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Spatial Kinematics

This chapter derives the spatial kinematic constraint equations for several standard kine-
matic pairs. Those for other standard pairs, or for special-purpose kinematic pairs, may
be formulated similarly. Euler parameters are used to define the angular orientation of
bodies. The methodology will remain the same if other sets of rotational coordinates are
used. However, the quadratic nature of the transformation matrix, the absence of
trigonometric functions, and the singularity-free aspect of the Euler parameters make
them more attractive than other sets of rotational coordinates. Another advantage of
Euler parameter formulation is that it allows kinematic relationships for different pairs to
be written in compact matrix form, so that compact and efficient computational al-
gorithms can be developed.

7.1 RELATIVE CONSTRAINTS BETWEEN TWO VECTORS

186

In this section algebraic relations between two vectors are derived to provide the basis
for subsequent constraint equation formulation. Most kinematic constraints require that
two vectors remain parallel or perpendicular. A vector may have fixed length, e.g., if it
connects points that are fixed in the same body; or it may have variable length, if, for
example, it connects points that are fixed in different bodies.

In constraint equation formulation, it is necessary to express the components of all
vectors in the same coordinate system, the most natural being the global coordinate sys-
tem. The global components of a vector that is fixed in a body may be obtained from the
vector’s local components or they may be obtained from the global coordinates of its
endpoints. ‘
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Vector §, in Fig. 7.1 is fixed in body i. Thus, its magnitude is constant and its ori-
entation ‘relative to the £,m,{; axes does not change. The global components of §; can be
obtained from any of the following:

_ B C
S, = S; — S
= AI‘S;B _‘/A,'silc
C
= A,(s;" — s/ (7.1)

where s;7 = [£8, 0", P17 and s, = [£°, 0", {€]] are known constant quantities. It-can
be observed from Eq. 7.1 that the global components of a vector that is fixed in body i
do not depend on the global location of the body, i.e., on the vector r;.

When a vector connects two points on bodies i and j, such as vector d in Fig. 7.1,
its global components are written as

d=(r+s)— (r,+s))
=1 +As”—r,— As/” (7.2)

where s;” = [¢*,7”, {’1] is constant. It is clear that the global components of a vector
that connects points on two bodies depend on the global position of the bodies, i.e., on
vectors r; and r;.

In the following subsections, constraint equations are derived by imposing condi-
tions between vectors in adjacent bodies. In general, either the vectors are of constant
magnitude and are embedded in different bodies, e.g., §; and §; in Fig. 7.1; or one vector
is embedded in one body and the other vector is connected between points on it and an
adjacent body and may have fixed or variable magnitude, e.g., vectors §; and d or §; and
d. If we write a constraint between two vectors having constant magnitudes, then we
will refer to it as type I constraint. If the constraint is between two vectors, one having
fixed magnitude and the other being variable, then we will refer to it as fype 2 con-
straint. Constraint equations in this chapter are assigned a superscript with two indices.
The first index denotes the type of constraint, and the second index defines the number
of independent equations in the expression.

Figure 7.1 Vectors with constant and with
varying magnitudes.




188 Spatial Kinematics Chap. 7

7.1.1 Two Perpendiéular Vectors

To specify that two vectors must remain perpendicular (normal) at all times, we need
one constraint relation. If the direction of one vector is specified, the second vector can
translate and rotate only in planes perpendicular to the first vector. Vectors §; and 5,
shown in Fig. 7.1 remain perpendicular if their scalar product is zero, i.e., if

(nl, 1) — T
() = ;8
=s;"ATA;s] =0 (1.3)
Note that the superscription @ indicates that this is a normal type 1 constraint having 1

equation. .
If vector d in Fig. 7.1, which is connected between bodies i and j, is to remain
perpendicular to §; (normal type 2), then

(I)(n2, 1) = S,Td
=5 "Al0r; + Ajs)” — 1 = As) = 0 (7.4)

7.1.2 Two Parallel Vectors

For two vectors to remain parallel, two constraint equations are required. The two con-
straint equations are derived by setting the vector product of the two vectors to zero. The
vector product yields three algebraic equations, of which only two are independent; i.e.,
one of the equations can be derived by combining the remaining two equations. There-
fore, two of the equations can serve as the constraint equations.

