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A FORTRAN Program
for Analysis

of Planar Dynamics

In this chapter a FORTRAN program for planar dynamic analysis is presented. The pro-
gram employs several subroutines from the kinematic analysis program (KAP) in
Chap. S without any modifications. This program can model constant forces, gravity,
and translational elements consisting of a spring, a damper, and/or an actuator. The pro-
gram is organized in a form that allows it to be expanded to include other types of force
elements. The problems at the end of this chapter provide a pattern to use for expanding
the program.

Numerical methods for solving a system of mixed algebraic and differential equa-
tions, such as the equations of motion given in Sec. 9.4, are discussed in detail in
Chaps. 12 and 13. However, in order to show how the dynamic analysis program (DAP)
listed in this chapter solves the equations of motion, a brief discussion is provided in
Sec. 10.1.

The listed program can solve the equations of motion for the dynamic response of
constrained systems. In addition, this program can solve static problems as formulated
in Secs. 9.5 and 9.6.

10.1 SOLVING THE EQUATIONS OF MOTION

For an unconstrained mechanical system, the equations of motion are given by
Mg = g (10.1)
with initial conditions on the coordinates and velocities given as q° and ¢’. Since M is a

constant diagonal matrix and g can be a function of q and q, Eq. 10.1 can be solved for
the unknowns ¢° at the initial time.
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The numerical integration algorithms that will be discussed in Chap. 12, can inte-

grate the velocity and acceleration vectors at a given time and obtain the position and
velocity vectors at a new time step. If the position and velocity vectors are appended

together as the vector
q
y=1. (10.2)
[q]

then the velocity and acceleration vectors are represented in the vector

. q
= 10.3
y [] (10.3)

At time ¢ = t', vector ¥ can be integrated numerically to obtain y*V, where £ =
'+ Ar;ie.,

y(i) (integrate) y(,'+1) (10.4)
Initially, at i = 0, the initial conditions on q and q are required to start the integration
process.

For a constrained mechanical system, the equations of motion are, from Eq. 9.55,

B{. q(ﬂ [—ﬂ - [i] (10.5)

with initial conditions q° and ¢°. The Jacobian ®, is a function of q, and g and y are
functions of q and ¢ that can be evaluated at the initial time. Hence, Eq. 10.5 can be
solved for the unknowns at the initial time, i.e., ('10 and A%
The initial conditions on q and § for a constrained system cannot be specified
arbitrarily. The initial conditions q° and q° must satisfy the constraint equations; i.c.,
d=0 (forq = q°) (10.6)
and
®q=0 (forq =q’and q = ") (10.7)

For the constrained equations of motion, vectors y and y are as defined in Eqs. 10.2 and
10.3, and a numerical integration algorithm is applied to process Eq. 10.4. This is a
simple but crude method of solving the constrained equations of motion. The possible
error accumulation associated with this method and the techniques for resolving the
problem are discussed in Chap. 13.

10.2 DYNAMIC ANALYSIS PROGRAM (DAP)

The main routine of the dynamic analysis program performs three major tasks:

1. Reads input data, either directly or by making calls to other input subroutines
2. Splits the working arrays A and IA into smaller subarrays by defining pointers

3. Makes calls to subroutine RUNG4 for integrating the equations of motion, or sub-
routine STATIC for static analysis
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A detailed explanation of these tasks follows.
* Input/Output: Same as for KAP, Sec. 5.1.
» Working Arrays: Same as for KAP, Sec. 5.1.

* Number of Elements: The first set of data the program requests is
ENTER NB, NR, NT, NG, NS, NSP, NP

which are defined as follows:

NB Number of bodies in the system, including ground
NR Number of revolute joints in the system
NT Number of translational joints in the system
NG Number of bodies that are attached to (or considered to be) ground
NS Number of simple constraints in the system
NSP Number of translational spring, damper, or actuator elements
NP Number of points of interest

The program computes the number of coordinates N and the total number of con-
straint equations M from the above information. If M is greater than N, then an error
message is given. Otherwise, the program continues.

» Subarrays: The working arrays A and IA are divided into smaller subarrays,
according to the number of elements in the problem. The subarrays and their corre-
sponding pointers and lengths are shown in Fig. 10.1. The function of the subarrays is
explained in Secs. 10.2.1, 10.2.2, and 10.2.4.

¢ Input Data: The main program makes calls to other subroutines to read addi-
tional information for the problem at hand. These subroutines are discussed in Sec. 10.2.1.

« Time Parameters: Same as for KAP, Sec. 5.1.

+ Static Analysis: If N = M, then a call is made to subroutine STATIC. For
static analysis, the time parameters are not used.

* Dynamic Analysis: If N > M, then a call to subroutine RUNG4 is made to
start the integration process for dynamic analysis.

The main routine for DAP is as follows:

Covvinnnnnns DYNAMIC ANALYSIS/STATIC ANALYSIS........
C
Covvieresenarronaeacena Main Program.....coceeeeeeecnns
C

COMVDN /CONST / NRMAX, FEPS,EPSLU
COMVON /MPNTR / M1 ,M2 ,M3 ,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10
COMMON /NELMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP
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COMMVON /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,N15,N16,
+ N17,N18,N19,N20,N21,N22,N23,N24

COMMON /ROWMOOL/ IR, IC,M,N,NPM, NC2

OoMvDN /TIME  / TO,TE,DT,T

DIMENSION A(3000),IA(500)

C..... If more storage space in A and IA arrays are needed increase the
C.....dimension and update MAXA and MAXIA accordingly

MAXA =3000

MAX1A=500
C..... Read number of bodies, revolute joints, translational joints,
C..... grounded bodies, simple constraints, spring-damper-actuators,
C..... points of interest

10 WRITE(1,200)
READ (1,* ) NB,NR,NT,NG,NS,NSP,NP

C.oun Determine number of coordinates N and number of constraint M
N=3*NB
M=2* (NR+NT)+3*NG+NS
NPM=N+M
NC2=N+N
C..... N must be greater to M

IF (M.LE.N) GOTO 20

VRITE(1,210) N.M

GOTO 10 ,
C..... Define pointers and split A and IA into subarrays
C.....Refer to Figure 10.1

20 N1=1

N2=N1+4*NR

N3=N2+7*NT

N4=N3+3*NG

N5=N4+ NS

N6=N5+12*NSP

N7=N6+7*NB

Mi=1

M2=M1+2*NR

M3=M2+2*NT

M4=-M3+6*NG

M5=M4+2*NS

M7=M5+2*NSP

N10=N7+2*NP

N11=N10+N

N12=N11+N

N13=N12+N

N14=N13+M

N15=N14+N*M

N16=N15+M

N17=N16+NPM

N18=N17+N

N19=N18+M :

N20=N19+NPM*NPM

N21=N20+NC2

N22=N21+NC2

N23=N22+NC2

NUSED=N23+NC2-1

M10=M7+NP

MUSED-M10+NPM- 1
C..... Check for sufficient storage space in A and IA arrays

IF(NUSED.LE.MAXA .AND. MUJSED.LE.MAXIA)GOTO 30

WRITE(1,220) NUSED,MUSED

STOP
Co.... ‘Rigid body information :
30 CALL INBODY (A(N10),A(N11),A(N6),NB)
C..... Read revolute joints data

IF (NR.GT.0) CALL INRVLT (A(N1),IA(M1),NR)
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C..... Read translational joints data

IF (NT.GT.0) CALL INTRAN (A(N2),IA(M2),NT,A(N10),NB)
C.....Read ground constraints data

NG3=3*NG

IF (NG.GT.0) CALL INGRND (A(N3),1A(M3),NG,A(N10) ,NG3,NB)
C..... Read simple constraints data

IF (NS.GT.0) CALL INSMPL (A(N4),IA(M4) ,NS,A(N10),NB)
C..... Read spring-damper-actuator elements data

IF (NSP.GT.0) CALL INSPRG (A(N5),IA(MS),NSP)
Covvts Read special points of interest

IF (NP.GT.0) CALL INPOIN (A(N7),IA(M7),NP)
C.ovv Read initial time, final time, and time increments

WRITE(1,230)
READ (1,* ) TO,TE,DT

C..... End of input data
EPSLU=0.00001
C.... Static analysis
IF (M.EQ.N) CALL STATIC (A, IA,MAXA ,MAXIA)
C..... Start dynamic analysis
C.oo.. Transfer Q and QD to YS
CALL TRANSF (A(N22),A(N10),NC2)
C..... Start numerical integration
CALL RUNG4 (A, IA,A(N20),A(N21) ,A(N22) ,A(N23) ,MAXA ,MAXIA)
STOP

200 FORMAT(5X, 'ENTER NB,NR,NT,NG,NS,NSP,NP’)
210 FORMAT(SX,’***INPUT ERROR*** N =’,13,’ M=’ ,13)
220 FORMAT(SX, ' ***DIMENSION ON A AND/OR IA ARRAYS NOT SUFFICIENT***’,
+ /,10X, "MINIMM DIMENSION ON A MUST BE’, IS,
+ /,10X, "MINIMIM DIMENSION ON IA MUST BE’,15)
230 FORMAT(5X,’ENTER TSTART, TEND, AND STEP’)
END

10.2.1 Model Description Subroutines

The following subroutines are called by the main routine of DAP to read the description
of the model.

