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Planar Dynamics

/
In this chapter, the equations of motion for both unconstrained and constrained mechani-
cal systems undergoing planar motion are developed in a form adequate for computer
programming. Suitable equations are formulated for a variety of forces commonly en-
countered in mechanical systems, such as gravity and the forces of springs and dampers.
The kinematic constraint equations of Chap. 4 are applied to complete the equations of
motion.

9.1 EQUATIONS OF MOTION

Translational and rotational equations of motion for an unconstrained body are written
from Eqgs. 8.51 and 8.52, as follows:

mx; = f(x);
m;y; = [y,
Jubi = ny
or
m X T
m vyl =1/ 9.1
Mo d) i no,

where for notational simplicity the polar moment of inertia Jg of a body is denoted by p.
Equation 9.1 may also be expressed as

Mg =g 9.2)
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where
M; = diag [m,m, u};
q; = [x,y’qs]iT
g8 = [f(x),f(y), n]lT

A comparison of Egs. 9.2 and 8.35 reveals that in planar motion b; = 0 and
h, = §, or h, = ¢,. The ambiguity that was mentioned in Sec. 8.4.2 between h; and q;,
for general motion of a body, does not exist when planar motion is considered. In planar
motion, the rotational velocity vector @/ = [0, 0, ([)],T is the time derivative of a rota-
tional coordinate vector [0, 0, ¢]7.

For a system of b unconstrained bodies, Eq. 9.2 is repeated b times as

Mi=g 9.3)
where
M = diag [M|,M,, ..., M,]
q=1[47.95 -, q,]
g =lgi.g2 8l
The system mass matrix M is a 3b X 3b constant diagonal matrix, and vectors q, q, {,

and g are 3b-vectors.
For a system of b constrained bodies, the equations of motion can be written as

Mg =g+ g¢ 9.4)

where g is the vector of constraint reaction forces. Since Eq. 9.4, and hence g, is de-
scribed in the same coordinate system as q, then from Eq. 8.50 it is found that

g9 = ®IA 9.5)

where ® = 0 represents m independent constraint equations. Substitution of Eq. 9.5 in
Eq. 9.4 yields

Mg — PA=¢g (9.6)
Equation 9.6 and the constraint equations
P =0 9.7

together represent the equations of motion for a system of constrained bodies.

In kinematic analysis, the number of degrees of freedom of a system must be
equal to the number of driver constraint equations. This means that m kinematic con-
straint equations and k driver equations provide n equations in n unknowns and so will
yield a unique solution. However, in dynamic analysis, in general, there are no driver
equations to be specified. Since n > m, there are more unknowns in the constraint
equations of Eq. 9.7 than there are equations, and so there is no unique solution to these
equations. In dynamic analysis, a unique solution is obtained when the constraint equa-
tions are considered simultaneously with the differential equations of motion, and a
proper set of initial conditions is specified. These algebraic-differential equations are
solved by numerical methods and will be discussed in Chap. 13.
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9.2 VECTOR OF FORCES

Vector g in Eq. 9.6 contains the vectors of forces acting on all the bodies in the sys-
tem; i.e.,

g=[glg. . ..8l ©.8)
To construct vector g, the vector of force for each body must be determined. For a typi-
cal body i, the vector of force g; contains all forces and moments acting on that body:

gi = [ﬂ_t)yﬁy)’ nJlT

where f . £, and n; are the sums of all forces in the x and y directions and the sum of
all moments, respectively. In Secs. 9.2.1 to 9.2.7, a variety of external and internal
forces that commonly appear in mechanical systems are discussed, and their contribu-
tions to the elements of g;, and hence g, are shown.

9.2.1 Gravitational Force

Figure 9.1 shows a body acted upon by a gravitational field in the negative y direction.
The choice of the negative y direction as the direction of gravity is totally arbitrary.
However, in this text the gravitational field will be considered to be acting in this direc-
tion in planar motion unless indicated otherwise.

If w; is the weight of body i (mass of body i times the gravitational constant), then
the contribution of this force to the vector of force of body i is

g(gmvily) = [0, —w, O]iT (9.9a)

9.2.2 Single Force or Moment

Consider a single force ]_‘),- acting with known direction at point P; on body i as shown in
Fig. 9.2(a). This force has components f, and f,, . If the local coordinates of P; are
known as s;” = [¢",7"]], then 5] = A;s/". The moment of f about the origin of the
body is :

n; = (Sffi)(z)
_ P P
=S (y)rf(x).- + S(X)ff(y)i

— (&7 sin ¢; + m] cos @) fi, T (€7 cos &, — mf sin ,)f,,  (9.10)

Figure 9.1 Gravitational field acting on a
X body.
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(a) (b)

Figure 9.2 A body acted upon by a constant (a) force, and (b) moment.