For two vectors §; and Ej that are embedded in corresponding bodies, the constraint
equations imposing parallelism (parallel type 1) are

P2 = g5,
i 9]
— A'ATA o/ —
=AS5AAs;, =0 (7.5)
where Eq. 6.89 has been employed. For a vector §; with constant magnitude and a vec-
tor d, the constraint equations (parallel type 2) are written as

Y = 5d
= AS/AI(0; + As® — 1, — As®) =0 (7.6)
Note that @2 = 0 and ®*>? = 0 provide three equations each. However, the
sets of equations each have only two independent equations. There exists a critical case
that is associated with selection of two equations from Eq. 7.5 or 7.6. The critical case
occurs when the two vectors become parallel to one of the global coordinate axes. To
show how this critical case arises, consider Eq. 7.5 in component form:

~S@iSoy T Soisw = 0 (a)
S@iSwj — SeiSe; = 0 )
—SiSw; T sy = 0 (0

where §; = [s(, 5(,), sl and 8; = [sy, 8 s(z)]jT. Assume as an example that vectors §;
and §; are located on bodies i and j of a cylindrical joint as shown in Fig. 7.2. At time ¢
the joint axis, and hence vectors §; and §;, has become parallel to the z coordinate axis.
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Figure 7.2 The axis of the cylindrical joint
x may become parallel to ¢ . f the coordi-
| nate axes, e.g., the z axis.

Then s,y = s = 0 and s,); = 5(,; = 0. It is clear that Egs. a, b, and ¢ are satisfied.
However, for position, velocity, and acceleration analysis the Jacobian matrix of the
constraint equations is needed. In this matrix, the row associated with Eq. ¢ appears as

P: pj
G(Eq.c)/a--- @ ...... @

The possible nonzero entries @ and @ are

IS i IS
2P0 i
@ - Sy + Sty

ap; ap;
aS(Xy aS(.,)-

@ -7 “sg + re e
p; p;

These entries for this example are identical to zero, and hence Eq. ¢ leads to a reduction
in the row rank of the Jacobian matrix and to numerical difficulties. Therefore, Eqs. a
and b must be selected, since both contain the nonzero components s.,; and s,,;. A tech-
nique for the selection of a proper set of equations can be stated as follows:

Compare the absolute values of sy, S and sy, and select the two equations (out of
three) having the largest terms.

7.2 RELATIVE CONSTRAINTS BETWEEN TWO BODIES

In the following subsections constraint equations for several commonly used lower-
pair kinematic joints are derived. These equations fall under the category of holonomic
constraints.
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7.2.1 Spherical, Universal, and Revolute Joints (LP)

A spherical or ball joint between two adjacent bodies i and j is shown in Fig. 7.3. The
center of the spherical joint, point P, has constant coordinates with respect to the §m;;
and ¢;m;{; coordinate systems. There are three algebralc equations for this joint; they
can be found from the vector equation 7; + i P -7 = 0 as follows:

&V =r, + As” — A,s,”’ -1=20 (7.7)

There are three relative degrees of freedom between two bodies that are connected by a
spherical joint.

A universal or Hooke joint between bodies i and j is shown in Fig. 7.4(a). One bar
of the cross can be considered part of body i and the other bar can be considered an ex-
tension of body j. Point P, the intersection of the axes of the bars, has constant coordi-
nates with respect to both body-fixed coordinate systems. Therefore, at point P, the
constraint of Eq. 7.7 can be applied. The remaining constraint is that the two vectors §;
and §;, arbitrarily placed on the cross axes, remain perpendicular. Therefore, the con-
straint equations for a universal joint are

o4 =0
oY =gls, = 0

There are two relative degrees of freedom between a pair of bodies that are connected by
a universal joint.

The constraint formulation of Eq. 7.8 is for the general case of a universal joint
between two bodies. This formulation can be simplified for special cases. For example,
consider the configuration in Fig. 7.4(b), where body-fixed coordinates are embedded in
the bodies in such a way that the £, axis and {; axis are parallel to their corresponding
bars of the cross and therefore £; and {; must remain perpendicular. Two unit vectors
u; = [1,0,0]" and u; = [0,0, 1]" can be defined on the ¢ and {; axes, respectively.
Hence, u; = A;u/ and u; = Au; form one constraint equation,

o) = u,-Tllj =0 (7.9)

(7.8)

Figure 7.3 A spherical joint.
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Parallel

Parallel

(a) (b)

Figure 7.4 A universal joint: (a) general case, and (b) special case where ¢; axis and {; axis are
parallel to their corresponding bars of the cross.

that replaces the constraint s,-Tsj = 0 of Eq. 7.8. For this special case, only point P needs
to be defined —there is no need to define points Q; and Q.

A revolute joint between bodies i and j is shown in Fig. 7.5(a). Any point on the
revolute-joint axis has constant coordinates in both local coordinate systems. Equation
7.7 can be imposed on an arbitrary point P on the joint axis. Two other points, Q; on
body i and Q; on body j, are also chosen arbitrarily on the joint axis. It is clear that vec-
tors §; and §; must remain parallel. Therefore, there are five constraint equations for a
revolute joint:

P = g
O =55, =0

There is only one relative degree of freedom between two bodies connected by a revo-
lute joint.