Subroutine INBODY. This subroutine reads initial conditions on x;, y;, and
¢,, initial velocities ;, y;, and ¢;, mass m;, moment of inertia u;, constant external
applied forces acting at the center of mass f;,, and f,, and moments »,. The prompt
from this subroutine is repeated for each body i as follows:

FOR BODY i ENTER INITIAL COND. ON X, Y, PHI
INITIAL CONDITIONS ON XD, YD, PHID
MASS, MOMENT OF INERTIA
CONSTANT FORCE-MOMENT FX, FY, N

The coordinates and velocities are stored in Q and QD (just as in KAP). The rest of the
information is stored in array RB, dimensioned as RB(NB,7). For example, for body i,

sin ¢, —  RB(,1)
cos ¢, — RB(1,2)
m, — RB(1,3)
o — RB(L,4) )
f(xi — RB(,5)
fi =W — RB(LO)
n; — RB(1,7)
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The weight of each body is computed as w; = 9.81m; (where the mass is in SI units) and
is added in the negative y direction to f;,, (refer to Sec. 9.2.1).
Subroutine INBODY is as follows:

SUBROUTINE INBODY (Q
DIMENSION Q(3,NB),QD
DO 10 I=1,NB

WRITE(1,200) 1
READ (1,* ) (Q(J,1),3=1,3),(QD(J,1),J=1,3),(RB(1,J),J=3,7)
10 RB(I,6)=RB(1,6)-RB(I1,3)*9.81

,QD,RB,NB)
(3,NB),RB(NB, 7)

RETURN
200 FORMAT(5X,’FOR BODY’,I14,’ ENTER INITIAL COND. ON X, Y, PHI’,/,
+ 10X, ' INITIAL CONDITIONS ON XD, YD, PHID’,/,
+ 10X, "MASS, MOMENT OF INERTIA’,/,
+ 10X, 'CONSTANT FORCE-MOMENT FX, FY, N’)
END

Subroutine INRVLT. Same as for KAP, Sec. 5.1.1.
Subroutine INTRAN. Same as for KAP, Sec. 5.1.1.
Subroutine INGRND. Same as for KAP, Sec. 5.1.1.
Subroutine INSMPL. Same as for KAP, Sec. 5.1.1.

Subroutine INSPRG. This subroutine is called if NSP > 0 to read informa-
tion on spring, damper, and actuator elements (refer to Sec. 9.2.3, 9.2.4, and 9.2.5).
An element can have one spring, one damper, and one actuator as long as the attach-
ment points are shared. One possibility is that an element to contain only one spring and
no damper or actuator. The prompt given by this subroutine is

FOR SPRING ELEMENT NO. k ENTER BODY NOS. | and J
X|-P-I, ETA-P-1, XI-P-J, ETA-P-J
SPRING CONST., DAMPING COEF., ACTUATOR FORCE, UNDEFORMED SPRING
LENGTH

This prompt is repeated for k = 1,...,NSP. The body numbers of bodies i and j,
which are by definition those connected by the kth element, are stored in array ISP,
dimensioned as ISP(NSP,2). The local coordinates of points P; and P;, the spring con-
stant k, the damping coefficient d, the actuator force f, and the undeformed spring
length [° are stored for each element in array SP, dimensioned as SP(NSP,12). For the
kth element, the entries of SP are,

¢ — SP(K,1) k — SP(K,5)
n’ — SP(K,2) d — SP(K,6)
g; — SP(X,3) f“ — SP(K,7)
n; — SP(K,4) 1°— SP(K,8)

The last four columns of SP, columns 9 through 12, are not used in this subroutine.
They are used in subroutine SPRNG for storing the deformed length of the spring /, the
time rate of change in length [, the spring force, and the damper force. This informa-
tion will be reported to the user by subroutine REPORT.
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Subroutine INSPRG is as follows:

SUBROUTINE INSPRG (SP,ISP,NSP)
DIMENSION SP(NSP,12),ISP(NSP,2)
DO 10 K=1,NSP
VWRITE(1,200) K
10 READ (1,* ) (I1SP(X,L),L=1,2),(SP(X,L),L=1,8)

RETURN
200 FORMAT(SX,’FOR SPRING EL. NO.’,I3,’ ENTER BODY NOS. I AND J’,/,
+ 10X, 'XI-P-I,ETA-P-1,XI-P-J,ETA,P-J’,/,
+10X, *SPRING CONST., DAMPING CQOEF., ACTUATOR FORCE, SPRING LENGTH’)
END

Subroutine INPOIN. Same as for KAP, Sec. 5.1.1.

10.2.2 Dynamic Analysis

The dynamic analysis program (DAP) performs dynamic analysis by employing the
methodology of Sec. 13.3. The N second-order differential equations of motion are con-
verted into 2 # N first-order differential equations. A fourth-order Runge-Kutta
algorithm is employed to solve the initial-value problem. A discussion on Runge-Kutta
algorithms and other algorithms for solving initial value problems is provided in
Chap. 12.

The Runge-Kutta algorithm uses the four arrays Y, YD, YS, and FTOT, each hav-
ing a dimension of 2 * N. Vector y of Eq. 10.2 is stored in Y. At every time step, a
copy of Y is saved in YS. Vector y of Eq. 10.3 is stored in YD, and FTOT stores the
sum of the functions evaluated by the algorithm.

Following the process of data input, the main program calls subroutine TRANSF
to transfer q and ¢ from Y to YS. Then the main program calls subroutine RUNG4.

Subroutine TRANSF. Same as for KAP, Sec. 5.1.1.

Subroutine RUNG4. Subroutine RUNG4 evaluates y four times in every time
step At. This subroutine calls subroutine DIFEQN to evaluate y. The time variable T is
incremented from TS to TE. At the beginning of every time step, a call is made to sub-
routine REPORT for reporting the resulit.

Subroutine RUNG4 is as follows:

SUBROUTINE RUNG4 (A,IA,Y,YD,YS,FTOT ,MAXA ,MAXIA)

COMVON /MPNTR / M1 ,M2 ,M3 ,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10

COMMON /NEIMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP

COMVDN /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,N15,N16,
+ N17,N18,N19,N20,N21,N22,N23,N24

COMVON /ROMCOOL./ IR, IC,M,N,NPM,NC2

OOMVON /TIME / TO,TE,DT,T

DIMENSION A(MAXA), IA(MAXIA),Y(NC2),YD(NC2),YS(NC2),FTOT(NC2)
T=TO

DTH=0 . 5*DT

TWODT=2 . 0*DT

WRITE (1,200)

DO 10 I=1,NC2
10 Y(1)=YS(I)
CALL DIFEQN (A, IA,MAXA ,MAXIA)
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CALL REPORT (A, IA,A(N5),A(N6),A(N7),A(N10),A(N11),A(N12)

+ 1A(M7),T ,MAXA ,MAXIA)
IF (T.GT.TE) RETURN
DO 11 I=1,NC2
11 FTOT(1)=DT*YD(1)
C..... Step 2......
T=TS+DITH
DO 20 I=1,NC2
20 Y(1)=YS(I)+DTH*YD(I)
CALL DIFEQN (A, IA,MAXA,MAXIA)
DO 21 I=1,NC2
21 FTOT(1)=FTOT (1)+TWODT*YD(I)
C..... Step 3......
-DO 30 I=1,NC2
30 Y(1)=YS(I1)+DTH*YD(I)
CALL DIFEQN (A, IA,MAXA,MAXIA)
DO 31 I=1,NC2
31 FTOT(I)=FTOT(I)+TWODT*YD(I)
C..... Step 4......
T=TS+DT
DO 40 I=1,NC2
40 Y(I)=YS(1)+DT*YD(1)
CALL DIFEQN (A, IA,MAXA ,MAXIA)
DO 41 I=1,NC2
41 FTOT(I)=FTOT(1)+DT*YD(I)
C.....Determine new values for Q and QD
DO 50 I=1,NC2
50 YS(1)=YS(1)+FTOT(1)/6.0

GOTO 1
200 FORMAT(///,10X,’***** DYNAMIC ANALYSIS ***%x> //)

END

s
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Subroutine DIFEQN. This subroutine transfers the contents of Y to the arrays
Q and QD prior to a call to subroutine DYNAM, by calling subroutine TRANSF. This
transfer is necessary because subroutine RUNG4 modifies the contents of Y four times
in every time step. Similarly, after the return from subroutine DYNAM, the contents of

QD and QDD are transferred to YD.
Subroutine DIFEQN is as follows:

SUBROUTINE DIFEQN (A, IA ,MAXA ,MAXIA)
COMMON /MPNTR / M1 ,M2,M3,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10
OOMMON /NEIMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP

COMMON /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,N15,N16,

+ N17,N18,N19,N20,N21,N22,N23,N24
COMVON /ROWCOL/ IR, IC,M,N,NPM,NC2
DIMENSION A(MAXA), JA(MAXIA)
C..... Transfer Y to Q and QD

CALL TRANSF (A(N10),A(N20),NC2)
C..... Determine YD

CALL DYNAM (A, IA,A(N15),A(N18),MAXA ,MAXIA)
C..... Transfer QD and QDD to YD

CALL TRANSF (A(N21),A(N11),NC2)

RETURN

END

Subroutine DYNAM. This subroutine can be considered the central station of
DAP. The input to this subroutine is q and ¢ and the output is §. This subroutine calls
the subroutine FUNCT to evaluate the Jacobian matrix @, and vector y, whereupon

they are stored in arrays FQ and RHS, respectively.
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A call to subroutine FORCE evaluates the vector of forces g which is stored in
array FRC. Vectors g and y are stored in FRC and RHS back to back, forming an
N + M array in a form given by the right-hand side of Eq. 10.5.

