconnected joint coordinates, the constraint equations in
terms of Cartesian coordinates are never violated. The same argument is also true for the
velocity equations.

13.4.2 Closed-Loop Systems

A mechanical system may contain one or more independent closed kinematic loops. For
example, the system shown in Fig. 13.8(a) contains one closed loop. If the closed loop
is cut at one of its joints, as in Fig. 13.8(b), the system becomes equivalent to an open-
chain system. If the topology of the equivalent open-chain system is defined, then q and

Problems 335

(a) {b)

Figure 13.8 A system containing a closed loop.

q for all of the bodies can be computed from Qy.g, paer @, and 0. In this process the
joint coordinates and velocities of the cut edge(s) are not needed, e.g., the joint coordi-
nates between bodies 3 and 4 of Fig. 13.8(b) denoted by 0%, If algorithm JC-1 is ap-
plied to this system, it is likely that the kinematic constraints describing the joint at the
cut edge(s) will be violated. This may happen because the coordinates of q, are not
found from q, and @,,. In order to eliminate the constraint violation at the cut edge(s),
feedback terms for constraint stabilization can be introduced in Eq. 13.16.

The constraint equations can be divided into those for uncut edges and for cut
edges, as follows: '

®(q) =0
P*(q) =0

where the asterisk denotes the cut edges. Then, stabilization terms are included in Eq.
13.16, as follows:

M @] & ¢ g
® 0 0 -A | = y (13.41)
®F0 0 —A* y* — 2ad* — B+

Graph theory provides schemes for determining which joints should be cut. It
should be noted that the number of joint coordinates for a closed-loop system is larger
than the number of degrees of freedom of that system. Therefore, for the equivalent
open-chain representation of a closed-loop system, vector y contains more elements than
twice the number of degrees of freedom of the actual system.

PROBLEMS

13.1 Use algorithm DI-1 in conjunction with subroutine RUNGK4. Assuming zero initial veloc-
ities, solve the equations of motion from the following problems:

(a) Prob. 9.6
(b) Prob. 9.7

336

13.2

13.3

13.4

13.5

13.6

13.7
13.8
13.9

13.10

Numerical Methods in Dynamics Chap. 13

For the unconstrained body shown in Fig. P. 13.2, the translational coordinate vector has
components r = [0,5,4]", and the local and the global coordinate systems are Initially
parallel. Let a = 0.6, b = 0.4, and ¢ = 0.2, and assume a mass of 50. A force f with a
constant magnitude of 12 acts at point A and remains perpendicular to plane ABC.

(a) Write the translation equations of motion (Eq. 11.8).
(b) Write the rotational equations of motion in terms of Euler parameters (Eq. 11.16).

(¢) Use algorithm DI-2 in conjunction with subroutine RUNGK4 to solve these equations
for a specified period of time. Assume initial velocities of zero.

(d) Monitor (plot) the constraint violations for p’p — 1 = 0 and p’p = 0.
(e) Repeat the process for different values of Ar.

a

l Gravity
Y
X Figure P. 13.2

Repeat Prob. 13.2 and correct the computed values of p and p according to Egs. 13.9 and
13.11.

Repeat Prob. 13.2 and correct the Euler parameters for any constraint violations using the
constraint violation stabilization technique.

Employ the coordinate partitioning method to Prob. 13.2. Assume v = [r",e"]" and
u = [eg]. For values of ¢, close to zero, how would you determine the sign of e,?

Repeat Prob. 13.2 and instead of Eq. 11.16, use Eq. 11.18. Then:

(a) use algorithm DI-3 to solve the equations.

(b) Monitor the constraint violation for p’p — 1 = 0.

(c) Modify the program to eliminate or control any constraint violation.
Why is there no need to correct the computed values of p in algorithm DI-3?
State the reasons why algorithm DI-3 is more efficient than algorithm DI-2.

Solve the constrained equations of motion from Prob. 9.8 by employing subroutine
RUNGK4 in the following algorithms:

(a) Algorithm DI-4

(b) Algorithm CS-1

(c) Algorithm CP-1, assuming v = [x,, y;, ¢y, bs]"

(d) Algorithm JC-1, assuming 8 = [x,y;, ¢1, 010]"

In order to develop a planar dynamic analysis program using the joint coordinate method,
the transformation formulas of Eqs. 13.36 through 13.38 must be derived explicitly for

some of the standard kinematic joints. Derive these formulatiogs for the three kinematic
joints shown in Fig. P.13.10 and assume:

(a) 6; = « for the revolute joint.
(b) 6; = d for the translational joint.
© 6; = [, a,]” for the revolute-revolute joint.

Problems 337

KD 05

(a) (b) (c)

Figure P. 13.10

13.11 Modify the dynamic analysis program in Chap. 10 from the direct integration method (DI)
and devise the following algorithms:
(a) Coordinate partitioning method
(b) Joint coordinate method

13.12 Derive the joint coordinate transformation formulas for a spatial revolute joint in a general
case where the joint axis is not parallel to any of the local coordinate axes. Hint: Assume a
second local coordinate system £;m;{: attached to body j and initially parallel to &;{;, as
shown in Fig. P.13.12. The transformation matrix between &v;{; and &m;{; is a constant
matrix. The joint axis becomes the relative orientational and instantaneous axis of rotation

between &m;{; and &;{;. Therefore, A, can be expressed as a function of 0, and hence
of 6;.

Figure P. 13.12

13.13 Repeat Prob. 13.12 for special cases where the joint axis is parallel to one of the coordinate
axes of each body; e.g., where ¢, is parallel to £;. Estimate the percentage of computational
efficiency that is gained in this formulation as compared with the general-case formulation.

13.14 Derive the joint coordinate transformation formulas for a spatial translational joint in a gen-
eral case where the joint axis is not parallel to any of the coordinate axes.

13.15 Repeat Prob. 13.14 for special cases where the joint axis is parallel to one of the coordinate
axes of each body; e.g., for & parallel to £;. Estimate the percentage of computational effi-
ciency that is gained in this formulation as compared with the general-case formulation.

13.16 Derive the joint coordinate transformation formulas for the following spatial kinematic
joints (each joint allows two relative degrees of freedom):

(a) A universal joint

(b) A cylindrical joint

Derive the formulas for general and special cases. Hint: You may assume a third, fictitious
body between the two bodies that has one relative DOF with each body.

338

13.17

13.18

Numerical Methods in Dynamics Chap. 13

Derive the joint coordinate transformation formulas for a spherical joint. Hint: Use a rela-

tive set of Euler parameters.

In order to develop a spatial dynamic analysis program, an approach similar to that of the

planar program in Chap. 10 can be followed. For developing the first spatial analysis pro-

gram, the following formulation and algorithm are suggested:

(a) Use the formulation of Eq. 11.49 for the equations of motion. Use the elements of
Table 11.1 for the entries of the Jacobian matrix and vector y*.

(b) Employ the direct integration algorithm DI-4. Do not be concerned initially with the
constraint violation. After the initial version of the program is developed, an additional
modification for constraint violation can be implemented,

(¢) Employ a well-developed variable step/order predictor-corrector numerical integration
package.

The constraint equations listed in Table 11.1 can be combined to model a variety of com-

monly used kinematic joints. The elements of this table can be easily programmed by em-

ploying elementary vector and matrix operations dealing with 3-vectors and 3 X 3

matrices. Rearrangement of the equations may yield an elementary operation on 3 X 4 ma-

trices (such as' L and G matrices). A careful organization of the program and the use of
these elementary operations can easily yield a spatial dynamic analysis program.