The constraint formulation for a revolute joint may be simplified for special cases.
Consider as an example the configuration in Fig. 7.5(b), where the body-fixed coordi-
nates are placed in such a way that the {; and {; axes are parallel to the revolute-joint
axis. In such a case, the two unit vectors u; = [0,0, 1}" and uj' = 10,0, 11" must
remain parallel at all times; i.e.,

(7.10)

P = iu; = 0 (7.11)

This equation replaces the §;s; = 0 constraints in Eq. 7.10. For this or other, similar spe-
cial cases, only one point on the joint axis (point p) needs to be defined.
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Parallel

Parallel

(a) (b)

Figure 7.5 A revolute joint: (a) general case, and (b) special case when the {; axis, the {; axis,
and the joint axis are parallel.

For the special case of Fig. 7.5(b), another method can be used to keep the {; and
{; axes parallel. Since these two axes are parallel to the joint axis, the joint axis is the
relative orientational axis of rotation. If a relative set of Euler parameters is defined as
p; = ey, €, €3, €51}, Eq. 6.122 must hold; i.e.,

ifs
pP; = L;kpi
For this configuration, since the relative axis of rotation is parallel to the { axes, e;; =
ey; = 0. Therefore two algebraic equations are obtained:

O = Tl G & _62J p,=0 (7.12)
€ Teé3 € €
These two equations may be used instead of the ®""? constraints of Eq. 7.10.
The special-case configurations of Figs. 7.4(b) and 7.5(b) are not unique. Other
special-case configurations may be defined in order to simplify the constraint formulation.

7.2.2 Cylindrical, Translational, and Screw Joints (LP)

A cylindrical joint constrains two bodies i and j to move along a common axis, but
allows relative rotation about this axis. To derive equations of constraint for this joint,
four points, P, and Q; on body i and P; and Q; on body j, are arbitrarily chosen on the
joint axis,” as shown in Fig. 7.6(a). It is required that the vectors §; and §; of constant

"Points defined on a body may not be physically located on that body. For example, points P; and Q;
are inside the hollow cylinder of body i. They are defined with respect to the &m;{; coordinate axes and they
move with body i.
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magnitude and d of variable magnitude remain collinear. Therefore, four constraint
equations are needed to define a cylindrical joint; they can be found from two vector
product conditions:
O = g5 =0
P =5d =10
Thus, there are two relative degrees of freedom between bodies connected by a cylin-
drical joint.

The constraint formulation for cylindrical joints may be simplified in special
cases. A special case is shown in Fig. 7.6(b), where the {; and {; axes are parallel to the
joint axis. Only two points, P; and P;, are placed on the joint axis to define a vector d.
This vector must remain parallel to two unit vectors #, and i;. Therefore, in this case
only four constraint equations are needed:

7Y = du; =0

7Y = qd =0
Another special case with even simpler formulation is shown in Fig. 7.6(c), where the £
axes coincide with the joint axis. Vector d = r; — r; must remain parallel to the unit
vectors u; and u;. This can be established by the constraints of Eq. 7.14. For this special
case, there is no need to define any arbitrary points on the joint axis.

A translational or prismatic joint is similar to a cylindrical joint with the excep-
tion that the two bodies cannot rotate relative to each other. Therefore, the cylindrical-
joint equations _apply and one additional equation is required. Two perpendicular
vectors, h and h on bodies i and j, as shown in Fig. 7.7, must remain perpendicular.
Therefore, there are five constraint equations for a translational joint:

O =gs =0
P2 = §5d=0 (7.15)
- =h'h; =0

The vectors Z,» and ﬁj are located so they are perpendicular to the line of translation. The
relative number of degrees of freedom between two bodies that are connected by a trans-
lational joint is 1.

The body-fixed coordinates can be embedded in bodies i and j in special-case con-
figurations, much as in the special cases of cylindrical joints shown in Fig. 7.6(b) and
(c). If ¢m;¢; and €;m;{; are parallel and and {; are also parallel to the joint axis, then
the constraint h; h = 0 of Eq. 7.15 can be replaced by a similar constraint, but without
defining any add1t10na1 points such as R, and R;. Since the ¢ axis is perpendicular to the
7, axis, then unit vectors on these axes must remain perpendicular at all times.