The contribution of this force to the vector of forces of body i is
gl = [fufope i ©.11)

When a pure moment with magnitude n; acts on body i as shown in Fig. 9.2(b), its
contribution to the vector of forces of body i is

g = 0,0, n]; 9.12)
Equations 9.11 and 9.12 are valid for either constant or time-dependent forces or
moments.
Example 9.1

Body i, with a mass of 2, is acted upon by gravity, a constant force, and a pure
moment, as shown in the illustration. The constant force has the components
f = [1.2,0.5]", and the magnitude of the pure moment is 0.6. Determine the vec-
tor of force for this body if s;” = [—0.2,0.3]", ¢, = 30°, and r; = [2.1, 1.6]".

Solution The weight of the body is w, = 2 X 9.81 = 19.62. The moment of the
force is found from Eq. 9.10 to be n; = —0.35. Therefore, the vector of forces for
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this body is

1.2 1.2
g=| 05-1962|=]-19.12
—0.35 - 0.6 ~0.95

9.2.3 Translational Actuators

Actuators provide a constant or a time-dependent pair of forces acting on two bodies
without imposing any kinematic constraints. The forces making up the pair have a com-
mon line of action but are in opposite directions. As shown in Fig. 9.3(a) an actuator
acts between bodies i and j at the attachment points P; and P;. The equivalent represen-
tation for this system is shown in Fig. 9.3(b) or (c), depending on the direction of the
forces.

The sign convention for the pair of forces can be defined as positive when the
forces pull on the bodies and negative when the forces push on the bodies. If the actua-
tor force is denoted by £, f > 0 constitutes a pull and f” < 0 constitutes a push. In
order to find the forces being applied to bodies i and j, i.e., 7 and f©, a unit vector on
the line of action of the actuator must be defined.

A vector i connecting points P; and P;, as shown in Fig. 9.4, is defined as

I=r,+As—r—As/ 9.13)
The magnitude of this vector is
l — (17‘1)1/2 (9 14)
A unit vector # is defined as
l
u=- (9.15)
The unit vector i has the same direction as ;  in the case of a pull and ]—; @ in the case
of a push. Therefore,
£0 = fly 9.16)

f(a) ) ?}a)
) f(a) _?l{al
flad >0 flat <0

(b) (c)

Figure 9.3 (a) An actuator acting between two bodies, and the equivalent representa-
tion; (b) pull; (¢) push.
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Figure 9.4 Defining a unit vector along
the axis of the actuator forces.

£ = —f“u ©.17)

It is clear that since f can be either positive or negative, the sign convention in Egs.
9.16 and 9.17 is automatically satisfied. The contribution of £ (or f{”) to the vector of
forces g;(or g;) can be found from Eqs. 9.10 and 9.11.

9.2.4 Translational Springs

Translational (point-to-point) springs are the most commonly used force elements in me-
chanical systems. Figure 9.5(a) shows a spring attached between points P; and P; on
bodies i and j. The force of this spring can be found as

fO =k = 1% (9.18)

£ls)

I/AJ(Slope =k
/I -

(b)

fFls)

(a) {c)

Figure 9.5 (a) A translational spring between two bodies with (b) linear characteristics
or (¢) nonlinear characteristics. '
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where k is the spring stiffness, [ is the deformed length, and 1° is the undeformed length
of the spring. The deformed length of the spring is found from Eq. 9.14.

The sign convention for the spring force is similar to that of the actuator force —
positive in tension (pull) and negative in compression (push). The forces of the spring
- acting on bodies i and j are

fES) — f(x)u (919)
and
f;x) _ _f(s)u (9.20)

where u is a unit vector defined along I (Eq. 9.15). Equations 9.19 and 9.20 are valid in
tension and compression —if [ > [° (for tension), f* is positive; and if [ </ ® (for com-
pression), f is negative. '

The contributions of f” (or f{”) to g; (or g;) are found from Eqs. 9.10 and 9.11.

In Eq. 9.18 a linear characteristic is assumed for the spring (Fig. 9.5(b)). How-
ever, the spring may have nonlinear force-deformation characteristics, e.g., the curve
shown in Fig. 9.5(c). In this case, the force-deformation curve can be used directly in-
stead of Eq. 9.18. If the force-deformation data arc available in discretized form, the lin-
ear or cubic spline function technique (Sec. 4.2.4) can be employed to compute f © for a
deformation ! — I°,

Example 9.2

Two bodies are connected by a translational spring, where s!? = [0.15,01" and
s.f = [0,0.1]" (see the illustration). Write the equations of motion when q, =
[—0.1, 0.2,0.785]" and q, = [0‘1,0.1,0.262]T, and then calculate the accelera-
tions.