A call to subroutine MASS generates the matrix at the left in Eq. 10.5. This
matrix contains the diagonal matrix M, along with the Jacobian matrix ®, and its trans-
pose P

Finally, subroutine LINEAR is called to solve Eq. 10.5 for { and A. The results
are transferred to arrays QDD and EL.

Subroutine DYNAM is as follows:

SUBROUTINE DYNAM (A, IA,F,RHS ,MAXA ,MAXIA)

COMMON /ANALYS/ JACOB, IENCT

COMVON /CONST / NRMAX, FEPS,EPSLU

COMMDON /MPNTR / M1 ,M2,M3,M4,M5,M6 ,M7 ,M8 ,M9 ,M10

COMVDN /NELMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP

COMVDN /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,N15,N16,
+ N17,N18,N19,N20,N21,N22,N23,N24

COMVMDN /ROWCOL/ IR, IC,M,N,NPM,NC2

COMVON /TIME / TO,TE,DT,T

DIMENSION A(MAXA), IA(MAXIA) F(M) ,RHS(M)

C
C.... Calculate sine and cosine of rotational coordinates
CALL TRIG (A(N6),A(N10),NB)
C..... Evaluate right-hand-side of acceleration equations.
JAQOB=1
IFNCT=3
CALL FUNCT (A,IA,MAXA ,MAXIA,A(N10),A(N11),A(N14),A(N15),JACOB)
DO 20 I=1,M
20 RHS(1)=F(1)
C..... Evaluate forces
CALL FORCE (A, IA,MAXA MAXIA,A(N17),N)
C.vvn Evaluate mass matrix, Jacobian, Jacobian transpose
CALL MASS (A(N6),A(N14),A(N19),NB,N,M,NPM)
C..... Solve for accelerations and Lagrange multipliers
CALL LINEAR (A(N19),A(N17),A(N16),IA(M10),NPM,1,EPSLU)
C..... Transfer accs. and Lag. mults. to QDD and EL
CALL TRANSF (A(N12),A(N17),NPM)
RETURN
END

Subroutine TRIG. Same as in KAP, Sec. 5.1.2 except that the dimension of
RB must be changed to RB(NB,7).
Subroutine MASS is as follows:

SUBROUTINE MASS (RB,FQ,EM,NB,N,M,NPM)
DIMENSION RB(NB,7) FQ(M N) , EM(NPM, NPM)
C..... Initialize mass matrix

DO 10 I=1,NPM
DO 10 J=1,NPM
10 BM(1,73)=0.0
C..... Add mass and moment of inertia to diagonal
DO 20 I=1,NB
J=3*(1-1)+1 :
BM(J ,J )= RB(I,3)
BEM(J+1,J+1)= RB(I,3)
20 BM(J+2,J+2)= RB(I,4)

&
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C..... Include Jacobian and Jacobian transpose
DO 30 I=1,M
I1=N+I
DO 30 J=1,N
BM(I1,J )= FQ(I,J)
30 (Y ,11)= FQ(I,JT)
RETURN
END

Subroutines LINEAR and LU. See Sec. 3.3.5.

10.2.3 Function Evaluation

« Subroutine FUNCT: Same as in KAP, Sec. 5.2.3, but the call to subroutine
DRVR is deleted.

« Subroutine RVLT: Same as in KAP, Sec. 5.2.3.
« Subroutine TRAN: Same as in KAP, Sec. 5.2.3.
« Subroutine SMPL: Same as in KAP, Sec. 5.2.3.

Note that in DAP the control flag IFNCT is never set to 1 or 2 (in contrast to the
case for KAP). Therefore, the constraint equations and the right side of the velocity
equations are never evaluated in the three subroutines just named. Only vector 7 is evalu-
ated when IENCT is set to 3 in subroutine DYNAM. Several methods are discussed in
Chap. 13 for controlling the accumulation of numerical errors during the numerical inte-
gration process. If DAP is modified to incorporate such a technique as the constraint
violation stabilization method (refer to Chap. 13), then IENCT = 1 may be used
in order to provide the violation in the constraints for the algorithm.

10.2.4 Force Evaluation

Subroutine FORCE. The vector of forces is evaluated by a call to subroutine
FORCE. All of the external and internal forces and moments acting on the bodies are
stored in array FRC, dimensioned as FRC(3,NB). For example, the forces acting on
body i are stored as follows:

feo, = FRC(L])
fiy; = FRC(2,D)
n; — FRC(3,I)

This subroutine calls subroutines BODYF and SPRNG to evaluate these forces.
Subroutine FORCE is as follows:

SUBROUTINE FORCE (A, IA,MAXA ,MAXIA,FRC,N)
OOWDN /MPNTR / M1,M2,M3,M4 M5 ,M6 ,M7 ,M8 ,M9 ,M10
OOMVDN /NEIMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP
COMVDN /NPNTR / Ni,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,N15,N16,
+ N17,N18,N19,N20,N21,N22,N23,N24
DIMENSION A(MAXA), IA(MAXIA),FRC(N) .
CALL BODYF (A(N6),FRC,NB)
IF (NSP.GT.0) CALL SPRNG (A(N5) ,A(N6) ,A(N10) ,A(N11) ,A(N17),
+ IA(MS) ,NB,NSP)
RETURN '
END
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Subroutine BODYF. This subroutine transfers the constant external forces and
moments, including the gravitational force, from RB to FRC, for all of the bodies.
Subroutine BODYF is as follows:

SUBROUTINE BODYF (RB,FRC,NB)
DIMENSION RB(NB,7),FRC(3,NB)
C..... Add constant forces and weights to FRC
DO 10 I=1,NB
FRC(1,1)= RB(I,5)
FRC(2,1)= RB(I,6)
10 FRC(3,1)= RB(1,7)
RETURN
END

Subroutine SPRNG. This subroutine computes the forces of spring, damper,
and actuator elements between pairs of bodies. For each element, the spring constant k,
damping coefficient d, actuator force f, and undeformed spring length /° are obtained
from array SP. The body numbers connected by each element are found in array ISP.
The element forces are caiculated from the equations of Sec. 9.2.3, 9.2.4, and 9.2.5.
The element forces and moments acting on each body are entered in array FRC.

This subroutine saves the values of I, I, £, and f° for each element in the last
four entries of array SP. This information is reported by subroutine REPORT at each
time step.

Subroutine SPRNG is as follows:

SUBROUTINE SPRNG(SP,RB,Q,QD,FRC,I1SP,NB,NSP)
DIMENSION SP(NSP,12),ISP(NSP,2),RB(NB,7),FRC(3,NB},Q(3,NB),
+ QD(3,NB)
DO 10 X=1,NSP
I1=1SP(X,1)
J=15P(K,2)
XPIMXI=SP(K,1)*RB(I,2)-SP(K,2)*RB(I,1)
YPIMYI=SP(K,1)*RB(I,1)+SP(K,2)*RB(I,2)
XPIMXJI=SP(K,3)*RB(J,2)-SP(K,4)*RB(J,1)
YPIMYJ=SP(K, 3)*RB(J,1)+SP(K,4)*RB(J,2)
C..... Current spring length and change of length
ELX  =Q(1,J)+XPIMKJ-Q(1,I)-XPIMXI
ELY =Q(2,J7)+YPIMYJ-Q(2,1)-YPIMYI
EL = SQRT(ELX**2 +ELY**2)
DELEL =EL-SP(K,8)
IF(ABS(EL) .LT.1.E-10) EL=1.E-10

C..... Unit vector
10).€ =ELX/EL
19)'¢ =ELY/EL
C.o.... Spring velocity

ELXD=QD(1,J)-YPIMYT*QD(3,J)-QD(1, D+YPIMYI*QD(3,1) "
ELYD=QD(2, I )+XPIMXJ *QD(3,J)-QD(2,I)-XPIMKI*QD(3,1)
ELD = (ELX*ELXD + ELY*ELYD)/EL
C..... Element forces
FS=SP(K,5)*DELEL
FD=SP(K, 6)*ELD
FF=FS+FD+SP(K,7)
FX= UX*FF
FY= UY*FF
C..... Save element length, vel., spr. force, damp. force for output
SP(K, 9)=EL
SP(K,10)=ELD
SP(K, 11)=FS
SP(K, 12)=FD
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C.oovn Add forces to the vector of forces
FRC(1,1)=FRC(1,I)+FX
FRC(2,1)=FRC(2,1)+FY
FRC(3,1)=FRC(3,1)-YPIMYI*FX+XPIMXI*FY
FRC(1,J)=FRC(1,J)-FX
FRC(2,J)=FRC(2,J)-FY

10 FRC(3,J)=FRC(3, J )+YPIMYJ *FX-XPJMXJ*FY
RETURN
END

10.2.5 Reporting

For reporting the result of the dynamic analysis at the beginning of each time step, sub-
routine RUNG#4 calls subroutine REPORT.