Figure 7.8 illustrates a screw joint between bodies i and j, which can rotate and
translate about a common axis. However, the rotation and translation are related to each
other by the pitch of the screw. To formulate this joint, four constraint equations for an
equivalent cylindrical joint can be used. A fifth constraint equation must be supplied, to
provide the relation between relative translation and rotation of the bodies. For this pur-
pose, two unit vectors i; and i, perpendicular to the joint axis are embedded in bodies i
and j, respectively, as shown in Fig. 7.8. If the initial angle between #; and #; is 6° and
the instantaneous angle between the two vectors is denoted by 6, then 6 — 0° is the rela-
tive rotation between the two bodies. Similarly, if the initial magnitude of vector dis d°
and its instantaneous magnitude is denoted by d, then d — d % is the relative translational

(7.13)

Il

(7.14)
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Parallel

(a) (b)

{c)

Figure 7.6 A cylindrical joint: (a) general case; (b, ¢) speéial cases.
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Figure 7.7 A translational joint.

(b)

Figure 7.8 A screw joint: (a) side view and (b) top view.

displacement between bodies i and j. Therefore, the five constraint equations can be
written as follows:

OV =g =0
oY =5d =10 (7.16)
PV =(d - d°) — a6 - 6) =0

where « is the pitch rate of the screw joint.
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The angle 6 for a screw joint can be treated as an artificial coordinate. There-
fore, one additional constraint equation must be considered with the five constraints of
Eq. 7.16:

PO = ul?‘uj —cos @ =0 7.17)

If body-fixed coordinates are embedded in the bodies as was done in the special
case of Fig. 7.6(c), then vector d = r; — r; is obtained easily. Furthermore, since both {
axes are parallel to the joint axis, the joint axis is the relative axis of rotation between
bodies i and j. Therefore, from Eq. 6.120, we can write one constraint equation,

0
6N = P,‘ij — cos ry =0 (7.18)

that can be used instead of Eq. 7.17. In Eq. 7.18, 6 is the relative angle of rotation
between the bodies, and it is assumed that the two body-fixed coordinates are initially
parallel, i.e., that 0 = o0.

7.2.3 Composite Joints

Kinematic joints can be combined and modeled as composite joints in order to reduce
the number of coordinates and constraint equations. Several examples of such composite
joints are shown in this section.

Figure 7.9 illustrates two bodies connected by a rigid link that contains two spher-
ical joints; the entire system is called a spherical-spherical joint. Only one constraint
equation is required for this joint; it may be written in the form

dV=dd-12=0 (7.19)
where

d=r+As/" —r,— As/ (7.20)
and [ is the actual length of the link.

Figure 7.9 A spherical-spherical joint.

'If 9 is not treated as an artifical variable, then Eq. 7.17 is not needed. In this case, § may be calculated
from = cos™' (u,-Tu,-) for 0 = @ =< m; and when 7 < 0 < 217, additional tests are required. This approach is
cumbersome and computationally inefficient.
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A spherical-revolute joint is shown in Fig. 7.10. Two points P; and Q; are defined
on the revolute-joint axis in such a way that vector d is perpendicular to vector §; as
shown. If the distance between points P; and P, is to remain equal to /, then two con-
straint equations are written:

®eV=d'd - 1*=0
q)(HZ,I) = dej — O |
Two revolute-revolute joints are shown in Fig. 7.11. In the configuration of

Fig. 7.11(a), the two revolute-joint axes are assumed to be perpendicular. Four con-
straint equations for this joint may be written, as follows:

P =d'd-1P=0
oMY = g’ = 0
O dej =0
PV =sls; = 0
When the revolute-joint axes are parallel, as shown in Fig. 7.11(b), the four con-
straint equations are

(7.21)

(7.22)

Il

PV =qd"d - 1=0

q)(nZ,l) = dej —
(D(n2,l) = dej — (723)
O =g =0

where @) indicates that only one out of three equations of ®" is needed. The rea-
son is that the equations ds;, = 0, dej = 0, and only one of the three equations from
§;8, = 0 are independent. However, it is possible that one of the constraint equations

Figure 7.10 A spherical-revolute joint.
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/
<l

(a) {b)

Figure 7.11 Revolute-revolute joint links: (a) perpendicular and (b) parallel.

d’s; = 0 or d"s; = 0 could be ignored, so that two equations from ®"? could be se-
lected. In this case, either of the following sets may be used:

q)(s-:,l) =0
Q(nZ, D = dTS,' =0 (7.24)
(D(plﬂ) = sisj =0
or
(I)(x-s, 1) 0
(I)(n2,l) = dej =0 (725)