m =02  p, =003
m,=0.15  u,=0.02

k =50 19=0.2
L

Gravity

Solution From Eq. 9.13, vector [/ is found to be equal to [0.068, —O0. 1091", and
hence [ = 0.129. The unit vector along I is u = [0.528, —0.849]". The spring
force is f© = 50(0.129 — 0.2) = —3.558. From Egs. 9.19 and 9.20 it is found
that £ = [—1.878,3.022]" and £ = [1.878, —3.022]". Equation 9.10 yields
n® = 0.520 and nY = —0.103. The vectors of forces for bodies 1 and 2 con-
tain the contribution from the spring and from gravity and are found to be
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g, = [—1.878, 1.060,0.520]" and g, = [1.878, —4.494, ~0.103]". The equations
of motion are written from Eq. 9.3 as

[0.2 Mx1 [-1.878]
0.2 B 1.060

0.03 é| | 0.520

0.15 % | | 1.878

0.15 y | | —4.494

0.02){$,| [—0.103]

The acceleraaons are found easily to be
q = [—9.389,5.302,17.326, 12.518, —29.959, —5.1541"

9.2.5 Translational Dampers

A translational (point-to-point) damper between two bodies i and j is shown in Fig. 9.6.
The damping force can be found to be
£ =di (9.21)

where d is the damping coefficient and [ is the time rate of change of the damper length.
! is found by taking the time derivative of Eq. 9.14:

.
[ = T (9.22)
where i , in turn, is found from Eq. 9.13:
[ =i+ ¢Bs;” — - ¢Bs” (9.23)

and where

cos ¢ —sin ¢ |,

The sign convention for the damping force is defined as positive for [ >0and negative
for | < 0. Since a damper opposes the relative motion of two bodies, when the two
bodies move away from each other (when [ > 0), the forces of the damper exhibit a
pull, and when the bodies move toward each other (when | < 0), the forces of the
damper exhibit a push.

B, — [—sm ¢ —cos qSJ k=i

Figure 9.6 A translational damper be-
tween two bodies.
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By defining a unit vector i along [, we express the forces f{” and f{* as

£ = iy (9.24)
and
£ = —f“u (9.25)

Equations 9.24 and 9.25 are valid for both pull and push cases.

As was true of deformation in the case of springs, the relationship between force
and deformation rate for a damper can be linear or nonlinear. Equation 9.21 assumes a
linear characteristic for the damper. However, if the damper characteristic is nonlinear, a
curve or a table of data describing the relationship between force and deformation rate
can be used instead of Eq. 9.21.

Example 9.3

A spring-damper element is connected between bodies 2 and 4 of a four-bar link-
age, as shown in the illustration. The attachment points are s,” = [0.3,0.2]" and
s,” = [—0.1,0.1]". If at a particular instant the vectors of coordinates and veloc-
ities are q, = [0.4,0.1, 1.3]", q, = [—0.35,0.2,5.6]", 4, = [0.8, —0.6, —0.3]",
and q, = [—0.5,0.45, —0. 117, determine the vector of forces for the three moving
bodies.

k =100
d=25
1°=0.9
my=
my=0.7
my,=2.4

Solution From Eqs. 9.13 and 9.23 it can be found that I = [—0.652, -0.102,1"
and | = [—1.389, 1.018]7, which yield / = 0.660 and [ = 1.215. A unit vector
along I is u = [—0.988, —0.154]". Equations 9.18 and 9.21 yield the spring and
damper forces £ = 100(0.660 — 0.9) = —24.012 and £ = 25 x 1.215 =
30.373. Since the spring and the damper have the same point of application on
each body, their total force can be used as f €)= —24.012 + 30.373 = 6.361.
The components of this force acting on the two bodies are

foto — —6.285 fora 6.285

2 -0.982 ! 0.982
Equation 9.10 can be used to determine that the moments of these forces are
n$*® = 2.263 and n{*® = —0.898.
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The weights of the bodies are w, = 29.430, w, = 6.867, and w, = 23.544.
The vectors of forces for the bodies are

—6.285 0.0 6.285
g, = | —30.412 g, = | —6.867 g, = | —22.562
2.263 0.0 —0.898

9.2.6 Rotational Springs

A rotational (torsional) spring acting between two bodies i and j is shown in Fig. 9.7(a).
The two bodies are also assumed to be connected by a revolute joint whose axis is the
same as the spring axis. A rotational spring applies pure moments on the bodies, equal
in magnitude and opposite in direction.

The moment is found as

n" = k(6 — 6°) (9.26)
where k is the spring stiffness, 6 is the deformed angle of the spring, and 6° is the unde-

formed angle, as shown in Fig. 9.7(b). Vectors §; and §; are assumed to be attached to
the spring in order to define the spring angle.

() 9°
u(y 5
sj @

(a) (b}

Figure 9.7 (a) A rotational spring acting between two bodies. (b) Free (undeformed)
state of the spring.

