12

Numerical Methods
for Ordinary

Differential Equations

The dynamic analysis of a mechanical system requires the solution of the equations of
motion. The equations of motion, planar and spatial, are either a set of differential equa-
tions or a set of mixed differential and algebraic equations. In general, the equations of
motion must be solved numerically, although it might be possible to obtain a closed-
form solution to the equations of motion for highly simplified systems.

This chapter provides a brief review of numerical methods for solving ordinary
differential equations. It is assumed that the reader has some background in the area of
numerical methods.

12.1 INITIAL-VALUE PROBLEMS

A first-order differential equation may be written as

y=f0.0) (12.1)
This equation has a family of solutions y(r). The choice of an initial value y° serves to
determine one of the solutions of the family. The initial value y° could be defined for
any value of °, although it is often assumed that a transformation has been made so that
t° = 0. This does not affect the solution or methods used to approximate the solution.
If more than one dependent variable is involved, the problem then is to solve a
system of first-order equations; e.g.,

yl =fl(}’1,}’z,t)
Y2 =AYy, 1)

Given the initial values y{ and y3, if the functions £, and f, are regular; i.e., continuously
differentiable, then there will be a unique solution of the system.

(12.2)

301

302 Numerical Methods for Ordinary Differential Equations Chap. 12

Any nth-order ordinary differential equation that can be written with the highest-
order derivatives on the left-hand side may be written as a system of n first-order equa-
tions by defining n — 1 new variables. For example, the second-order equation

= fy) (12.3)
can be written as the system

=2
V2 = f(y1,¥2,1)

In discussing methods of solving initial-value problems, it is convenient to think
of a single equation in the form of Eq. 12.1, although the same methods can also be
applied to a system of equations. These methods involve a step-by-step process in which
a sequence of discrete points ¢°,¢',7, ... is generated. The discrete points may have
either constant or variable spacing h' = ™' — ¢/, where h' is the step size for any dis-
crete point ¢'. At each point #', the solution y(¢') is approximated by a number y'.

Since no numerical method is capable of finding y(ti) exactly, the quantity

g = |yt =y (12.5)
represents the total error at t = t'. The total etror consists of two components: a trun-
cation error and a round-off error. The truncation error depends on the nature of the
numerical algorithm used in computing y’. The round-off error is due to the finite word
length in a computer. In the rest of the text, when the term numerical error is used, we
mean truncation error unless stated otherwise.

Although there exist many algorithms for solving initial-value problems, most of
them are based on two basic approaches: Taylor series expansion and polynomial
approximation. The objective of Sec. 12.2 and 12.3 is to present general formulas for
some of these methods, without proof. Interested readers may refer to numerous text-
books for the derivation of details and for error analysis for these methods. Unless other-
wise stated, in order to simplify matters, a uniform step size h' = h is assumed in
formulation of the algorithms.

(12.4)

12.2 TAYLOR SERIES ALGORITHMS?

Assume that y(¢) is the exact solution to the initial-value problem

y=fy,t) (12.6)
where

¥’ = (") (12.7)
If y(¢) is expanded in a Taylor series about ¢+ = ¢' and the expansion is evaluated at
t = ¢! it is found that
3(t)

2!

y(™) = y(t) + ll(—t'—)h + h® + higher-order terms (12.8)
Substituting Eq. 12.6 into Eq. 12.8 yields

2

y(t"™*) = y(t)) + hf(y', 1) + g—‘f(yi, t') + higher-order terms (12.9)

Sec. 12.2 Taylor Series Algorithms? 303

The first-order Taylor algorithm, also known as the forward Euler algorithm, is
obtained by eliminating f(y’,¢) and the higher-order terms in Eq. 12.9:

y* =y + By, 1) (12.10)

Truncating Eq. 12.9 of all but the first two terms makes Eq. 12.10 an approximate solu-
tion to the initial-value problem of Eqs. 12.6 and 12.7.