P =g5s,=0

A revolute-cylindrical joint that connects two bodies is shown in Fig. 7.12. For-
mulation of this joint as a revolute joint and a cylindrical joint involving three bodies
would require nine constraint equations. This would result in the elimination of a total of
9 degrees of freedom, leaving 3 relative degrees of freedom between bodies i and j. This
joint may also be effectively formulated as two bodies connected by a composite revolute-
cylindrical joint. In the configuration shown in Fig. 7.12, the cylindrical-joint axis is
perpendicular to the revolute-joint axis and the two axes intersect. Three vectors,
5, §, and d, can be defined for the constraint formulation. Vector §; is located on the
revolute-joint axis on body i, vector §; is on the cylindrical-joint axis on body j, and vec-
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Figure 7.12 A revolute-cylindrical joint.

tor d connects point P; on body i to point P; on body j. The constraint equations are writ-
ten as follows:

P =sls; =0
7P =5d =0

The first equation requires that the two axes remain perpendicular. The remaining equa-
tion guarantees that the two axes intersect at point P;.

Other composite joints, similar to those in the preceding examples, may be de-
fined and formulated. The formulation of composite joints may be simplified if body-
fixed coordinates are placed on the bodies in such a way that unit vectors on the
coordinate axes are used instead of arbitrary vectors on the joint axes. This process is
similar to the special cases shown in Secs. 7.2.1 and 7.2.2,

» (7.26)

7.2.4 Simplified Constraints

Translational constraint equations on the global coordinates of a body can be formulated
in a manner similar to the process used for planar motion in Section 4.2.7. Such con-
straints are

® =y, =0 (7.27)
P = =0 (7.28)
P = =0 (7.29)
d=x"-¢,=0 (7.30)
P = yf’ ¢s =0 (7.31)
D=z —¢c=0 (7.32)

where ¢, through ¢, are constants. Equations 7.27 through 7.29 constrain the origin of
the body-fixed coordinate system, and Eqs. 7.30 through 7.32 constrain a point P; on
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body i, in both cases relative to the global axes. The constants ¢, through cg can be
replaced by time-dependent quantities for driving constraints.

7.3 POSITION, VELOCITY, AND ACCELERATION ANALYSIS

The computational aspects of spatial kinematics are the same as those of planar kine-
matic analysis. For a mechanism with b bodies, the vector of coordinates is represented
asq = [q7,q%,...,q}]". Vector q; is expressed in the form q; = [x,y,z, &, e, ¢,, €3]]
or q; = [r’,p"1]. If any artificial variables are used in the constraint formulation (for
example, for screw joints), the artificial variables are also included in vector . The
constraint equations are assumed to consist of m equations in the form

®=d(q =0 (7.33)
Equation 7.33 contains m — b kinematic constraints and b mathematical constraints
between the Euler parameters (one equation per body) in the form given by Eq. 6.23.
Kinematic analysis with the appended driving constraint method requires a formu-
lation identical to that shown in Sec. 3.2.2. For kinematic analysis, Jacobian matrix ®,
must be evaluated. ‘

Example 7.1

Determine the nonzero entries of the Jacobian matrix for constraint @Y of
Eq. 7.3. :

Solution The nonzero entries are determined by evaluating the partial derivatives
of Eq. 7.3 with respect to the coordinates of bodies i and j. Since s/s; is not a
function of r;, its partial derivative with respect to r; is zero:

(I)(t‘xl,l) — oT (l)
The partial derivative of Eq. 7.3 can be found by writing the equation as s}'s,- or
szA,-si' and employing Eq. 6.86 to obtain
(Il ) — -1 !
(I)p,-1 V= 25;((}1‘5:‘ +8/p;) 2
Similarly, the partial derivatives of Eq. 7.3 with respect to r; and p;, by keeping
the equation in the form s;A;s;, are found to be

TS
MY = 9" (3)

T,

J
DY = 25(G;3] + s/p)) (4)

Equations 2 and 4 each provide four nonzero entries in the columns of the
Jacobian matrix associated with p; and p;.

Table 7.1 summarizes elements of the Jacobian matrix for Eqs. 7.3 through 7.7
and Eq. 7.19. These equations are the essential building blocks for nearly all of the con-
straints developed in this chapter and for most constraint relations that can be developed
between adjacent bodies. The fact that all terms can be written *in compact vector or
matrix form demonstrates an additional advantage of the Euler parameter formulation
for developing compact computational algorithms.
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TABLE 7.1 Components of the Jacobian Matrix of the Most Common Constraints

@ q)ri (I)Pi q"‘j q)Pj
) o7 sIC, o7 sTC.
i '
U2 —s7 —s™B, + d'C; s s{B
@12 0 -§C; 0 8,C;
P2 —§ -§B, — dC; 8 5B,
)] 1 C; -1 -G
b —od" —2d"B, 2d" 2d"B;
where:

Bk = 2(Gk§ILB + SI:BPZ)’CI( = 2(Gk§12 + Slip:)’k = l’.]