When 6 > 6°, the moment of the spring acts on body i in the positive rotational
direction and on body j in the negative rotational direction, as shown in Fig. 9.8(a).
When 6 < 6° the situation is reversed, as shown in Fig. 9.8(b). Therefore,

n{ = n" 9.27)

i

and
n(r-x) — _n("'s) (928)

J

(r-s) -s) ..
n; n}r s n}’ s) ni(r—s)

Figure 9.8 The moments of a rotational
spring acting on the bodies, (a) for 6 > 6°
(a) (b) and (b) for 6 < 6°.
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9.2.7 Rotational Dampers

The rotational element shown in Fig. 9.7 may also contain a damper, in addition to the
spring. For a rotational damper the moment is found as

n=db (9.29)
where d is the damping coefficient and
b=4¢ -6 (9.30)

is the time rate of change of the element angle.

When # > 0, the moment of the damper acts on body i in the positive rotational
direction and on body j in the negative rotational direction. When 6 < 0, the situation is
reversed. Therefore,

n® = ptd (9.31)
and
nd = —ptrd (9.32)

J

9.3 CONSTRAINT REACTION FORCES
The joint reaction forces can be expressed in terms of the Jacobian matrix of the con-
straint equations and a vector of Lagrange multipliers, as shown in Eq. 8.50, as
g? = A 9.33)

This equation is studied for several commonly used constraints in Secs. 9.3.1 to 9.3.3.

9.3.1 Revolute Joint

Consider two bodies i and j connected by a revolute joint, as shown in Fig. 9.9(a). The
kinematic constraint equations for this joint are given by Eq. 4.7. The equations of mo-
tion for bodies i and j are

M4, — (I)qT,-A = 8 (@
and

M;d; — ‘I’quA =8 (b)
Using the entries of the Jacobian matrix for a revolute joint from Table 4.2, we can
write Eq. a in the expanded form

m 0 0 X 1 0 \, fw

0 m O y - 0 1 [}\] =1 fu (©
0 ¢ _()’f - ) & — x;) 2 n

Since there are two algebraic equations in the constraint equations for a revolute joint,

vector A is correspondingly a 2-vector. Equation ¢ can be written as the set of equations

mi; = fo, + A (9.34)

m§: = fou T M (9.35)

i = n; = (y{ — y)\ + (xf = x)h, (9.36)

i i !
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Figure 9.9 (a) Two bodies connected by a
revolute joint; (b) free-body diagrams for
(b} the bodies.

A free-body diagram for body i is shown in Fig. 9.9(b). Equation 9.34 indicates that be-
sides fi,),, another force, A,, acts in the x direction on body i. Similarly, from Eq. 9.35 it
is deduced that a force A, acts in the y direction on the same body. However, in order for
Eq. 9.36 to be satisfied, forces A, and A, must act at point P;. The moment arm of A, is
y? —y,, and hence a moment (y; — y;)A, acts in the negative rotational direction. The
moment arm of A, is x — x,, and so a moment (x; — x;)\, acts in the positive rota-
tional direction.

Equations of motion for body j, in the same form as Eq. ¢ are written as follows:

m 0 0 X -1 0 N £
0 m 03] - 0 -1 [A‘]= £, (d)
o0 plldl 65— -6 -x|-" n |
or
m; = fu, = M ‘ (9.37)
my, = fo, = A2 (9.38)

u'j('{)j =n; + ()’;D - yj))\l - (xf - xj)}\z _ (9.39)
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It is shown in Fig. 9.9(b) that A, and A, are two forces acting at point P; in the negative
x and y directions, respectively. The moment arm for \, is y} — y; which yields a posi-
tive moment ( yf — ¥;)A,, and the moment arm for A, is x; — xf , which yields a moment
(x; = x))Ay or ~(x] — x;)\,.

The multipliers A, and A, can be positive or negative quantities. In any case, the
reaction forces acting at the revolute joint on the connecting bodies are always equal in
magnitude and opposite in direction.

Example 9.4

Consider a system of two bodies connected by a revolute joint as shown in Fig.
9.9(a). The external forces acting on the system are gravity, a constant force of
10 N acting on body i in the negative x direction, and a constant force of 10 N act-
ing on body j in the positive x direction. Calculate the joint reaction forces at the
instant for which

q, = [1.58,1.59,0.6]", q; = [3.4,1.96,0.2]
q, = [1.1,0.2,-0.02], q; = [1.14,0.24,0.03]"

