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Spatial Dynamics

A general system of constrained equations of rigid-body spatial motion is formulated in
this chapter on the basis of the principles of dynamics discussed in Chap. 8 and the spa-
tial kinematics formulation from Chaps. 6 and 7. The equations of motion are formu-
lated in terms of Buler parameters. The formulation developed here is identical in nature
to that for planar systems in Chap. 9; the principal difference between the formulations
for spatial and planar dynamics is in their dimensionality.

11.1 VECTOR OF FORCES

The forces and moments acting on a body can be due to such force elements as springs,
dampers, or gravity, among others. The derivation of equations to calculate the forces
(or moments) of these force elements in spatial motion is identical to that shown in Secs.
9.2.1 through 9.2.7 for planar motion. If the resultant force and moment acting on body
i are f; and #;, they must be transformed into the coordinate system in which the equa-
tions of motion are derived. For the translational equations of motion shown in Eq.
8.31, the force f, must be defined in terms of its xyz components; i.e., f;. If the rota-
tional equations of motion given by Eq. 8.32 are used, then the moment 7#; must be de-
fined in terms of its £én¢ components; i.e., n.. However, if Euler parameters are used
and the equations of motion are expressed in terms of these coordinates, then the
moment #; must be transformed to a coordinate system associated with the Euler
parameters.

11.1.1 Conversion of Moments

It is possible to convert the three rotational equations of motion represented by Eq. 8.32
to four rotational equations of motion associated with the Euler parameters (this will be
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seen in Sec. 11.2.1). In this case the moment 7; must be expressed in terms of four com-
ponents denoted by n}*. The objective is to find the transformation between n; (or n;)
and n. Two methods for deriving this transformation are shown here.

The first method is based on the scalar product of two vectors. As long as two
vectors are described in the same coordinate system, their scalar product yields a scalar
quantity independent of the coordinate system in which the vectors are expressed. In Eq.
8.32, n; is expressed in the same coordinate system as ;. When Euler parameters are
used, the moment n;* must be expressed in the same coordinate system as p;. Hence,

pin = o/ (@)
Then, Eq. 6.107 yields

n¥ = 2L/n; (11.1)
If the global components of these vectors are considered, then Eq. a is also equal to
o, and therefore it can be found that

n} = 2G/n, (11.2)
The inverse transformations are

n; = iLn} (11.3)
and

n, =1Gn} (11.4)

The second method considers the virtual displacement of the point of application
of a force on a body. In Fig. 11.1, f; acts on point P; and the moment of the force is

! ~

n; = §/f/. The position of P, is

rP=r + As] (11.5)
The total differential of Eq. 11.5 is
As!
drf = or, + 3Asso) Sp;
op;
= or; + 2G5, &p, + 2s,p; op; (b)
Since the four Euler parameters are subject to the constraint p;p;' = 0, the total

differential of this constraint yields
T
p; — 1
PP )Sp[ ~ 0
op;
or
pidp; =0 (11.6)

Figure 11.1 Applied forces.
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Hence, Eq. b is simplified as follows:
orf = 8r, + 2G;s; dp;
= or, + 2A,L;S; dp;
= dr, + 2A,(=§/L; + s;p;) dp;
= or; — 25,G, dp;

where Egs. 6.49, 6.71, and 6.88 have been employed.
The virtual work done by f; is

8W,‘ = szarf
= f] (8r; — 25,G, p,)
— 751, + 207G, Sp, (1L.7)

This equation shows that the virtual work 8w, is the sum of the virtual work of the force
f, causing a virtual translation 3r; and the virtual work of a moment n* = 2Gn, causing
a virtual rotation 8p,. This result agrees with Eq. 11.2.

11.2 EQUATIONS OF MOTION FOR AN UNCONSTRAINED BODY

The translational equations of motion for an unconstrained body are given by Eq. 8.31 as
Ni; = f; (11.8)

where N, = diag [m, m, m],. The rotational equations of motion for an unconstrained
body given by Eq. 8.32 are converted into three different forms in this section.