The second-order Taylor algorithm is obtained by truncating Eq. 12.9 of only the
higher-order terms, to obtain

. . o h?.
y*h=yt+ by) + af(yl,t') (12.11)
The term f(y', ') can be expressed as follows:
i O of ;
L) =—y+ — tr =t
fOL 1)) a
9 :
=gf+—f att =1t (12.12)
dy ot

Similarly, higher-order Taylor algorithms may be derived. However, the higher the
order, the more derivative terms of f(y, t) with respect to ¢ must be evaluated. This is a
major drawback of the Taylor algorithms. Consequently, they are seldom used except
for the lower-order algorithms.

12.2.1 Runge-Kutta Algorithms?

The Runge-Kutta algorithms obviate the need for evaluating the partial derivatives and
still retain the same order of accuracy as the Taylor algorithms. A second-order Runge-
Kutta algorithm is stated as
y*' =y'+ hg (12.13)

where

g = (1 - af(y'\e) + af(y" by i) (12.14)

2a 2a

Note that a # 0 is a free parameter. Consequently, an entire family of second-order
Runge-Kutta algorithms can be derived by assigning different values to a. One common
choice is the modified trapezoidal algorithm, in which a = %; then,

i i h i i h i TN
Y=Y SfOLO) + SO RGN,) (12.15)
Another common choice is the modified Euler-Cauchy algorithm, in which a = 1:
i+1 i i h [T i h
Y=yt My S 0.0+ (12.16)

For a larger step size and for greater accuracy, the fourth-order Runge-Kutta
algorithm is most widely used. This algorithm is given by

y* =y + hg (12.17)

304 Numerical Methods for Ordinary Differential Equations Chap. 12

where
g =sfit 26+ 2+ 1)
fi =1

. h . h
f =f<y' F ot 5)

o ik
f3=f(y £ St 2)

fa =f<y" + hfy, b+ h)

Since the algorithm is a fourth-order one, the truncation error will remain relatively
small even for a relatively large step size. The major disadvantage of this algorithm is
that the function f(y, ¢) must be evaluated four times at each time step. In addition, the
values of the function are not used in any subsequent computations. Hence, this
algorithm is not as computationally efficient as some of the multistep algorithms pre-
sented in Secs. 12.3 through 12.3.3.

12.2.2 A Subroutine for a Runge-Kutta Algorithm

The fourth-order Runge-Kutta algorithm in the preceding section is represented here in
the form of a subroutine that can be embedded in a program to solve a set of ordinary
differential equations. This subroutine is written in its simplest form and can be modi-
fied casily.’

Subroutine RUNGK4. The argument parameters in this subroutine are:

H : Time step

NSTEP Number of time steps

N Number of dependent variables (same as the number of differen-
tial equations)

Y An N-vector of dependent variables y

F An N-vector which upon return will contain y = f(y, 1)

F1, F2, F3,

F4, YY N-vectors of working arrays

Subroutine RUNGK4 is as follows:

SUBROUTINE RUNGK4 (T,H,NSTEP,N,Y,F,F1,F2,F3,F4,YY)
DIMENSION Y(N),F(N),F1(N),F2(N),F3(N),F4(N),YY(N)
HH=0.5*H
TS=T
WRITE (1,200)
DO 100 I1=1,NSTEP

WRITE (1,210) T,(Y¥(J),J=1,N)

CALL DIFEQN (T,N,Y,F)

DO 10 J=1,N

"The subroutine RUNG4 in the program DAP of Chap. 10 is a slightly modified version of this subroutine.