7.3.1 Modified Jacobian Matrix and Modified Vector y

For most common constraints, the components of the Jacobian matrix of Table 7.1 can
be employed directly. However, when the velocity and acceleration equations are con-
sidered, some equivalent terms from both sides of the equations can be eliminated.
Hence, the final forms of the resultant equations are simpler, having fewer terms than
the original equations.

Example 7.2

Consider a vector §; whose magnitude and direction must remain fixed in a given
problem. The constraints describing this condition can be expressed as

d=s—c

=As —¢c=0 6))

where ¢ contains three constant components. The entries of the Jacobian matrix
for Eq. 1 are found, from Eq. 6.86, to be

®, = 2G5, + 2s/p; )
According to the first equation of Eq. 3.13, the velocity equation is
2G3; + 2s;p)p; = 0 3)
Using the identity p/p; = 0 in Eq. 3 yields _
2G;s/p;, =0 4

Similarly, according to the first equation of Eq. 3.15, the acceleration equation is
(2G;s; + 2s/p)p; = —1(2G;3; + 2s;piT)pi]pipi
= (_2.Gi§ilpi - 2si’plrpi)pipi
= —2G;3/p, — 25/B]P; 5)
where Eqs. 6.73, 6.54, and 6.69 have been employed, in that order. From Eq. 6.61,
ie., pp;, + p/p; = 0, Eq. 5 becomes
| 2G;3/p = —2G;3/p,
= —(2Gi§i’pi)p;pi ©®
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For velocity and acceleration analysis, Eqs. 4 and 6 can be used instead of Eqgs. 3
and 5. By defining a modified Jacobian matrix as

D = 2G5 @
we can write Eqs. 4 and 6 as
OUp, =0 (®)
and
D, = —(D7p)y, b ©)

The simplification of the velocity and acceleration equations shown in Exam-
ple 7.2 can be applied to all of the common constraint equations; it enables the entries of
the modified Jacobian matrix and the components of the vector 7y to be found. Another
method for finding the modified Jacobian and vector 7 is to use the second time deriva-
tive of the constraint equations and employ Eq. 6.82.

Example 7.3
Apply Eq. 6.82 to find the second time derivative of Eq. 7.3. Obtain the modified
Jacobian matrix and modified vector vy for this constraint.

~ Solution The second time derivative of Eq. 7.3, i.e., s,-Tsj =0, is
s, + si§; + 2878, = 0
or
sTA;s! + siA;s; + 2878, = 0

With Eq. 6.82, the above equation yields

2s7(GL's + G;3/p) + 25/(GL]s] + Gj8]p,) + 287, = 0
This equation can be rearranged as follows:

[2s]G;8/,25/G;5)] [p,] = —2(STC,Lis; +sTGLs, + 815)

J JIR
J.

The matrix on the left side of this equation shows the nonzero entries of the modi-
fied Jacobian, and the expression on the right side of this equation is the modified
¥ vector.

Table 7.2 summarizes the elements of the modified Jacobian matrix and modified
vector ¥ for Eqs. 7.3 through 7.7 and Eq. 7.19. The components of Table 7.2 can
be used in a computer program for kinematic analysis instead of those of Table 7.1.
Examples 7.2 and 7.3 show how the entries of the Jacobian matrix can be modified
(simplified) for velocity and acceleration analysis. It should be noted that the modified
Jacobian matrix can also be used for position analysis. The first step of the Newton-
Raphson iteration is given by Eq. 3.42 as )

®,Aq = - (@)



Sec. 7.3 Position, Velocity, and Acceleration Analysis 203

TABLE 7.2 Components in the Expansion of the Most Common Constraints™

)] [} er) 1)) :),:;) i) g;:) & :;;x) ,y(m)
Quih 9T 257G,3/ 0" 25iG;s;  shy + sfh; — 285, .
@2 ~s7 —2s7G;3,% + 2d'G5; s7 257G;s,” —s/(h — h}) + d'h, ~ 25]d
w2 0 -2§,G;3; 0 2%,G;5 §h; — §h; — 28,3 .
@2 —§; —2§,;G;5/% ~ 2dG;s! § 25,G;5,"” —5(h? — h}) — dh, — 25,d
L 1 2G;5;° -1 -2G;5;" hi - h!
s —2d" —4d'G;5/" 2d" 44'G;s;” 2d"(h? — b)) - 2d"d
where:

h, = —2G,Lls;, h? = —2G,L1s;2, bt = —2G,Lis," k = i,j

This operation involves the product of the Jacobian matrix and a vector Aq which con-
tains the infinitesimal changes in the coordinates. Since the modification on the Jacobian
has affected only the columns associated with the Euler parameters, not those for the
translational coordinates, we need only test the part corresponding to ®, Ap. The first
variation of the constraint equation on the Euler parameters (Eq. 6.23) is