Formulation I.  Substitution of Egs. 6.107 and 6.111 into Eq. 8.32 yields

23/ Lip; + 4LLITLip; = nj (11.9)
Premultiplication of this equation by 2L] gives
JFp + 2LLH;p, = nf (11.10)
where
¥ = 4LTJ/L, (11.11)
and
H, = 4L7J/L, (11.12)
Using Eq. 6.46 and defining
g; = 8l"iTLiTJi’Lil.’i
= —8p/LJ/L;b, (11.13)
we can write Eq. 11.10 as
Jip, + op; + 2H,p, = nf (11.14)

This represents the rotational equations of motion in terms of ;. However, since the
four Euler parameters are not independent, Eq. 6.61, i.e,

pip + pip; =0 (11.15)
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must be considered with Eq. 11.14. Equations 11.14 and 11.15 in matrix form are

TN N

Equation 11.16 contains five equations that can be solved for p; and o; if n;, p;, p;, and
J/ are known. This, obviously, gives the same value for o; as given by Eq. 11.13! The
artificial variable o; was defined in such a way as to have an exact inverse to the 5 X 5
matrix at the left in Eq. 11.16. In Eq. 11.14, o can be interpreted as a Lagrange multi-
plier associated with the constraint equation p/p;, — 1 = 0.

Formulation Il. Equation 11.15 can be appended to Eq. 11.9 and written in

matrix form to yield
2J'L LH]| . n’
p, + | ., I P = (11.17)
[ v ]fp [P} [0]

If n/, p,, P:, and J; are known, then Eq. 11.17 can be solved exactly for p;. Note that
the matrix at the left in Eq. 11.17 is a 4 X 4 matrix.

Formulation lll. In the third formulation, the rotational equations of motion
are left in their original form in terms of the angular velocities; i.e.,
Jo + @) o =n; (11.18)
It is clear that @, can be calculated from this equation if n;, @/, and J; are known.
A comparison of these three formulations shows that Eq. 11.16 contains five equa-

tions in terms of p; and o, Eq. 11.17 contains four equations in terms of p;, and
Eq. 11.18 contains three equations in terms of @ .

11.3 EQUATIONS OF MOTION FOR A CONSTRAINED BODY

For a constrained mechanical system containing body i, it is assumed that there are
m independent constraint equations,
O=dq) =0 (11.19)

where q contains the coordinates of all of the bodies in the system, including the coordi-

nates of bOdy i
‘Ii ’
' pi

It was shown in Sec. 8.4.3 that the constraint reaction forces could be described in the
form given by Eq. 8.50 in terms of the Jacobian matrix of the system and a vector of
Lagrange multipliers:

g” = ®A (11.20)

This equation was obtained with the assumption that the vectors of forces g and g were
defined in a coordinate system consistent with q. )

The constrained translational equations of motion for body i can be written, from
Eq. 11.8, as

N, = f, + £
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From Eq. 11.20 it is found that
£ = @A
Therefore, .
N, — @A = f, (11.21)

This represents the translational equations of motion for constrained body i. The rota-
tional equations of motion for this body are derived in three forms corresponding to the
formulations of Sec. 11.2.

Formulation I. The rotational equations of motion from Eq. 11.14 for con-
strained body i are written as
I, + op, + 2Hp, = nf + ni*m
Since n} and n** are described in the same coordinate system as p;, Eq. 11.20 yields
nf = @A
Therefore,
Jip, + op; + 2H;p, — Py A =n (11.22)
Equations 11.22 and 11.15 are the rotational equations of motion for a constrained body.
Formulation Il.  Equation 11.9 is written for a constrained body as
2J/Lip; + LH;p, = n] + 0/
" The transformation of moments is given by Eq. 11.3 as
[ = S
— IL®7A
Therefore,
2J/L;p; + LH;p, — ;L ®;A =n] (11.23)
Equations 11.23 and 11.15 together can be used as the rotational equations of motion for
a constrained body.
Formulation lll.  Equation 11.18 can be written for a constrained body as
Jio] + 3o =nj +n"
or
Jio + @J o —jLP®A=n (11.24)
In this equation the constraint equations, and hence the Jacobian matrix, are expressed

in terms of Euler parameters. However, the joint reaction moments are converted to a set
of coordinates consistent with @; and n;.

11.4 SYSTEM OF SPATIAL EQUATIONS OF MOTION

In the preceding sections, the equations of motion for a single body were derived. Three
formulations for the rotational equations of motion were shown. For a system of 4 bod-
ies, constrained or unconstrained, these equations can be repeated b times in any of the
three forms to find the system equations.
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11.4.1 Unconstrained Bodies

For a system of b unconstrained bodies, three formulations are given.