Subroutine REPORT. This subroutine is similar to subroutine REPORT in
KAP. It reports the coordinates, velocities, and accelerations of the bodies and points of
interest. In addition, if there are any spring, damper, or actuator elements in the system,
the contents of the last four columns of the SP array are reported. This subroutine calls
subroutine REACT to calculate and report the reaction forces at the kinematic joints.

Subroutine REPORT is as follows:

SUBROUTINE REPORT (A, IA,SP,RB,PI,Q,QD,QDD, IPI,T ,MAXA ,MAXIA)
COMMON /NELMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP
COMMON /ROMOOL/ IR, IC,M,N,NPM,NC2
DIMENSION SP(NSP,12),Q(3,NB) ,OD(3,NB) ,QDD(3,NB) ,PI(NP,2),
IPI(NP),RB(NB, 7) A(MAXA) TA(MAXIA)
WRITE(I 200) T
DO 10 I=1,NB
10 WRITE(1,210)1, Q(1,1),1=1,3),(QD(J,1),3=1,3),(QDD(J,1),J1=1,3)
IF (NP. EQ 0) GO TO 30
WRITE(1,220)
DO 20 K~=1,NP
1=1PI(K)
XPMX=PI(K,1)*RB(I,2)-PI(K,2)*RB(I,1)
YPMY=PI (K, 1)*RB(1,1)+PI(K,2)*RB(I,2)
Xp =Q(1, 1)+XPMX
YP =Q(2,I1)+YPMY
XDP =QD(1 I)-YPMY*QD(3,1)
YDP =QD(2, I)+XPMX*QD(3,1)
XDDP=QDD(1 1) XPMX*QD(S 1)**2-YPMY*QDD(3,1)
=<8 DD(2, 1) -YPMY*QD( 3, I)**2+XPMX*QDD(3,1)
20  WRITE(1,260) K,XP,YP,XDP,YDP,XDDP, YDDP
30 IF(NSP.EQ.0) GO TO 50
VRITE(1,240)
DO 40 K=1,NSP
40 WRITE(1,250)K,SP(K,9),SP(K,10),SP(K,11),SP(K,12)
50 IF (M.GT.0) CALL REACT(A, IAMAXAMAXI A)
RETURN
200 FORMAT(/,* TIME =’,F10.4,/," ~-r---cmmem-om-- ./,
+ * BODY’,5X,’X’,7X,’'Y’,5X,’PHI’ ,6X, XD’ 6X ‘YD’ , 4X, *PHID’ , 6X,
+ *XDD’ , 6X, 'YDD’ ,4X, 'PHIDD’)
210 FORMAT(I3,6F8.3,3F9.3)
220 FORMAT( POINTS OF INTEREST’,/,’ NO.’,6X,’X’,7X,’Y’,6X,
XD’ , 6X, *YD’ , 6X, *XDD’ , 6X, "YDD' )
240 FORMAT( TRANSTATIONAL SPRING-DAMPER-ACTUATOR'® ,
+ NO. LENGTH d(EL)/dt’,6X,’f(s)’,6X, f(d) )
250 FORMAT(I3,4F10 3)
260 FORMAT(I3,4F8.3,2F9.3)
END :
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Subroutines REACT and RFORCE. Subroutine REACT calls subroutine
RFORCE for computing the product ® ;A . This product is computed separately for each
kinematic joint. Some of the variables in the argument list of subroutine RFORCE are
dependent on the type of joint. For example, for a revolute joint, NEQ, which represents
the number of equations, is set to 2, and NBJ, which represents the number of bodies
associated with the joint, is also set to 2.

Subroutine RFORCE reports the reaction forces acting on each body that are due
to that body’s kinematic joints. A reaction force is reported in terms of its x and y com-
ponents and its moment with respect to the centroid of the body. The reported reaction
forces are labeled with REV. for a revolute joint, TRA. for a translational joint, and
SMP. for a simple constraint.

Subroutines REACT and RFORCE are as follows:

SUBROUTINE REACT(A, IA,MAXA ,MAXIA)

COMMON /MPNTR / M1,M2,M3,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10

COMVDN /NELMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP

COMMON /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,
+ N15,N16,N17,N18,N19,N20,N21,N22,N23,N24
DIMENSION A(MAXA), IA(MAXIA)

JR=0

WRITE(1,200)

IF(NR.GT.0) CALL RFORCE(A(N13),A(N14),IA(M1),NR,2,2,JR, ’REV.")
IF(NT.GT.0) CALL RFORCE(A(N13),A(N14),1A(M2),NT,2,2,JR, ’TRA.")
JR=JR+NG3

IF(NS.GT.0) CALL RFORCE(A(N13),A(N14),IA(M4),NS,1,1,JR,’SMP.’)
RETURN

200 FORMAT(’® REACTION FORCES’,/,2X,’'JOINT NO. I ’,5X,’FX-1’,6X,
+ 'FY-1°,7X,°N-1",3X,’] *,5X, FX-J’,6X, FY-J’,7X,’N-J")
END

SUBROUTINE RFORCE(EL,FQ,1J,NJ,NEQ,NBJ,JR,NAME)
COMMON /ROWCOL/ IR, IC,M,N,NPM,NC2
CHARACTER*4 NAME
DIMENSION FQ(M,N),EL(M),1J(NJ,NBJ),F(3,2)
DO 20 K=1,NJ
DO 10 L-=1,NBJ
I =1J(X,L)
IC=(1-1)*3
DO 10 J=1,3
F(J,L)=0.0
DO 10 Mvi=1,NEQ
10 F(J,L)=F(J,L)-FQ(IR+MM, IC+J ) *EL(JR+MM)
WRITE(1,200) NAME,K,(1J(X,L),(F(J,L),J=1,3),L=1,NBJ)
20 JR=IR+NEQ

RETURN
200 FORMAT(2X,A4,13,14,3F10.3,14,3F10.3)
END

10.2.6 Static Analysis

When the number of constraint equations is equal to the number of coordinates, the
main program calls subroutine STATIC to perform static analysis. This subroutine calls
subroutine FUNCT to evaluate the Jacobian matrix ®,, calls subroutine FORCE to evalu-
ate the vector of forces g, and then calls subroutine JACTRN to transpose the Jacobian
matrix. A call to subroutine LINEAR solves for the Lagrange multipliers according
to Eq. 9.57. The constraint reaction forces are then reported by a call to subroutine
REPORTS.
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Subroutines STATIC, JACTRN, and REPORTS are as follows:

SUBROUTINE STATIC (A, IA,MAXA,MAXIA)

COMMON /ANALYS/ JACOB, IFNCT

COMMON /CONST / NRMAX, FEPS,EPSLU

COMMON /MPNTR / M1 ,M2,M3 ,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10

COMMON /NELMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP

COMMON /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N13,N14,N15,N16,
+ N17,N18,N19,N20,N21,N22,N23,N24

COMVDN /ROMOL/ IR, IC,M,N,NPM,NC2

DIMENSION A(MAXA), IA(MAXIA)

C..... Calculate sine and cosine of rotational coordinates
CALL TRIG (A(N6),A(N10),NB)

C..... Evaluate Jacobian matrix
JACOB=1
IFNCT=0

CALL FUNCT (A, IA,MAXA ,MAXIA,A(N10),A(N11),A(N14),A(N15),JACOB)
C..... Evaluate forces
CALL FORCE (A, IA,MAXA ,MAXIA,A(N17),N)

C..... Jacobian transpose

CALL JACTRN(A(N14),A(N19) ,M)
C..... Solve for Lagrange multipliers

CALL LINEAR %A(N19) ,A(N17) ,A(N16),IA(M10) ,M, 1,EPSLU)
C.....Transfer Lagrange multipliers to EL

CALL TRANSF (A(N13),A(N17),M)
C.....Output the result

CALL REPORTS (A,IA,A(N10),MAXA,MAXIA)

STOP

END

SUBROUTINE JACTRN (FQ,CM,M)
DIMENSION FQ(M,M) ,OM(M,M)
DO 10 I=1,M
DO 10 J=1,M
10 aM(1,3)=FQ(J, 1)
RETURN
END

SUBROUTINE REPORTS (A, IA,Q,MAXA ,MAXIA)
COMMON /NELMNT/ NB,NR,NT,NG,NG3,NS,NSP,NP
COMVDN /ROWCOL/ IR, IC,M,N,NPM, NC2
DIMENSION Q(3,NB),A(MAXA), IAGMAXIA)
WRITE (1,200)
DO 10 I=1,NB