The constant quantities for this system are: m; = 1.2,m; = 2, u;, = 2.5, u; = 4,
s;" =10.9,0.7]", and s;” = [~1.3,1]".
Solution The constraint equations for this revolute joint are

x; + 0.9 cos ¢, — 0.7sin ¢, — x; + 1.3 cos ¢, + sinp; = 0

y; +0.9sin¢; + 0.7cos ¢, —y; + 1.3 sin¢, —cos ; =0
The Jacobian matrix for these constraints is

o - 1 0-109 -1 0 072
4 01 035 0-1 147

From Eqgs. 9.34 through 9.36, the equations of motion for body i are
1.2%, — A = —10
1.2, — A\, = —11.77 (1
2.5¢, + 1.09x, — 0.35\, = 0
Similarly, Eqs. 9.37 through 9.39 provide equations of motion for body j:
2%, + A =10
2y, + N, = —19.62 (2)
4; — 0.72\, — 1.470, = 0
Equations 1 and 2 are six equations in eight unknowns, and therefore two more
equations are needed. These two additional equations are the kinematic accelera-
tion equations. The second-time derivative of the constraint equations (refer to

Table 4.3) can be used to obtain the acceleration equations for the revolute joint,
as follows:

I

I

% — 1.09¢, — %, + 0.72¢, = 0
§ + 0.35¢, — 3, + 1.47¢, = 0

The right side of the acceleration equations is approximately zero, i.e.,
vy = [0.0017, —0.0002]". Equations 1 through 3 can be solved to find

3)
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4, = [—2.571,-10.154, —=3.0611", 4; = [1.543, —9.604, 1.096]7, and
A =16.915,-0.413]". Hence, £/ =[6.915, -0.413]7 and
£ = [-6.915,0.413]".

9.3.2 Revolute-Revolute Joint

Consider two bodies i and j connected by a revolute joint as shown in Fig. 9.10(a). The
equations of motion for bodies ¢ and j, using the elements of the Jacobian matrix for a
revolute-revolute joint from Table 4.2, are written as

mi; = fu, + 207 — xD\ (9.40)
m;y; :f(y)i + 2()’? - )’,[")}\1 9.41)
wid; = n = 2065 — 2D = y) = (yF = ¥y (&F = x)I\, (9.42)

(a)

2(xf = xPIx

2yf =y

Figure 9.10 (a) Two bodies connected by
a revolute-revolute joint. (b) Free-body dia-
(b) grams for the bodies.
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and
misi; = fu, — 2(xf = x)N (9.43)
m;F; = fiy, = 2000 = ¥ (9.44)
wdy = n; + 2] = X)) F = y) = OF = yD 67 = I (9.45)

There is only one Lagrange multiplier in these equations; it corresponds to the one con-
straint equation describing the revolute-revolute joint.

From Eqgs. 9.40 and 9.41 it is deduced that the terms 20 — xf)}\l and 2(y! —
yf JA; can be considered reaction forces acting on body i in the x and y directions, re-
spectively. However, in order for Eq. 9.42 to be valid, these forces must act at point P;.
Figure 9.10(b) shows the components of the reaction force and the moment arms at point
P;. Similarly, Eqgs. 9.43 and 9.44 show that the x and y components of the reaction force
on body j are —2(x] — x))A, and —2(yf — y))\,, and Eq. 9.45 indicates that these
forces must act at point P;.

The reaction forces at points P; and P; are equal in magnitude and opposite in di-
rection. These forces act along the revolute-revolute joint axis, i.e., a line passing
through points P, and P;. '

Example 9.5

For the two-body system of Example 9.2, assume that a revolute-revolute joint
with a length [ = 0.175 is connected between points Q, and Q,, where s, =
[—0.05, —0.05]" and s,2 = [—0.03,0.0]" (see the illustration). Write the equa-
tions of motion and calculate the reaction forces due to this added link if ¢, =
[0.0,1.22,0.0]" and ¢, = [—0.71, —2.06,0.0]".

Solution The global coordinates of Q, and Q, are found to be r{ = [—-0.1,
0.129]" and r¢ = [0.071,0.092]". The equations of motion of Example 9.2 are
modified as follows:
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[0.2 %] [-03427] [-1.878]
0.2 2 0.074 1.060

0.03 é| | 0024 | 0520

0.15 57| 03a2 [MT| 1878

0.15 ¥, | |—0.074 ~4.494

L 0.02]| ¢,| |-0.001 |  |-0.103]

Since <I>T is already available and ¥ can be found from Table 4.3, the kinematic
acceleratlon equation for the revolute-revolute joint can now be found:

—0.342%, + 0.0745, + 0.024¢, + 0.342%, — 0.0743, — 0.001¢, = —22.525
There are seven equations in seven unknowns that are solved to find
A = —22.828
i = [29.646, —3.146, —0.929, —39.528, —18.698, —4.008]"

The reaction forces at Q, and @, are £ = [7.807, —1.689]" and f5’ = [~7.807,
1.689]".