Sec. 12.2 Taylor Series Algorithms? 305

10

20

30

40

50
100
200
210

F1(J)=H*F(J)

TT=T+HH

DO 20 J=1,N
YY(J)=Y(J)+0.5*%F1(J)

CALL DIFEQN (TT,N,YY,F)

DO 30 J=1,N
F2(J)=H*F(J)
YY(J)=Y(J)+0.5%F2(7J)

CALL DIFEQN (TT,N,YY,F)

TT=T+H

DO 40 J=1,N
F3(J)=H*F(J)
YY(3)=Y(J)+F3(J)

CALL DIFEQN (TT,N,YY,F)

T=TS+H*FLOAT(I)

DO 50 J=1,N
F4(J)=H*F(J)
Y(I)=Y(I)+(F1(J)+2.0*F2(J)+2.0*F3(J)+F4(J))/6.0

CONTINUE

FORMAT (5X,’ TIME Y')
FORMAT (5X,4F10.6)

RETURN

END

This subroutine is written in a form that will handle one or more first-order differ-
ential equations. It calls subroutine DIFEQN for evaluating y = f(y, 7).

Example 12.1

Write a

computer program, making use of subroutine RUNGK4, to solve y = —y”

with the initial condition y° = 1.

Solution A main program and two subroutines INITL and DIFEQN for this

problem

are:

C**xx*MAIN PROGRAMX* * % % % % ¥

DIMENSION A(80)

Data

N=1

T=0.0

H=0.1

NSTEP=50

Pointers

Ni=1

N2=N1+N

N3=N2+N

N4=N3+N

N5=N4+N

N6=N5+N

N7=N6+N

Initial Conditions
CALL INITL (N,A(N1))
Integration

CALL RUNGK4 (T,H,NSTEP,N,A(N1),A(N2),A(N3),A(N4),A(N5),

+ A(N6) ,A(NT))

STOP
END

SUBROUTINE INITL (N,Y)
DIMENSION Y(N)
Y(1)=1.0

RETURN

END

306 Numerical Methods for Ordinary Differential Equations Chap. 12

SUBRQUTINE DIFEQN (T,N,Y,F)
DIMENSION Y(N),F(N)
F(1)=-Y(1)**2

RETURN

END

Subroutine INITL is used to specify the initial conditions. The result of this nu-
merical computation can be compared against the exact solution y = 1/(1 + #).

Example 12.2
The equations of motion for the spring-mass system shown in the schematic dia-

gram are:
k 3

3

=

miiy = —k(x; — 1) = dig, + kylxy — x; — 1)
myk, = —kyx, = x; = 19) + kyd — x, - 19 - dsx,
Solve these equations numerically for
d =3, P=8=05=1, ky =k, = k; = 100,
m =m, =4, d,=d, =40
and the initial conditions
=10, =0, x=19, =0

Solution The second-order differential equations can be converted to first-order
equations by defining four new variables:

= yz

d k
y, = - + 2 -y, =1
Y2 (}’l 1) — m, Y2 m1(3 N1 2
Y3 = Ya

) k k d
o = —;Zz(ya -y =)+ ;;;(d —y; =19 - ;n—im

In the main program, N is set to N = 4, and the INITL and DIFEQN subroutines
are written as follows:

SUBROUTINE INITL (N,Y)
DIMENSION Y(N)
Y(1)=1.0

Y(2)=0.0

Y(3)=1.9

Y(4)=0.0

RETURN

END

Sec. 12.3 Polynomial Approximation? 307

SUBROUTINE DIFEQN (T,N,Y,F)

DIMENSION Y(N),F(N)

DATA A1/25.0/,A2/10.0/,A3/25.0/,A4/25.0/,A5/10.0/
DATA ELO1/1.0/,EL02/1.0/,EL03/1.0/,D/3.0/

F(1) = Y(2)

F(2) = -A1*(Y(1)-ELO1)-A2*Y(2)+A3*(Y(3)-Y(1)-EL02)
F(3) = Y(4)

F(4) = -A3*(Y(3)-Y(1)-EL02)+A4*(D-Y(3)-EL03)-AS5*Y(4)
RETURN

END

The result of this computation is shown in the accompanying graph for x, and
d — x, plotted versus time.