10 WRITE(1,210)1,(Q(J,1),J=1,3)
CALL REACT(A, IA,MAXA ,MAXIA)

RETURN

210 FORMAT(I13,3F8.3)

200 FORMAT(///,10X,*****x STATIC ANALYSIS ****x* //
+ * BODY’,5X,°’X’,7X,’Y’,5X,’PHI’)
END

10.2.7 Input Prompts

A list of all the prompts given by the program DAP is given here. The prompts are la-
beled for easy reference, from @ through . In the examples that follow, each
prompt is referred to by its corresponding label. The parameter k in the prompts is
problem-dependent.
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The prompts given are as follows:

@ ENTER NB, NR, NT, NG, NS, NSP, NP

@ FOR BODY k ENTER INITIAL COND. ON X, Y, PHI
INITIAL CONDITIONS ON XD, YD, PHID
MASS, MOMENT OF INERTIA
CONSTANT FORCE-MOMENT FX, FY, N

@ FOR REV. JOINT NO. k ENTER BODY NOS. | AND J
XI-P-l, ETA-P-1, XI-P-J, ETA-P-J

@ FOR TRAN. JOINT NO. k ENTER BODY NOS. | AND J
XI-P-l, ETA-P-I, XI-Q-l, ETA-Q-l, XI-P-J, ETA-P-J

@ ENTER BODY NO. FOR NO. k GROUNDED BODY

@ FOR SIMPLE CONSTRAINT NO. k ENTER BODY NO.
AND 1, 2, OR 3 FOR X, Y, OR PHI CONSTRAINT DIRECTION

@ FOR SPRING EL. NO. k ENTER BODY NOS. | AND J
XI-P-1, ETA-P-I, XI-P-J, ETA-P-J
SPRING CONST., DAMPING COEF., ACTUATOR FORCE, UNDEFORMED
SPRING LENGTH ‘

@ FOR POINT OF INTEREST NO. k ENTER BODY NO.
XI-P AND ETA-P COORDINATES

@ ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT

10.3 SIMPLE EXAMPLES

In Secs. 10.3.1 through 10.3.3 several simple examples are presented. The steps needed
to set up a model for each mechanical system are explained. Input data for the dynamic
analysis program (DAP) are listed for each example. Similar steps can be followed to
analyze many other mechanical systems by means of this program.

10.3.1 Four-Bar Linkage

The four-bar linkage of Sec. 5.2.1 is considered here. The mechanism is released from
an initial position, where all of the initial velocities are zero, and falls under its own
weight. The mass and moment of inertia for the moving bodies are:

m, =1, my = 2.25, my =2

®, = 0.3, Uy =2, w, = 1.35
For body 1, the nonmoving body, any arbitrary value can be assigned for the mass and
moment of inertia.

When DAP is executed, the following sequence of prompts is given by the pro-
gram; each prompt must be followed by input from the user to describe the model:
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o
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3
ke
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Input

4,4,0,1,0,0,1
0,000000,0000

.5, .866, 1.047,0,0,0,1,.3,0,0,0
2.824, 2.553, 423, 0,0, 0, 2.25,2,0,0, 0
3.574, 1.687, 1.004, 0,0, 0, 2, 1.35,0,0, 0
1,2,0,-1,0

2,310 -20

3,4,2,020

4,1,-2,0,25,0

1

3,05,15

0.0, 0.25, 0.025

- e DN W N =S RN WN =
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The initial conditions for the coordinates satisfy the constraint equations as stated by Eq.
10.6. This is assured, since these coordinates are taken from the output of KAP at¢ = 0
for the same linkage, as given in Sec. 5.2.1. The initial conditions for the velocities do
not violate the velocity equations, since ¢ = 0 automatically satisfies Eq. 10.7.

The output of DAP for the first time step is as follows:

*x%xx DYNAMIC ANALYSIS *¥*xx

TIME = 0000

BODY X Y PHI XD YD PHID XDD YDD PHIDD
1 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .500 .866 1.047 .000 .000 .000 2.544 -1.470 -2.938
3 2.824 2.553 .423 .000 .000 .000 5.183 -3.149 -.115
4 3.574 1.687 1.004 .000 .000 .000 2.639 -1.679 -1.564
POINTS OF INTEREST :
NO. X Y XD YD XDD YDD
1 2.664 4.126 .000 .000 5.364 -3.131

REACTION FORCES
JOINT NO. I EX-1 FY-1 N-1I J FX-J FY-J N-J
REV. 1 1 -7.242 -15.387 .000 2 7.242 15.387 -1.425
REV. 2 2 -4.698 -7.046 .543 3 4.698 7.046 -8.994
REV. 3 3 6.964 7.941 8.764 4 -6.964 -7.941 3.223
REV. 4 4 12.242 24.202 -5.334 1 -12.242 -24.202 -60.504

The output gives the coordinates, velocity, and acceleration of each body’s centroid and
of each point of interest. The reaction forces corresponding to each joint are also
printed; these are shown in Fig. 10.2.

10.3.2 Horizontal Platform

The horizontal platform shown in Fig. 10.3(a) is connected to ground by four slender
legs through eight revolute joints. The mass and moment of inertia of the platform
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Figure 10.2 Reaction forces acting on each body at t = 0.
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Figure 10.3 (a) A horizontal platform and (b) its corresponding planar model.
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(about the {-axis out of the plane of motion) are 1.5 and 0.2, respectively. The mass and
moment of inertia of each leg are 0.3 and 0.05, respectively. There are two parallel
spring-damper elements in the system, as shown. For each element, k = 350, I°=0.6,
and d = 25. When the angle of each leg with the horizontal is & = 110°, the platform is
released with an upward velocity of y = 0.12.
A planar model for this system is shown in Fig. 10.3(b). In this model, the masses
and moments of inertia are:
m, = m, = 0.6, my; = 1.5
Mo = py = 0.1, py = 0.2
For the spring-damper element:
k = 700, 1°=0.6, d =50
Since the initial conditions for q and ¢ are not available, a simulation on' KAP for
t = 0 can be performed initially. In this simulation the known initial conditions are the
vertical coordinate and velocity of the platform. From o = 110°, it is found that
y; = 0.46895, and it is given that y, = 0.12. Therefore, a driver constraint can be
specified on y,;. The input to KAP is

Prompt (KAP) k Input
4,4,0,1,01,0
0,00
-0.35, 0.2, 0.3
-0.1, 0.46895, 0
0.15, 0.2, 0.3

1,2, -0.25,0, 0, —0.25
2, 3,0 025 -0250
3,4,0.25,0,0,0.25
4,1,0,-0.25,0.25, 0

1

3, 2,0.46895, 0.12, 0
0.0, 0.0, 0.1

= e DW= W N -

OOEEEEEEEEO®®

The output from the kinematic analysis at 1 = 0 is

*xxxx  KINEMATIC ANALYSIS  ***x*

TIME = 0000
BODY X Y PHI XD YD PHID XDD YDD PHIDD
1 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 -.335 .235 .349 .165 .060 -.702 .360 .000 -1.353
3 -.171 .470 .000 .330 .120 .000 .720 .000 .000
4 .165 .235 .349 .165 .060 -.702 .360 .000 -1.353
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The initial conditions for q and ¢ are taken from this output to generate the input to DAP:

Prompt (DAP) k Input

4,4,0,1,0,1,0

0,0,0000000,00

—.335, .235, .349, .165, .060, —.702, .6,.1,0,0, 0
-.171, .46895, .000, .330, .120, .000, 1.5, .2,0, 0,0
.165, .235, .349, .165, .060, —-.702, .6, .1, 0,0, 0
1,2, -.25,0,0, —.26

2,3,0,.25,-.25,0

3,4,.25,0,0,.256

4,1,0, —-.25,.25,0

1

1,3,0.25, 0, —0.25, 0, 700, 50, 0, 0.6

0, 3, 0.01

- 2 DN W N = A WN -
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The result of this simulation for + = 0 and ¢+ = 3 s is as follows:

* kK%K

*¥*%x* DYNAMIC ANALYSIS

TIME = 0000
BODY X Y PHI XD YD PHID XDD YDD PHIDD
1 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 -.335 .235 .349 .165 .060 -.702 13.630 4.829 -57.838
3 -.171 470 .000 .330 .120 .000 27.260 9.658 .000
4 .165 .235 .349 .165 .060 -.702 13.630 4.829 -57.838
TRANSLATIONAL SPRING-DAMPER-ACTUATOR
NO. LENGTH £f(s) £(d)
1 .819 -.201 153.462 -10.072
REACTION FORCES
JOINT NO. I FX-1 FY-1I N-1I J FX-J FY-J N-7J
REV. 1 1 45.067 -105.648 26.412 2 -45.067 105.648 -1.556
REV. 2 2 53.245 -96.865 -4.228 3 -53.245 96.865 -24.216
REV. 3 3 -23.310 14.601 3.650 4 23.310 -14.601 -4.228
REV. 4 4 -15.132 23.384 -1.556 1 15.132 -23.384 -5.846
TIME = 3.0000
BODY X Y PHI XD YD PHID XDD YDD PHIDD
1 000 .000 .000 .000 .000 .000 .000 .000 .000
2 -.173 .238 -.311 .000 .000 .000 .000 .000 .000
3 .183 .476 .000 .000 .000 .000 .000 .000 .000
4 .327 .238 -.311 .000 .000 .000 .000 .000 .000
TRANSLATIONAL SPRING-DAMPER-ACTUATOR
NO. LENGTH f(s) £(d)
1 .589 .000 -7.805 .000
REACTION FORCES
JOINT NO. I FX-1 FY-1 N-1 J FX-J FY-J N-J
REV. 1 1 -1.283 -6.933 1.733 2 1.283 6.933 -.225
REV. 2 2 -1.283 -1.047 .225 3 1.283 1.047 -.262
REV. 3 3 3.311 7.358 1.839 4 -3.311 -7.358 .225
REV. 4 4 3.311 13.244 -.225 1 -3.311 -13.244 -3.311
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Att = 3 s, all of the velocities and accelerations are zero. This indicates that the system
reaches the state of static equilibrium within 3 seconds as a result of the presence of
dampers in the system. Figure 10.4 shows the plots of y,, ¥, spring force, and damper
force as a function of time.
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Figure 10.4 The dynamic response for the horizontal platform. (a) Plots of y displace-
ment and velocity of the platform, and (b) spring and damper forces versus time.