9.3.3 Translational Joint

If a translational joint is considered between bodies i and j as shown in Fig. 9.11(a), the
equations of motion for body i can be written as

mxr = f(x),- + (yf - yIQ))\l ) (946)

m; ¥; :f(y)i - (xzi') - xiQ)}\l (9.47)

l"'i(igi =n - [(x;) - x;) (xf - sz) + ()’f - y,')()’f - }’?)])\1 + A, (9.48)

The free-body diagram for body i is shown in Fig. 9.11(b). In this diagram the force as-

sociated with A, is the reaction force caused by the first constraint equation. It is a sim-

ple matter to show that this force, k,, is perpendicular to the line of translation. The

contribution of the second constraint equation is a couple acting on body i. Note that A,

may be a positive or negative quantity.

In order to find a simpler physical description of the reaction force kl, one should

not locate the points P;, Q;, and P; arbitrarily on the line of translation. These points can

be selected to coincide with the edges of the slider, as shown in Fig. 9.12(a). If P, is al-

lowed to slide with the slider, then the reaction force kl always acts at the edge of the
slider, as shown in Fig. 9.12(b).

9.4 SYSTEM OF PLANAR EQUATIONS OF MOTION

For an unconstrained mechanical system, the equations of motion are as given in Eq. 9.3:

Mg=g (9.49)

Vector g is, in general, a function of q, ¢, and ¢. If, at an instant, q and § are known, §
can be found as follows:

qi=MTg (9.50)
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(b}

Figure 9.11 (a) Two bodies connected by a translational joint and (b) the reaction
forces acting on body i associated with a translational joint.

(f ‘\

(a) (b)

Figure 9.12 (a) A typical translational joint. (b) Forces acting on body i by the sliding
body j.
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For a well-posed problem, every body in the system must have nonzero mass and
moment of inertia. Therefore, M is a diagonal nonsingular matrix, and M ™' can be cal-
culated easily.

For a constrained mechanical system with m independent constraints

b =90 (9.51)
the velocity and acceleration equations are ‘
®q=20 (9.52)
and
®4q—v=0 (9.53)
The equations of motion for this constrained system are as given in Eq. 9.6:
Mi — PA =g (9.54)

Equation 9.53 can be appended to Eq. 9.54 and the result can be written as

[1; (01)] [—ﬂ ) [i] ©55)

The Jacobian matrix ®, is a function of ¢, and vectors g and vy are functions of q, q,
and z. Therefore, at any given instant, if q and q are known, Eq. 9.55 provides n + m
linear algebraic equations in n + m unknowns that can be solved for ¢ and A. For con-
strained mechanical systems, Eqs. 9.51 through 9.54 must be considered together as the
system equations of motion.

A FORTRAN program for solving the planar equations of motion is presented in
Chap. 10. Numerical methods for solving ordinary differential equations (for uncon-
strained systems) and mixed algebraic-differential equations (for constrained systems)
are discussed in detail in Chaps. 12 and 13.

9.5 STATIC FORCES

The subjects that are discussed in this section and in Secs. 9.6 and 9.7 are valid for both
planar and spatial systems. However, because of the simplicity of illustrations for planar
systems, these alone will be treated in this chapter.

A mechanical system becomes a structure (a nonmovable system) when the num-
ber of independent constraint equations is equal to the number of coordinates in the sys-
tem. For example, the system shown in Fig. 9.13 contains 8 links and the ground, which
yields n = (8 4+ 1) X 3 = 27 coordinates. There are 12 revolute joints in the system;
resulting in 24 algebraic equations, and 3 algebraic equations for the ground constraints,
totaling m = 24 + 3 = 27. This yields k = 27 — 27 = 0 degree of freedom. In gen-
eral, for a structure with n coordinates q, n constraint equations can be written as

P(q) =0 '
These equations can be solved to find the coordinates q. Since for a structure ¢ = q = 0,
Eq. 9.4 yields

g¥ =g : (9.56)
This equation shows that the constraint reaction forces acting on each body of the sys-
tem can be found directly from the vector of forces. In order to find the constraint reac-



Sec. 9.6 Static Balance Forces ‘ 245

Figure 9.13 A planar truss subject to an
7 2 external force.

tion forces at each joint, the Lagrange multipliers can be determined as
A=—(®)'g (9.57)

The inverse of ® exists, since it is assumed that the constraints are independent and,
for a system with O degree of freedom, @, is a square matrix. After the determination of
A, a process similar to that of Secs. 9.3.1 to 9.3.3 can be employed to find the reaction
forces at each point.