2p"Ap =0 b

If we consider the entries of the Jacobian from Table 7.1 in the columns associated with
p; and p; and employ Eq. b, we will obtain the modified matrix. For example, the
columns of the Jacobian associated with p, of ®""" yield

¢, = (szCi) Ap;
= ZSJ'T(G:'E; +s/p]) Ap;
= 25/G,;5; Ap,
= o p
This result can also be obtained by considering Eq. 6.86. This equation can be simpli-
fied in the Newton-Raphson algorithm as follows:

[56;) (Aa)] Ap = (2Ga + 2ap”)Ap

= 2GalAp

This equation shows that the term 2Ga in Eq. 6.86 (or the term 2La in Eq. 6.87) yields
the entries of the modified Jacobian matrix. Therefore, two more identities can be stated:

1 om)
ad
—(A

_ap( a)_

2Ga (7.34)

and

3 T om ,
— (Aa) a (7.35)
[op

i
)
=
&
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PROBLEMS

Two points B and C are located on body i. The coordinates of these points with respect to a
set of &m,{; axes are [1.2, 0.5, —0.1]" and [-0.3, —0.8, 2.1, respectively. The Euler
parameters describing the angular orientation of body i with respect to a global coordinate
system are p; = [0.860, —0.150,0.420,0.248]_T_.>

(a) Find the local components of vector § = CB.

(b) Find the global components of vector 5.

(¢) Is it possible to find the global coordinates of points B and C? Explain.

Point D is located on body i with local coordinates [1.5, —1.6, 0.2]". The origin of the &m;¢;
coordinate system is located with respect to the global coordinates by vector r; = [3.3, 1.4,
2.0]7. The Euler parameters describing the angular orientation of body i are
p:; = [0.810, —0.029, —0.543,0.220]". Determine the following:

(a) Local components of vector $P connecting the origin of the &7;{; axes to point D

(b) Global components of vector §7

(¢) Global coordinates of point D

Point B is located on body i with local coordinates [1.0, 1.0, —0.5)", and point C is located
on body j with local coordinates [—2.0, 1.5, —1.0]". The origins of the bodies are located by
vectors r; = [—1.2,0.4,3.1]7 and r; = [0.4,4.5,0.5]" with respect to the global axes. The
Euler parameters for the two bodies are p; = [0.343, —0.564,0.604, 0.447]" and
p; = [0.270,0.732, —0.331,0.5311". Find the following:

(a) Global coordinates of points B; and C;

(b) Global components of vector d= B,—_C;

(¢) Local components of vector d with respect to the &;;{; axes

(d) Local components of vector d with respect to the &m;{; axes

The orientations of bodies i and j are defined by Euler parameters p; = [—0.667,
—0.427,0.241, —0.5611" and, p; = [0.223,0.549, —0.623,0.511]". Vectors §; and §; are
fixed vectors on the bodies with local components s; = [1,1,2]" and s; = [—1, 1, al’,
where « is unknown. Determine o, knowing that §; and 5; are perpendicular.

What must the condition be between Euler parameters p; and p; for the two vectors §; and §;
to remain perpendicular? Assume s; = [1, 1, 21" and s; = [2,~1,-2]".

Points B and C are located on body i with local coordinates [—0.2, ~0.7,0.6]" and
[2.7,—0.7, —0.1]". Vector §; connects points B and C. Find a condition on the Euler
parameters of this body for which vector §; remains parallel to the xy plane.

Show that the three equations in §;s; = 0 are not independent.

Vectors r; = [0.5,0.5,0.9]" and r; = [0.5, —0.2, 1.3]" locate the fixed origins of bodies i
and j with respect to the global axes. Vector §{ locates point C on body i as s/C =
[-0.7,1.6,0.8]". Point B is located on body j by vector s;® = [0.8,—0.6, —0.5]". Write the
constraint equation that makes vector §{ perpendicular to vector d=TCB.

Repeat Prob. 7.8 but assume that the origins of bodies i and j are not fixed; i.e., that vectors
r; and r; are variables.