10.3.3 Dump Truck

A hydraulic actuator controls the unloading process of a dump truck. For the configura-
tion shown in Fig. 10.5 (6 = 0.38 rad), find the force that the actuator must apply be-

AL=16

BL=02

FH=HK

Figure 10.5 A dump truck in unloading configuration.

AC=EF=GH=04

CD=DE=13
CK=BE =2
=08
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tween points A and D in order to keep the system in equilibrium. Masses and moments
of inertia for the bodies are:

Mgs = mye = 0.4, Meg = mpp = 2, Myee = 100

Mgr = Mac = 0.005, Mex = Mpr = 0.7, Mo = 27
Assume that the center of mass of each body is at its geometric center, and that the cen-
ter of mass of the load is at G.

First, as shown in Fig. 10.6(a), a model is set up for KAP to determine the correct
initial conditions on the coordinates. This model is executed on KAP for ¢+ = 0, with the
known value of ¢,, which is found from the specified 6. Since the system is not in mo-
tion, a constraint on ¢, can be stated in the form of either a simple constraint or a driver
constraint. The input to KAP is as follows:

Prompt (KAP) k Input

@ 6,7,0,1,1,0,1

) 1 0,0,0

(b) {c)

Figure 10.6 A model for the dump truck for (a) kinematic analysis, (b) static analysis,
and (c) dynamic analysis.
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-.2,.08, —0.38
.6, .3, 0.15

.6, .4, 0.2

-.15, .6, 0.25

.9, .95, —0.15
1,2,0,0,.2,0
1,4,16,.2,1,0
2,3-.20-10
3,4,30 30
3,6,1,0 8 —4
4,5,-1,0,-.2,0
56, .2,0,—-.8 -4
1

2,3, —.38

3,30

0,0, 0.1

In this model, there are six bodies (one grounded), and seven revolute joints, and point
D is given as a special point of interest on body 3 (or body 4). The output from this simu-

lation is:

¥kxxx  KINEMATIC ANALYSIS

TIME = 0000
'BODY X Y PHI XD
1 .000 .000 .000 .000
2 -.186 .074 -.380 .000
3 618 .296 .148 .000
4 .620 .401 -.202 .000
5 -.166 .652 .256 .000
6 .882 .968 -.163 . 000

POINTS OF INTEREST

NO. X Y XD YD
1 .914 .341 .000 .000

KK KKK

YD
.000
.000
.000
.000
.000
.000

XDD

.000

PHID XDD YDD PHIDD
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000
.000 .000 .000 .000

YDD

.000

According to Sec. 9.6, in order to determine the force required by the actuator for
keéping the system in equilibrium, the actuator may be replaced by a revolute-revolute
joint. The reaction forces exerted at A and D on this revolute-revolute joint give the re-
quired actuator force. However, since the formulation for the revolute-revolute joint is
not included in the present version of DAP, the actuator can be replaced with a fictitious
body and two revolute joints, one at A and one at D. This model is shown in Fig. 10.6(b),

and the input to DAP is as follows:

Prompt (DAP)

@
®

k

1

Input

7,9,0,1,0,0,0
0,0,000000000
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-.1857, .0742, —0.380, 0, 0, 0, .4, .005, 0, 0, 0
6175, .2962, 0.148,0,0,0,2,.7,0,0,0
.6204, .4008, —0.202,0,0,0,2,.7,0,0,0
—.1658, .6522, 0.256, 0, 0, O, .4, .005, 0, 0, 0
.8818, .9682, -0.163, 0, 0, 0, 100, 27., 0,0, 0
.4571, .1703, 0.357, 0, 0, 0, .001, .001, 0,0, O
1,200,.2,0

1,4,16,.2,1,0
2,3 -.20-10
3,430 30

3,6,1,0,.8 —.4
4,5,-1,0,-.2,0
5,6,.2,0,—.8 —.4
1,7,0,0, —.4878, 0
3,7,.3,0,.4878, 0
1

0,0,0.1

In this model, there are seven bodies and nine revolute joints. The coordinates of point
D from the first simulation, with the known coordinates of A, are used to calculate the
correct coordinates of body 7. Since this is a 0-degree of freedom system, DAP per-
forms static analysis and the output is as follows:

* KKK K

BODY X Y

1 .000 .000

2 -.186 .074 -
3 .618 .296

4 .620 .401 -
5 -.166 .652

6 .882 .968 -
7 .457 .170
REACTION FORCES

JOINT NO. I FX-1
REV. 1 1 -835.818
REV. 2 1 4505.031
REV. 3 2 -835.817
REV. 4 3 -5565.859
REV. 5§ 3 1060.831
REV. 6 4 -1060.831
REV. 7 5 -1060.831
REV. 8 1 -3669.213
REV. 9 3 3669.213

PHI

.000
.380
.148
.202
.256
.163
.357

STATIC ANALYSIS

FY-1

331.
.582
.798

8
335

-307.
.297
.627
-27S.
.553
.544

-705
-279

-1368
1368

874

829

703

XK K KX

N-I J FX-J FY-J N-J

.000 2 835.818 -331.874 .365
-887.275 4 -4505.031 -8.582 -912.248
-.364 3 835.817 -335.798 455.3717
154.884 4 5565.859 307.829 425.473
-854.017 6 -1060.831 705.297 -45.452
486.775 5 1060.831 279.627 -.380
.380 6 1060.831 275.703 45.452
.000 7 3669.213 1368.553 -.002
243.756 7 -3669.213 -1368.544 .002

This output yields the reaction forces acting at A and D on the fictitious body 7. These
force components indicate a compressive force on body 7, having a magnitude

f = (3.669.2% + 1368.5%)"* = 3916

If body 7 is replaced by an actuator, the force of the actuator must be £ = —3916 to
keep the system in equilibrium. The negative sign is assigned to the actuator force, ac-
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cording to the sign convention of Sec. 9.2.3. Note that the force that the actuator must
apply on the system is in the direction opposite that of the force that the system applies
on the actuator (or the fictitious body 7).

For dynamic analysis, another model can be set up by replacing the fictitious body
with an actuator, as shown in Fig. 10.6(c). If the force of the actuator is specified as f =
—3916, then the system remains in equilibrium. For simulating the unloading process,
the actuator force is increased slightly to —3955 and the input to DAP is as follows:

Prompt (DAP) k Input

6,7,0,1,0,1,0

0,0,000000000

-.1857, .0742, —0.380, 0, 0, 0, .4, .005, 0,0, 0
.6175, .2962, 0.148, 0, 0,0, 2,.7,0,0,0
.6204, .4008, —-0.202,0,0,0,2,.7,0,0,0
-.1658, .6522, 0.256, 0, 0, O, , .4, .005, 0,0, O
.8818, .9682, —0.163, 0, 0, 0, 100, 27,0, 0, O
1,2,0,0 .20

1,4,16,.2,1,0

2,3-20-10

3,430 .30

3,610 .8 —4

4,5, -1,0,-.2,0

56.2,0 -8 -4

1

1,4,0,0,.3 0,0, 500, —3955., 0

0, 1.5, 0.05

CO®EREEEOEE®E®E®E®

The result of this simulation is shown in Fig. 10.7 for several intermediate stages.
In the dynamic simulation of this system, or other systems, a problem may arise.
" In certain kinematic configurations, the Jacobian matrix ®, may lose rank—one or
more of the constraint equations may become redundant. In this case, the matrix at the
left in Eq. 10.5 becomes singular. Therefore, the present version of subroutine LINEAR
cannot solve Eq. 10.5 for the accelerations and Lagrange multipliers. For the dump
truck model, this situation occurs when the linkage system is completely stretched open
or when it is folded. In these two cases, some of the bodies align in a way that causes
kinematic redundancy in the constraint equations.