9.6 STATIC BALANCE FORCES

Consider the planar robot manipulator shown in Fig. 9.14. The motion of the robot is
controlled by three electric motors (rotational actuators) acting about the axes of revolute
joints A, B, and C. What moments must the motors apply on the bodies in order to keep
the system in equilibrium, in the configuration shown? The moments (or forces, in other
examples) are referred to as the static balance forces. If the number of unknown static
balance forces is equal to the number of degrees of freedom, then the forces can be
found by the following method.
The vector of forces is split into two vectors, as follows:

g= g(k) + g(u) (9.58)

where g® contains the known forces acting on the system and g“ is the vector of un-

known forces, which can be the static balance forces. Hence, the equations of motion

c

Figure 9.14 A planar robot manipulator.
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for the system are written as
Mg — @A = g¥ + gV
or
~® =g¥ +g” @

since in a static configuration § = 0. The same mechanical system can be kept in equi-
librium, in its given configuration, if the actuators with unknown forces (or moments)
are replaced by artificial constraint equations, equal in number to the number of degrees
of freedom. These artificial constraints are denoted here by k algebraic equations as
d*(q) = 0 (9.59)

For example, for the robot manipulator of Fig. 9.14, three artificial constraints are de-
fined as

Pf=¢, - —c,=0

Pf=¢s—d,—,=0

Pf=dy—p3— ;=0
These constraints keep the relative angles between bodies constant.

If these equations are appended to the original m kinematic constraint equations
d(q) = 0, then the equations of motion become

~@IA — ®FAx = g¥ (9.60)
where § = 0. Comparing Eq. a and Eq. 9.60 results in
g = B (9.61)

Equation 9.60 represents n linear algebraic equations in n unknowns. The n unknowns
are m multipliers A and k multipliers A*. If these equations are solved for A and A%,
then Eq. 9.61 yields the unknown static balance forces g".

Example 9.6
The motion of the five-bar linkage in Fig. 9.15 is controlled by two actuators as
shown in Fig. 9.15(a). The number of actuators is the same as the number of de-
grees of freedom. In order to find what forces applied by the actuators will keep
the system in equilibrium, the actuators are replaced by two revolute-revolute
joints, as shown in Fig. 9.15(b). The two artificial constraints for the revolute-

Figure 9.15 A five-bar mechanism.



Sec. 9.7 Kinetostatic Analysis 247

revolute joints lower the number of degrees of freedom from 2 to 0. If the system
of Fig. 9.15(b) is solved for the reaction forces along the revolute-revolute joints,
then Eq. 9.61 will yield the desired actuator forces in the equivalent system of
Fig. 9.15(a).

9.7 KINETOSTATIC ANALYSIS

If the forces acting on a mechanical system are known, then the equations of motion can
be solved to obtain the motion of the system. This process is known as forward dynamic
analysis. In some problems, a specified motion for a mechanical system is sought and
the objective is to determine the forces that must act on the system to produce such a
motion. This process is usually referred to as inverse dynamic or kinetostatic analysis.

As an example, consider the 3-degrees of freedom robot manipulators of Fig. 9. 14.
Assume that the end effector, point P, must move along a known path, such as the
straight line shown in Fig. 9.16. The range of interest is from E to F, and it is further
required that point P keep a constant velocity within this range. One additional require-
ment is that the angle of body 4 must remain unchanged with respect to the line EF. The
objective is to find the torque that actuators A, B, and C must supply, as a function of
time, in order to produce such motion.

Figure 9.16 The end-effector of the robot
must move along a specified path, keeping
a specified orientation.

This problem can be solved by specifying & driving constraint equations, equal to
the number of degrees of freedom, to describe the required motion—such as
d*(q,t) = 0 (9.62)
For example, the driving constraints for the robot manipulator are
bFr=xt—a, —vt=0
OFf =y —a,— vt =0
i =¢,—c =0
where a, and a, are the initial x and y coordinates of P at ¢ = 0, v, and v, are the con-
stant velocities of P along the x and y axes, and c, is the specified angle for body 4.
The k driving constraints of Eq. 9.62 are appended to m kinematic constraints to
yield n constraints in 7 unknowns. This is a kinematics problem that can be solved by
the method described in Sec. 3.2.2. The time ¢ is varied from ¢ = 0 to ¢° in order to

move point P from E to F. At every time step, position, velocity, and acceleration analy-
ses are performed and the results, i.e., q, q, and ¢, are saved in numerical form.
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The equations of motion can be written as
- — g ()
Mg — (I)ZA =g¥ +g (9.63)

where g® contains the known forces, such as gravity, and g* contains the unknown
forces of the actuators (the moments of the actuators A, B, and C in the robot example).
Since q, q, and { are calculated kinematically, M{, ®,, and g® are known. Therefore,

®A + g = Mg — g¥ (9.64)
can be solved for A and g®. Equation 9.64 represents n equations in m unknowns A and
k unknowns embedded in g®. These equations can be solved at every time step from
t = 0 to %, and the actuator forces can be found numerically as functions of time.

PROBLEMS

9.1 A force f acts at point P on body i as shown in Fig. P. 9.1. This force keeps a fixed angle
a with vector §7. Find the component of this force and its corresponding moment for inclu-
sion in vector g;.

9.2 Repeat Prob. 9.1 and assume that the force keeps a constant angle 8 with the global x axis
as shown in Fig. P. 9.2, '

-t

o

Figure P. 9.1 Figure P. 9.2

X

9.3 A multibody model of a vehicle is assembled in the configuration shown in Fig. P. 9.3(a),
where the gravitational force is perpendicular to the road. If the vehicle is placed on a slope

J Gravity
l Gravity .