1.10

1.06 ;
S-S
x o

: i

I S

! 1.00 / ________

0.95 LN I B S D Mt e Bt At N A B D B B N E B B i |

0.0 0.5 1.0 1.5 2.0 2.5
Time (sec)

12.3 POLYNOMIAL APPROXIMATION?

Any algorithm that is capable of calculating the exact value y(:'*') for an initial-value
problem that has an exact solution in the form of a kth-degree polynomial is called a nu-
merical integration formula of order k. Of course, if the exact solution is not a polyno-
mial, a numerical integration formula will generally give only an approximate value y™*’
and not the exact value y(¢"*"). In view of a classical theorem that asserts that any con-
tinuous function can be approximated arbitrarily within any closed interval by a polyno-
mial of sufficiently high degree, it is clear that even if the solution is not a polynomial,
a numerical integration formula of sufficiently high order can, in principle, be used to
calculate y(¢'"') to any desired accuracy. In practice, however, the amount of computa-
tion and round-off error increases with the order of the integration formula and only or-
ders of k < 10 are of practical value.

In contrast to the procedure in the Taylor and Runge-Kutta algorithms, informa-
tion from previous time steps is utilized in most numerical integration formulas to com-
pute y**'. A numerical integration formula is generally of the following form:

308 Numerical Methods for Ordinary Differential Equations Chap. 12

Y=gy +ay T+ ayTt
+ Wb fOL T H bof(y e + e+ B f(yT)] (12.18)
where ag,a,,...,a,,b_1,b, by, ... ,b, are 2p + 3 coefficients that are to be deter-
mined such that, if the exact solution is a polynomial and if the previously calculated
values y',y™', ...,y and f(y', 1), f(y" 1), L f(y'7,177) are assumed to be ex-

act, then Eq. 12.18 gives the exact value of y™!. A numerical integration algorithm with
p = 1 is called a multistep algorithm, in contrast to the Taylor and Runge-Kutta al-
gorithms, which are single-step algorithms.

Note that Eq. 12.18 defines y™*' only implicitly, since the unknown y**'appears on
both sides of the equation. Thus, algorithms with b_, # O are called implicit algorithms.
If b, = 0, the algorithm is an explicit algorithm, since the unknown y™*' does not ap-
pear on the right side of the formula. Taylor and Runge-Kutta algorithms can be clas-
sified as explicit algorithms.

12.3.1 Explicit Multistep Algorithms?®

Explicit multistep algorithms known as Adams-Bashforth algorithms are obtained by setting

p=k—1
a=a,=...=aq_, =0 (12.19)
b_,=0

in Eq. 12.18, where £ is the degree of the polynomial. Table 12.1 shows four formulas
for first- through fourth-order Adams-Bashforth algorithms. Examination of Table 12.1
shows that the kth-order Adams-Bashforth algorithm requires k starting values

i i—1 i—k+1
vy, oy .

TABLE 12.1 Adams-Bashforth Algorithms

Order y*t =

Ist y' -+ B!

2nd v hGS = 2f)

3rd v+ BB - B S

4th RN GRS R VA A
where =104

A=), j =123

12.3.2 Implicit Multistep Algorithms?

Implicit multistep algorithms known as Adams-Moulton algorithms are obtained by
setting
=k -2
P (12.20)
a,=a,=...=a_,=10

in Eq. 12.18, where £ is the degree of the polynomial. Table 12.2 shows four formulas
for first- through fourth-order Adams-Mouton algorithms. Examination of Table 12.2

Sec. 12.3 Polynomial Approximation? 309

TABLE 12.2 Adams-Moulton Algorithms

Order yiH =
Ist y 4 B!
2nd y G+ af)
3rd v+ R+ B)
4th YRG!+ R T R
where fi+l =f(yi+l’ti+l)
fr=fOhe)

[P =G0, j=12

shows that the kth-order Adams-Moulton algorithm requires only £ — 1 starting values
v,y ..., y7*? These formulas, if employed by themselves, are solved iteratively.
In every time step, an initial estimate is given for y'*', and then f(y™*',#'*") is evalu-
ated. These values for y and f substituted in the formula yields an improved value for
y'™"!, and the sequence is repeated until very little change in y*' is observed. The num-

ber of iterations to achieve convergence on y'*' depends on the estimated value of y'*'.