10.4 TIME STEP SELECTION

One of the most crucial problems in using a constant-step numerical integration al-
gorithm, such as the Runge-Kutta algorithm, is the selection of a proper step size. A
large step size may cause erroneous results. A step size too small may yield accurate re-
sults while increasing the computation time unreasonably. Therefore, it is important to
choose a reasonably small step size to obtain accurate results without unnecessarily in-
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Figure 10.7 Unloading process of the dump truck.

creasing the computation time. A thorough discussion on the subject of time-step selec-
tion is outside the scope of this book. The interested reader may refer to other textbooks
on the subject of numerical solution of differential equations. In this section only two
highly simple examples are presented to familiarize the reader with this important point.
Since these examples deal with vibratory motion, which has not been covered in this
book, the reader may refer to any textbook on the subject of mechanical vibration for
more detail.

The simplest form of vibratory motion is a simple harmonic motion which is de-
scribed by the differential equation

j+py =0 (10.8)

where p is a real number. The frequency of oscillation of this single degree-of-freedom
system is

p
= 10.
! 27 (10.9)
The period of the oscillation is
2
r=" (10.10)
p

If Eq. 10.8 is solved numerically, the step size A must be much smaller than the period 7.

As an example, consider the one-dimensional motion of the mass-spring system
shown in Fig. 10.8(a). The only external force acting on the system is gravity. The
equation of motion for this system, in the y direction, is given'by

m§ = —mg = Ky = I’
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]

A
>

X » Time

(a) (b)

Figure 10.8 (a) A one-dimensional vibrating mass-spring system, and (b) a full cycle
of the response denoted by 7.

or
k k
j +—y =—g +—=1°
yAy g+t (@)

For a system in free vibration, if the left sides of Eq. 10.10 and Eq. a are compared, it
is found that

2

_k
P m

] b
T =2 . b)

Given the values of m and k, the time period 7 can be calculated. For numerical integra-
tion, a reasonable value for At can be At = 7/20.

As another example, consider the single pendulum shown in Fig. 10.9. A single
equation of motion for this system in terms of the angular coordinate can be written

or

y

Gravity l
Figure 10.9 A single pendulum,
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directly. However, here the equation is derived from the Cartesian equations of motion.
Considering gravity to be the only external force, the equations of motion are

mi — N\ =
m).'::—,\2=—-mg (©)
ued + d cos GN, + d sin pA, = 0

where A, and A, are two Lagrange multipliers associated with the constraints for the revo-
lute joint,

x —dsing =0
y+dcosdp =0
" The kinematic acceleration equations are,
X —dcos<b<.i.>+dsind><2>2=0
j—dsingd—dcospp’>=0
Elimination of A;, \,, X, and y in Egs. ¢ and d results in one equation:

(d)

(u + mdz)('i; + mdg sin ¢ = 0

For oscillations of small amplitude, sin ¢ can be replaced by ¢; this last equation is then
linearized as follows:

(w + md*)p + mdgd = 0 ©
Comparing Eq. 10.8 and Eq. e yields
) Mmdg
P w + md*
or
_ u + md’
T =127 e dg N

The preceding examples show how the time period of the oscillation can be calcu-
lated. For more complicated systems, the calculation of natural frequencies will not be
that simple. For systems with several interconnected moving bodies, the linearization of
the equations of motion in explicit form can be rather cumbersome. For systems with
more than 1 degree of freedom, there will be more than one natural frequency. For such
systems, the highest frequency must be found, and a step size much smaller than the
period of the highest frequency must be selected. Since the equations of motion-are gen-
erally nonlinear in terms of the coordinates, linearization of these equations yields a time
step which is valid only in the individual configuration. In a different configuration for
the same system, the linearization process may yield a different time period, and conse-
quently a different time step size.

To avoid the difficulties associated with the selection of a proper time step, it is
strongly suggested that a variable—step size algorithm be used for dynamic analysis.
Many well-developed algorithms of this sort are available. Most of these algorithms
determine a proper time step and will adjust the time step automatically during the
simulation.
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PROBLEMS

The following problems provide examples that can be simulated by using a dynamic analy-

sis program such as DAP. Many of the problems can be simulated on the existing listed version of
DAP. Other problems may require some modifications or extensions to the program. Guidelines
for improving the versatility and increasing the capability of DAP are included for some of those

problems.

10.1 Refer to Probs. 5.8 through 5.11 and include similar modifications in DAP for input-output
versatility.

10.2 Modify DAP to accept data in different but consistent units.

10.3 Formulate additional force elements such as the rotational spring-damper-actuator element
in DAP. ‘

10.4 Refer to Probs. 5.13 and 5.16 through 5.19. Include similar changes in DAP.

10.5 Refer to Prob. 9.5 and include this capability in DAP.

10.6 An external force acting on a body can be time-dependent. Modify DAP to accept time-de-
pendent external forces in the following forms:
(a) A closed-form expression
(b) A table of data points

10.7 Provide the user with the option of including or excluding gravitational forces in a simula-
tion.

10.8 Refer to Prob. 5.18. A dummy subroutinc USRFRC, similar to the user-supplied subrou-
tine USRCON, can be called from subroutine UFORCE before the RETURN statement.
This subroutine may be used for nonstandard forces defined by the user.

10.9 The present version of DAP applies L-U factorization to the coefficient matrix in Eq. 10.5

to solve for ¢ and . This process can be made more efficient by the following modifica-
tion:
(a) From Eq. 10.5 it is found that,
BA =y —Cg (a.l)
g=CA+M''g (a.2)
where C = @M ™' and B = C®;. Matrix B is an m X m symmetric matrix.
(b) Perform L-U factorization on B, and then solve Eq. a.1 for A.
(¢) Substitute the result for A in Eq. a.2 to find §.

Note that this process requires M ™' to be evaluated only once, since M is a constant diago-
nal matrix. If the mass or the moment of inertia of a body is specified as zero, then the
inversion cannot be performed. This is usually the case for nonmoving (grounded) bodies.
For these bodies, the mass and moment of inertia can be set to any nonzero value; e.g.,
m=1and u = 1.

10.10 Matrix B in Prob. 10.9, for a well-posed problem, is symmetric and positive-definite. For

these types of matrices, special-purpose matrix factorization algorithms are available.
These algorithms are more efficient than the standard L-U factorization algorithms. Re-
place subroutine LU with a subroutine utilizing such an algorithm.

10.11 Evaluation of matrices C and B in Prob. 10.9 requires matrix multiplication involving @,

Since @, is a sparse matrix, a large number of multiplications by zero are performed in the
process of evaluating C and B. In order to eliminate an unnecessary multiplication by zero,
store the row and column numbers of the nonzero elements of @, in two index arrays IRN
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10.13

10.14
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and ICN. The elements of these arrays, plus the fact that M™' is diagonal, can minimize
the number of multiplications in the evaluation of C and B.

For very small integration time steps and long simulation time periods, the output of DAP
can be extensive. Modify DAP to report the result at every nth time step, where n is an
integer to be specified by the user.

If the initial conditions on coordinates and velorities violate the constraints and their time
derivatives respectively, they must be corrected before the start of dynamic analysis. Per-
form a kinematic position and velocity analysis at 1 = O to correct the initial conditions.
For this process, additional constraints equal to the number of degrees of freedom must be
introduced. The corrected initial conditions are then used to start the dynamic analysis.
Replace the Runge-Kutta algorithm in DAP with a predictor-corrector algorithm in order to
make the integration process more efficient (refer to Chap. 12). You may find such an al-
gorithm in the library of your computer.

10.15 Use a variable step/order predictor-corrector algorithm in DAP instead of subrouting

10.16

10.17

10.18

10.19

RUNG4. This can be the most important modification to DAP for minimizing the numeri-

cal error in the computation (refer to Prob. 12.7).

Refer to the constraint violation stabilization method in Sec. 13.3.1. Modify vector vy, ac-

cording to Eq. 13.18, to include the feedback terms ~20 and —B’®. Before evaluating

the forces in subroutine DYNAM, perform the following tasks:

(a) Call FUNCT, with IFNCT = 1 and JACOB = 0, to obtain the constraint violations in
F. Add —8%F(J) to RHS(I) for I = 1,..., M.

(b) Since the Jacobian matrix is already available, add —2a®,q to RHS(I) for I =
1,..., M. The user must specify the parameters « and 3. Simulate different problems
and experiment with different values of these parameters. »

Modify DAP in order to handle both unconstrained and constrained systems. If M = 0,

there are no constraints. Therefore, the program should solve the equations of motion

stated in Eq. 10.1.

In the dynamic analysis of mechanical systems, it might be necessary to include aerody-
namic forces in vector g. A simple formula for calculating aerodynamic forces is given as
e = 1c,pAv?
where
¢, = drag coefficient; e.g., ¢; = 0.5
p = air density

v = velocity of the body
A = cross-sectional area of the body perpendicular
to the direction of velocity
Included this capability in DAP as another force element.

Simulate the dynamics of the chain shown in Fig. P.10.19. The links are connected by rev-
olute joints and the external force is gravity. Start the dynamic analysis from two different
initial positions:

Z

Figure P. 10.19
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(a) The links are open and the chain is stretched.
(b) The links are folded on top of one another.

10.20 The front landing gear of an aircraft is designed in such a way that it avoids hitting a pro-
truding pod (this might be an extra fuel tank) while retracting. The opening or retracting of
the landing gear is controlled by a hydraulic actuator between points P and Q as shown in
Fig. P.10.20. Assume AB = 1.2, CD = 1.62, BC = 0.5, BO = 1.32, AE = 0.97,
DE = 0.14, and the wheel radius p = 0.2.