Spatial Dynamics Chap. 11

Formulation I. Equations 11.8, 11.14, and 11.15, with a slight rearrangement,

are written for all b bodies as

where
N,

M* =

J

- 9 -
2I_Ili)l

| 2H,p,

plTpl

L pips

EERHE]

*

g*

!

(11.25)

(11.26)

(11.27)

(11.28)

(11.29)

(11.30)

(11.31)
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g* =

Formulation Il.
written for all b bodies as

where

oN,

2J L,
M =

0

L
b=

g —

Formulation Il
a set of equations identical to Eq. 8.40:

| LH,p, |

s T
| ¢ 0
0
N,
0
Llﬂlpj

0

6]
D,

!
n,

Mh+b=g
where
N,
1 0
M p-——
0 N,

23;L,

s
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(11.32)

Equations 11.8 and 11.17, with a slight rearrangement, are

(11.33)

(11.34)

(11.35)

(11.36)

Equations 11.8 and 11.18 are written for all b bodies to obtain

(11.37)

(11.38)
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h=| - (11.39)

b = - (11.40)

11.4.2 Constrained Bodies

For a system of b constrained bodies with the m independent constraint equations
Eq. 11.19, three different formulations are obtained. The second-time derivative of the
constraint equations, i.e.,

D4=1v (11.41)

is appended to the equations of motion. The total number of equations becomes equal to
the total number of accelerations and Lagrange multipliers.

Formulation |.  Equations 11.21, 11.22, and 11.15 are written for all b bodies
and then Eq. 11.41 is appended to them to obtain 8 X b + m equations, as follows:

M* P’ B g b* g*
| 0 0 o|l t]c =10 (11.42)
B 0 0 —A 0 y
where
B =®,
= [<D,l,<Dpl,...,<I>,b,(I)pb] (11.43)
and
A=A, Ay,. .0 T (11.44)

Note that the square matrix at the left in Eq. 11.42 is symmetric.

Formulation Il.  Equations 11.21, 11.23, and 11.15 are written for all & bodies
and then Eq. 11.41 is appended to them to obtain 7 X b + m equations, as follows:

M BT . b g
P 0 [ q]+ cl=10] . (11.45)
y

B o |L7* 0
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where
B =[P, @,L],. .. 0, P,L}) (11.46)

ry?2

Note that the square matrix at the left in Eq. 11.45 is nonsymmetric.

Formulation Ill. In the last formulation, the acceleration equation as given by
Eq. 11.41 is written in terms of the angular acceleration of each body, @/, instead of ;.
This conversion is performed first by writing Eq. 11.41 as
-5
P
®,,...,0,,®,1| | =7 (11.47)

P1’ ’ ry?

(P

rp?
¥,
From the identity p, = {L7@! — j’p;, a typical term @, j; in Eq. 11.47 can be writ-
ten as

(I,p,-[")i = ‘I’pi(%Lz'T‘i’; - %w?pi)

L, L] — joib,p,
Hence, Eq. 11.47 is rewritten as

i) ]
o
[@,,i®,L0,... @, 0, L1} - |=7v* (11.48)

K,
| @
where the terms —}w?®, p;, i = 1,...,b, have been moved to the right side of the

equation. A detailed explanation of this new form of the Jacobian matrix is given in the
next section. Appending Eq. 11.48 to Eqs. 11.21 and 11.24 for all b bodies yields

b 61

Note that the square matrix at the left in this equation is symmetric.

11.5 CONVERSION OF KINEMATIC EQUATIONS

Although the Euler parameters are ideal for representing the angular orientation of a
body in space, they yield too many equations when their time derivatives are used
explicitly in the equations of motion, as was shown in Eq. 11.16. Equation 11.18 shows
that only three rotational equations are needed if @/ is used instead of p,. For a con-
strained body, the equations of motion given in Eq. 11.24 contain only three equations
and also take advantage of the Euler parameters (the constraint equations and hence the
Jacobian matrix are described in terms of Euler parameters). This advantage becomes
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apparent when Eqs. 11.42 and 11.49 are compared. Equation 11.49 contains 2 X b
fewer equations than Eq. 11.42.