7.10 Write the condition for the two vectors § and §; to be parallel. If the condition yields more

than two equations, then choose the best two equations as constraint equations:

(@) s; = [—0.448,0.399,1.700]", p; = [0.860, —0.150,0.420, 0.2487",
s; = [—0.4131, 1.690, 0.634]", p; = [0.810,0.029, —0.543,0.220]".
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(b) s; = [1.976,0.874, 1.8251", p; = [0.270, —0.732, 0.331, —-0.5317",
s; = [—1.143,-0.295, —1.220]", p; = [0.564, —0.447, ~0.343,0.604]".
(¢) s; = [—0.132, —0.089, —0.324]", p, = [—0.667, —0.427,0.241, —0.5617",
s; = [—0.446,0.121, —0.082]", p; = [0.223,0.549, -0.623,0.5117".
@ s; = [1.64,3, -1.52]", p; = [0.6,0, —0.8,0]",
s; = [4.4,-6,0.8], p, = [0,0.8,0,0.6]".
7.11 What is (are) the necessary and sufficient condition(s) on the Euler parameters for the &m,{;
and &;m;{; coordinate systems to remain parallel?

7.12 For the &;m;{; and £;m;{; coordinate systems, what is (are) the necessary and sufficient condi-
tion(s) on the Euler parameters for the following conditions to be true:

(a) The ¢, and ¢; axes remain parallel.
(b) The {; and m; axes remain parallel.
(¢) The 7; and ); axes remain perpendicular.

7.13 Find the constraint equation for point P on body i to remain on the plane z = 6. The local
coordinates of P are s;” = [2, =2, —1]".

7.14 Repeat Prob. 7.13 and constrain point P to move on the line described by the intersection of
the two planes z = 6 and x = 2.

7.15 Figure P.7.15 shows a mechanism consisting of two bodies connected by a spherical joint.
The vectors locating the center of the joint have components s;” = [0.4, 1.4, —0.51" and
s;” =[0.9, —0.3, —0.2]". Write the constraint equations for this joint. If the two bodies are
not connected to any other bodies, how many degrees of freedom does the system have?

X Figure P. 7.15

7.16 If two points P and Q are chosen arbitrarily on a revolute-joint axis connecting two bodies i
and j, Eq. 7.7 may be repeated twice—for P and for Q —to yield six constraint equations.
These equations can be used instead of Eq. 7.10. However, since there is one relative degree
of freedom between the two bodies, one of the equations must be redundant. Define a strat-
egy to eliminate one of the six equations efficiently in every possible configuration.

7.17 Two bodies are connected by a revolute joint. Find the constraint equation for this joint, us-
ing the spherical joint constraint and scalar products, instead of the vector product of
Eq. 7.10. Hint: Initially define two vectors on one of the bodies perpendicular to the joint
axis.

7.18 Add one equation to the cylindrical-joint constraints of Eq. 7.13 to allow them to be used as
revolute-joint constraint equations.

7.19 The two bodies shown in Fig. P.7.19 can slide relative to each other without separation. For-
mulate constraint equations describing this type of joint.
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7.20 Use the concept of relative axis of rotation (relative set of Euler parameters) to find an

7.21

7.22

7.23
7.24

additional equation to convert cylindrical-joint constraints to translational-joint constraints.

Consider the system shown in Fig. 7.9, which contains two spherical joints. Determine the
number of degrees of freedom if:

(a) The system is modeled by three bodies and two spherical joints.
(b) The system is modeled by two bodies and one spherical-spherical joint.
Compare the results from (a) and (b). Explain why they are different.

An A-arm suspension system contains a link connecting the main chassis (body i) to the
wheel (body j) by two revolute joints as shown in Fig. P.7.22. The two joint axes intersect at
an angle § = 90°. Determine a set of constraint equations to model this composite
revolute-revolute joint.

Figure P. 7.22

Repeat Prob. 7.22 for 6 # 90°.

The steering command in automobile simulations can be provided as a time-dependent con-
straint equation. This is usually done when the simulation of the actual steering mechanism
is not of interest. Assume that body i is the main chassis, with m; along the longitu-
dinal direction and body j as one of the front wheels. In Figure P.7.24, the suspension mech-
anism between the wheel and the chassis is not shown. If the steering command is
described as c(¢), derive a constraint equation between two unit vectors along the 7; and

7); axes.
' ni |
Figure P. 7.24

§
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7.25 Verify the entries of the Jacobian matrix listed in Table 7.1.
7.26 Derive expressions for vector v for the constraint equations that are listed in Table 7.1

7.27 Verify the entries of the modified Jacobian matrix and modified vector vy listed in
Table 7.2.

7.28 The road wheels of a tracked vehicle are connected to the chassis by road arms as shown in
Fig. P.7.28. A road arm can be modeled as a composite revolute-revolute joint with par-
allel axes. The constraint equations for this composite joint may be simplified by locating
the local coordinate systems on the chassis and on the wheels so that they have parallel axes;
e.g., the £ axes could be parallel as shown coming out of the plane. Derive the simplified
constraint equations.

§

—
RNSISIO!

Road whee! Figure P. 7.28