(a) Assign values to the mass and moment of inertia of each moving body.

(b) Simulate the retracting process by applying a constant force (or a variable force, if
DAP is modified to accommodate one) to the actuator.

(¢) Determine the path of the wheel with respect to the aircraft.

Figure P. 10.20

10.21 Simulate the bouncing of a rubber ball against the ground. Assume that the ground surface
is flat at y = 0, as shown in Fig. P.10.21. Write a nonstandard force subroutine (refer to
Prob. 10.8) to determine the reaction force between the ball and the ground during contact.
Monitor the deformation Al = p — y,. If Al < 0, then there is no contact; hence, there is
no reaction force. If Al > 0, calculate the reaction force as f = f© + f@

where
O =kAl
f(d) — _dyz for _).)2 < 0
, 0 for y, > 0

It is assumed that £ and d are the stiffness and damping coefficient of the ball.
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10.23

10.24

10.25
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&
[

Wi

(1) Figure P. 10.21

y
Gravityl |
X

Repeat Prob. 10.21 and assume that the ground surface makes an angle with the horizontal
direction.

Two rubber balls are constrained to move in the vertical direction inside a frictionless cylin-
der as shown in Fig. P.10.23. Write a subroutine to calculate the reaction forces between
the balls and the ground. Simulate the motion of the balls using DAP.

The apparatus shown in Fig. P.10.24 consists of five pendulums terminating in rubber balls
which can be modeled as five moving bodies and five revolute joints. The interaction be-
tween the balls can be modeled by unilateral spring elements, as can that in Prob. 10.23.
Move one ball (or two) from the equilibrium state and then release it (or them). Simulate
the motion of the balls using DAP.

i
1
|
t \
| \
\
\
= : I>—\\\
77777 N
(1 A/
Figure P. 10.23 Figure P. 10.24
The motion of the articulated bulldozer shown in Fig. P.10.25 is controlled by two hy-
draulic actuators. The centers of mass of the moving bodies are shown as Gy, . .., G,. Take
measurements from the figure and assume m; = 190, m, = 52, m3 = 12, m, = 3,

=45, u, = 0.9, u3 = 0.3, and g = 0.1.
(a) Find a correct set of initial conditions for the coordinates.
(b) Determine the actuator forces in the equilibrium state.

Figure P. 10.25
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10.26

10.28

A hydraulic excavator is shown in Fig. P.10.26. Set up a model for this vehicle by taking
direct measurements from the figure and assuming reasonable values for the mass and
moment of inertia of each body.

(a) For different orientations, find the correct set of initial conditions.

(b) For each set of initial conditions, find the necessary force for each actuator to keep the
system in equilibrium. '

(¢) Perform dynamic analysis by controlling the force of each actuator.

Figure P. 10.26

Modify the revolute-revolute joint constraint formulation of Eq. 4.13 by assuming that the
length of the link varies as a function of time; i.e.,
Il = [d@)) = 0

For this constraint, d and d must be included in the velocity and acceleration equations.

(a) Include this formulation in DAP.

(b) Repeat Prob. 10.26 and employ this variable-length revolute-revolute joint constraint to
represent the actuators. Specify a time function for each d(t) and monitor the reaction
forces associated with each actuator.

This process is an inverse approach for determining the required force of each actuator as a

function of time in order to generate a particular motion for the system.

A fork-lift mechanism is shown in Fig. P. 10.28. Rotation of the crank provides an upward

or a downward motion of the fork. Set up a model for this vehicle by taking direct mea-

surements from the figure and assigning values to the mass and moment of inertia of each
body.

(a) For different orientations, find the correct set of initial conditions.

(b) For each set of initial conditions, find the torque on the crank that keeps the system in
equilibrium. :

(c) Perform a dynamic analysis by changing the applied torque. Monitor the path of the
fork for a complete revolution of the crank.

Figure P. 10.28
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The mechanism shown in Fig. P. 10.29 is a centrifugal brake system. The braking mecha-
nism is designed so that when the drive shaft exceeds a certain angular velocity, the three
pistons are forced against the hub wall. The contacting surfaces of the pistons are covered
by brake pads, which provide the friction force opposing the motion, hence reducing the
angular velocity. When the shaft is not rotating, the distance between the shaft axis and the
contact surface of each pad is equal to the inner radius of the hub. The contact interface
beween the pads and the hub wall can be modeled by unilateral spring elements. The spring
force f = k, Al constitutes the reaction force, where k, is the pad stiffness and Al is the
pad deformation. A friction force f = p,f" is applied to the pad at the contacting sur-
face, where u, is the kinetic coefficient of friction. Assume m, = 10, m; = 3, u, = 10,
us = 3, k, = 150, d, = 10, k, = 10,000, and w, = 0.5.

(a) Write a user-supplied subroutine for the unilateral spring, reaction force, and friction

force (repeat for each pad).

(b) For a specified initial rotational velocity of body 2, determine the initial velocity vector
for the system that will satisfy the constraints.

(c) Apply a constant input torque to the shaft and simulate the response.
(d) Determine the equilibrium rotational velocity of the shaft.

Note: Since the three braking elements are identical, you may model only one element and
multiply the resisting force (moment) by 3.

Figure P. 10.29

The pressure-type altimeter shown in Fig. P. 10.30 utilizes the difference between the pres-

sure at sea level and the ambient pressure to displace a pointer which indicates the altitude.

This is accomplished by sealing air at sea-level pressure inside a bellows. When the outside

pressure is different from the air pressure inside the bellows, the bellows expands or con-

tracts until the pressure in the bellows is equal to the outside pressure.

(a) Write a user-supplied subroutine to model the bellows and convert the pressure differ-
ence to a force acting on the attached piston.

(b) Include some damping (friction) force acting on the piston.

(c) Simulate the dynamics of the system and show whether or not the displacement of the
pointer is a linear function of the pressure change.

A simple model of a vehicle can be set up by assuming that it consists of three bodies and

two revolute joints as shown in Fig. P.10.31. Body 1 is the chassis, and bodies 2 and 3 are

the wheels. Let m, = 600, m, = m; = 20, u, = 1200, and u, = u; = 5. The axial de-
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Figure P. 10.30

Figure P. 10.31

formation of each tire can be modeled by unilateral spring-damper elements, where

k = 175,000 and d = 7000.

(a) Use DAP to determine the static equilibrium state of the vehicle.

(b) Perform a dynamic analysis, starting from the static equilibrium state, by assuming that
the wheels slide (i.e., do not rotate). Assign an initial velocity to the vehicle. Refer to
Prob. 9.10 and write a user-supplied subroutine for different terrains and obstacles.

(¢) For a more realistic dynamic simulation, the rotation of the wheels must be included in
the analysis. Assume that the rear wheel (body 3) is the driving wheel. A moment n; is
applied to this wheel by the engine. If there is no slipping between the wheel and the
ground, then a force f; = —ns/ps, where p; is the deformed radius of the wheel, is ap-
plied to the wheel in the direction shown in Fig. P. 10.31(b).

(d) If the results of part (c) are studied, it is observed that the rotational and the transla-
tional velocity of body 3 do not satisfy the no-slip assumption; i.e., x; # —p3dbs.
Therefore, a friction model must be included in the simulation. If v = X; + py¢; is
nonzero, then the wheel is slipping. A friction force can be calculated according to the
friction curve shown in Fig. P.10.31(c). In this curve B is a coefficient based on the
tire characteristics (for simulation, assume values of 8 between 1000 and 5000), and
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the upper bound for the friction force is f© = u,f"’, where p, is the kinetic coefficient
of friction and £ is the normal reaction force. f* is available from the unilateral
spring-damper element representing the tire deformation.

(e) Assume that the front wheel (body 2) is the driven wheel. Include a no-slip friction
model for this wheel and perform a dynamic simulation.

10.32 Improve the vehicle model of Prob. 10.31 by adding a suspension system to the front and
rear wheels as shown in Fig. P.10.32. Assume that the front wheel is attached to an extra
body (body 4) by a revolute joint, and that body 4 is attached to the chassis by a transla-
tional joint. Also, assume that the rear wheel is attached to an extra body (body 5) by a
revolute joint, and that body 5 is attached to the chassis by another revolute joint. Let
my=ms =4, ws = 1, and us = 2. The spring-damper characteristics for the front sus-
pension system are k; = 90,000 and d, = 5000, and for the rear suspension system
k, = 60,000 and d, = 5000. The tire characteristics are the same as in Prob. 10.31.

(a) Find the static equilibrium state for the vehicle. Adjust the attachment points or the un-
deformed lengths of the suspension springs in such a way that the main chassis and the
axis of body 5 remain horizontal when the vehicle is in static equilibrium.

(b) Include friction models for a no-slip condition of the wheels.

(¢) Perform a variety of simulations for different terrains.

e ————

Figure P. 10.32

10.33 Include an additional capability in DAP to perform a static equilibrium analysis prior to dy-
namic analysis when necessary. Refer to the algorithms in Chap. 14 (the iterative method
of Eq. 14.3 requires a2 minimum amount of programming).