(a) (b)
Figure P. 9.3
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9.4

9.5

9.6

9.7

Gravi
l ravity Gravity
14

as shown in Fig. P. 9.3(b), the gravitational force makes an angle o with the normal to the
road. Instead of changing the coordinate values from model (a) to model (b), devise a simple
method to modify the vector of forces by rotating the direction of the gravitational force with
respect to the global coordinate axes.

Derive the equations of motion for a body when the origin of the local coordinate system
does not coincide with the body center of mass, as shown in Fig. P. 9.4.

For the single pendulum shown in Fig. P. 9.5, write the equations of motion in terms of
Cartesian coordinates. Use the kinematic acceleration equations to eliminate the translational
components of acceleration and Lagrange multipliers. The resultant equation should be a
second-order differential equation in terms of és.

lGravity

Figure P. 9.4 Figure P. 9.5

The rod shown in Fig. P. 9.6 is attached to the ground by a spring. Write the equations of
motion for the rod. What are the initial conditions on the coordinates? Assume m = 4,
pm =3,k =50 and!°= 1.

Two unconstrained bodies are connected to each other and the ground by springs and
dampers as shown in Fig. P. 9.7. Letm; = 4, p; = 3, my = 3, wo = 1, k = 40, =12,
and d = 12.

(a) Define local and global coordinate systems.

(b) Determine the initial condition for the vector of coordinates.

45°

X

Figure P. 9.6 Figure P. 9.7
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9.8

9.9

Planar Dynamics Chap. 9

(¢) Ifx; = —0.3 and ¢, = 0.03, determine the initial condition for the vector of velocities.
(d) Write the equations of motion for the system.

Two rods are connected to each other by a revolute joint as shown in Fig. P. 9.8. Let
my=m =6, u = p, = 12.5, k; = 20, 18=5k =30,135=45,and d, = 6.

(a) Define local and global coordinate systems.

(b) Determine the initial condition for the vector of coordinates.

(¢) Test the constraint equations for any violations. In case of violation, correct the initial
conditions.

(d) If rod 1 has a positive rotational velocity of ¢, = 0.01 rad/s, find a proper set of initial
conditions for the vector of velocities consistent with the constraints.

(e) Write the equations of motion for the system.

Figure P. 9.8

Two masses m, and m, go through a one-dimensional motion in the x direction as shown in

Fig. P. 9.9. Assume that m, = 1, my = 2, k, = 10, k, = 15, 1] = 1.25, [3 = 1, d, = 5,

d,=6,a =1,and b = 3.

(a) Write the equations of motion for this system in terms of X, and X, (do not combine the
two masses into a single mass).

(b) At the instant shown, x, = 1.2, x, = 2.2, and %, = X, = 0.3. Solve the equations of
motion for the accelerations.

(c) Draw the free-body diagram for each mass and show all the forces in their proper direc-
tions.

x =
3
3
o
A\

- b >
| Figure P. 9.9

9.10 The radial deformation of an automobile wheel may be modeled*by a translational spring-

damper combination as long as the wheel is in contact with the ground. Knowing the radius,
position, and velocity of the wheel, find:
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(a) The coordinates of the contact point (center of the contact patch)
(b) The spring force

(¢) The damper force

(d) The components of the resultant force acting on the wheel

Repeat this process for the three cases shown in Fig. P. 9.10. Assume that complete geo-
metrical data for the road are available.

(a) (b} {c)
Figure P. 9.10
9.11 Repeat Prob. 9.10 for the case where the wheel and the ground are in contact at two points

(patches) as shown in Fig. P. 9.11. The resultant force acting on the wheel can be found as
the sum of forces from two spring-damper elements.

Figure P. 9.11

9.12 Deformation of the cantilever beam shown in Fig. P. 9.12(a) may be modeled by a rigid
body, a revolute joint, and a rotational spring, as shown in Fig. P. 9.12(b). For a beam with

(a) (b) (c)

Figure P. 9.12
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length / under an external load f, the free end yields a displacement d. The equivalent rigid-
body model yields the same displacement if the spring stiffness &, is selected properly.

(a) If the beam is modeled by two rigid bodies, two revolute joints, and two rotational
springs with stiffness k,, as shown in Fig. P. 9.12(c), find an approximate formula for k,
in terms of k, (for small deformations d <€ [).

(b) If the beam is modeled by n equal-length bodies, n revolute joints, and n rotational
springs, find a formula-for k, in terms of k.
9.13 For two bodies connected by a revolute-translational joint, show that the reaction force be-
tween the bodies can be found from the term @ in the equations of motion. Show the forces
on free-body diagrams of the two bodies.