12.3.3 Predictor-Corrector Algorithms

Consider the implicit numerical integration algorithms in Sec. 12.3.2. In these
algorithms, an estimate of y**' is required to start the iteration of the formula. In order
to obtain a relatively good estimate for y'*!, an explicit formula can be used. For exam-
ple, consider the fourth-order Adams-Moulton formula of Table 12.2 and the third-order
Adams-Bashforth formula of Table 12.1. Both formulas require values of f(y,?) at t',
7', and 1. If the third-order explicit formula is employed, a good approximation on
y'"! can be obtained. This step is known as a predictor step. Then, the fourth-order
implicit formula is employed to correct the predicted value of y™*'. This step is known
as a corrector step. Sometimes an algorithm may iterate on the corrector step.

In most predictor-corrector algorithms, if a kth-order implicit formula is used as
the corrector, a k — lIst-order explicit formula is used as the predictor. Although it is
possible to employ lower-order Taylor or Runge-Kutta formulas as predictors, numeri-
cally it is more efficient to stay with Admas-Bashforth formulas for prediction.

12.3.4 Methods for Starting Multistep Algorithms?

In contrast to single-step algorithms, multistep numerical integration algorithms are not
self-starting, since initially only y° and ¢° are given. For example, it suffices to consider
the simpler case in which b_, = 0 in Eq. 12.18 and write out y' explicitly as follows:

y'=apy’ tay '+ ... +ay”?

+ Bbof(y% %) + byf(y™ e+ L b f(y] (12.21)

Equation 12.21 shows that the values y *,y~2, ...,y ” must be given, in addition to y°
and ¢°, in order to compute y'. In general, to compute y'*', the p + 1 preceding values
of y are needed, assuming a uniform step size k. To obtain these values, a single-step
algorithm must be used at least p + 1 times before a multistep algorithm can be ini-

310 Numerical Methods for Ordinary Differential Equations Chap. 12

tiated. Because of its high degree of accuracy, the fourth-order Runge-Kutta algorithm is
frequently used to provide these initiating values.

Efficient and accurate numerical algorithms for solving initial-value problems are
almost always a combination of single-step and multistep algorithms, with the former
used only to obtain the starting values for initiating the latter. Multistep algorithms are
used to compute the remaining points, because they are often computationally more effi-
cient and with them the propagation of both truncation and round-off errors can be more
easily controlled.

12.4 ALGORITHMS FOR STIFF SYSTEMS?

A stiff system is referred to as any initial-value problem in which the complete solution
consists of fast and slow components. Technically, when the eigenvalues are widely
spread, the system is said to be stiff. If a numerical solution is to display the entire tran-
sient response, integration must be performed over a relatively long time interval in
order to cover the slow component(s) of the response. Furthermore, in order to capture
the fast component(s) of the response and keep the numerical error within bounds, the
selected step size must be relatively small. It is clear that carrying integration with small
t'me steps over a long time interval can make the computer time, even for a small prob-
lem, prohibitive or unrealistic. A family of formulas that allow relatively large time
steps and that guarantee stability and bounded numerical error is available. These multi-
step formulas are known as Gear algorithms.
The kth-order Gear algorithm is an implicit formula of the form

Y= agRy + ay(R)y + e g Ry T b (R (12.22)

where the designation a;(k) emphasizes each coefficient’s dependence on the order k.
The k + 1 coefficients ay(k), . . ., a,_,(k), and b_,(k) are to be determined so that
Eq. 12.22 is exact for all polynomial solutions of degree k. Table 12.3 shows four for-
mulas for first- through fourth-order Gear algorithms. Examination of Table 12.3 shows
that the kth-order Gear algorithm requires & starting values y',y'™, ...,y ™",

TABLE 12.3 Gear Algorithms

Order yt =

Ist y + hfit!