In Eq. 11.49, the kinematic constraints are kept in terms of Euler parameters, as
follows:

P = d(q)
=®(r,p,...,r,,p) =0 (11.50)
The velocity equations are written as
D =0dyqg
]
P
=[®,,®,,....9,,®,] -
rl)
LD, |
i
o)
= [@,,,%@,,,L{, . ,@,b,gcbprl] =0 (11.51)
r,
o

The modified Jacobian matrix of Eq. 11.51 is the same as that of Eq. 11.48. The modi-
fied Jacobian matrix and the modified vector ¥* can be obtained in explicit forms for
the constraint equations of Chap. 7.

Example 11.1
The modified velocity and acceleration equations and hence the modified Jacobian
matrix and vector ¢ for the constraint equation of Eq. 7.3 are derived here. The
velocity equation is
o = Si% T s
=s/A;8] + sTA;s]
= s;A@/s + sTA,@]s]

0 5;
= —s/A;§/w/ — s/A;§w]
I}
!
. T =t TA &l i —
= [_Sinsi’ '“SiAij][ ,] =0 (N
w;

The entries of the modified transformation matrix could have been found directly
from Table 7.2:

10L7 = 3(25GS/)L]
= —s;G,(—§/L; + s/p))’
= —s/G,L]§/ )
= —sjA§ )
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This result agrees with the coefficient of @, in Eq. 1. The time derivative of Eq. 1
yields

.7
= (n1, 1) _ Y o .
" =[~sA§, —s/A;5]] [w',:l + (A8 — SAS) o]
j

+ (~§/A8 — STAS)w! =0 (3)
The last two terms of Eq. 3 can be simplified to obtain
y* ) = §AS 0 + sTAS 0] + §AF 0] + A5,
— &Te T~ =« T T - =
=§§w; + 5;085w; + 550, + 5,050,
= 288 — S @8 — S| @S
= —2§/§;, + §@;5; + § @8, “
This example illustrates how the modified Jacobian matrix and vector y*
can be calculated. Table 11.1 shows the components of the Jacobian matrix and
vector y* for some of the most common constraints. This table provides sufficient
information to assemble in the form of Eq. 11.49 the complete set of equations of

motion for mechanical systems with the more commonly used constraints. Numer-
ical methods for solving these equations are discussed in Chap. 13.

TABLE 11.1 Components in the Expansion of the Most Common Constraints™

o o joyLy o 1L v*
Qe 0T —-s/5A, 0" —si5;A; —2875; + slans; + slas;
Pz =l —(d + s%75A,; °H —sT§7A, —2d"5; — d'@8, + sl(@57 — @)
oot 0 55A 0 —§§A, 258 + §@:8 — §i@S
o -§; (5.‘5? + ds)HA; §; _gingj —zgid + gi(d’is? - d’jsf) + das;
) 1 —§7A, -1 §7A; -@] + @3]
e —2d" 2d'57A,; 2d" —2d'§A, —2d"d + 2d"(@57 — @,5))

PROBLEMS

. *
(a) Determine the inverse of the coefficient matrix [‘;T p]

11.1 Show that matrix J is singular.
11.2 Express matrix J¥ in terms of J; and G;.
11.3 From the rotational equations of motion given in Eq. 11.6,

0 .
(b) Solve Eq. 11.16 for vector [p’, o]}
(¢c) Show that o-; obtained in part (b) is the same as that shown in Eq. 11.13.

11.4 Solve Eq. 11.17 for j;.
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11.5 The kinetic energy of a body is defined as

T, = 3¥INii, + ;0" 0]
Express the kinetic energy in terms of:
(@) w;and];
(b) p; and J*

11.6 The angular orientation of a body is given as p; = {0.5,0.7, —0.5,0.1]". Point P on this

body has the local coordinates s;” = [1, —1,2]". A force f acts on this body and has local
components f; = [3, -2, — 11”. Find the components of the moment of this force in the fol-
lowing forms:;

(a) n/
(b) n;
(© nf

11.7 Two bodies are connected to each other by a spherical joint as shown in Fig. P.11.7. In

gddition to the gravitational force, two external moments, 7, and 7i,, and one external force,
f1, act on the bodies, where f is parallel to the y axis.

(a) Write the equations of motion for the bodies in terms of angular accelerations.
(b) Show the elements of the vector of forces in terms of the applied loads.

(¢) From the equations of motion, show the components of the reaction forces acting at P
on body i and body j.

z
lGravity

y

X Figure P. 11.7

11.8 Verify the entries of the modified Jacobian matrix and vector v# listed in Table 11.1.