2nd A DA

3rd %yi _ %yi—l + _IZTyi—z + %hfiﬂ

4th Byi - Pyl 4 By - Ey o Fa
where fi+1 =f(yi+l,ti+l)

Since the kth-order Gear algorithm is an implicit multistep algorithm, it is neces-
sary to solve an implicit equation in each time step. The kth-ordet formula of Eq. 12.22,
for a system of equations

y = f(y,?)

Problems 311

can be recast into the form
k=1

Yy = hb Gy) = ey =0 (12.23)
j=0
Applying the Newton-Rhapson algorithm to Eq. 12.23 yields

it1 afH-[B it+1 i+ 1 = i—j
Ay*' = (1 - b)) |- hb_ £ — 3 (ay') (12.24)
j=1

where I is an identity matrix. Equation 12.24 is the Newton-Raphson corrector for im-
plementing the Gear algorithm.

12.5 ALGORITHMS FOR VARIABLE ORDER AND STEP SIZE

So far, it has been implicitly assumed that, given an initial-value problem, a numerical
integration algorithm of certain “order” is selected and the order remains fixed during the
entire integration process. Under this assumption, the step size for each time step may
be optimized by choosing the largest possible value of 4 for which the truncation error
remains bounded below the user-specified maximum allowable error, and for which the
algorithm remains numerically stable. For large systems of equations, the amount of
computation does not increase substantially when the order of the algorithm is increased.
Consequently, it often turns out to be more efficient to vary both the order and the step
size during each time step.

From a programming point of view, changing the order requires only selecting a
set of coefficients that define the multistep algorithm of the desired order. Increasing
(decreasing) the order would require an increase (decrease) in the number of coeffi-
cients, with a corresponding increase (decrease) in storage space. In most cases of prac-
tical interest, the order may vary from & = 1 to k = 10. Thus, enough “past” values
must be stored that the highest-order algorithm can be implemented whenever called for.
However, stored “past” values may not be needed if a lower-order algorithm is used. In
any event, the unused values cost very little, since they require only a modest amount of
storage space.

Unlike change of order, which requires little extra programming and computa-
tional effort, changing the step size could entail considerable additional computation
time. Often, the previously stored “past” values corresponding to step size h must be
interpolated to yield a set of transformed “past” values corresponding to the new step
size h.

PROBLEMS

12.1 Solve the following types of problem with subroutine RUNGK4:
(a) A first-order differential equation
(b) A second-order differential equation
(¢) A system of second-order differential equations.

312

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Numerical Methods for Ordinary Differential Equations Chap. 12

Repeat each problem for different values of integration time steps and compare the results.
If the exact solution to the problem is available, compare that against the numerical solu-
tions.

Refer the Table 12.1 and develop subroutines for the following integration algorithms:

(a) The third-order Adams-Bashforth

(b) The fourth-order Adams-Bashforth

Refer to Table 12.2 and develop subroutines for the following integration algorithms:

(a) The third-order Adams-Moulton

(b) The fourth-order Adams-Moulton

Develop a predictor-corrector integration subroutine by employing a third-order Adams-
Bashforth algorithm and a fourth-order Adams-Moulton algorithm.

Compare the subroutines developed in Probs. 12.2 to 12.4 in terms of accuracy and compu-
tational efficiency by following a process similar to that stated in Prob. 12.1.

Refer to the software library of your computer and experiment with the available integration
subroutines.

Find a computer program for a variable step/order predictor-corrector numerical integration
algorithm.

(a) Implement this program on your computer.

(b) Compare this algorithm with the subroutines developed in Probs. 12.2 to 12.4.
Experiment with numerical integration programs based on Gear algorithms.* Compare these
algorithms and those developed in Probs. 12.2 to 12.4.

TAn excellent variable step/order predictor-corrector algorithm can be found in L. F. Shampine, and

M. K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, W.H. Free-
man, San Francisco, 1975.

¥Most scientific software libraries furnish numerical integration packages based on Gear algorithms.

For more detailed discussion on these algorithms, refer to C. W. Gear, Numerical Initial Value Problems in
Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.

