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A FORTRAN Program
for Analysis

of Planar Kinematics

In this chapter, a FORTRAN program for planar kinematic analysis is presented. The
program contains only two types of lower-pair joints—a revolute joint and a transla-
tional joint. With only these two basic joints, a large class of mechanisms can be ana-
lyzed. The program is organized in a form that can be expanded to include other
kinematic pairs, such as those formulated in Chap. 4. The exercises given at the end of
this chapter provide a pattern to assist in expansion of the program.

The subroutines LINEAR and LU that were discussed in Chap. 3, are used in this
program. They can be appended to this program without any modification. The program
is written in standard FORTRAN and should run on most FORTRAN compilers without
any difficulty. However, it is possible that some compilers will require minor modifica-
tion of the program. '

5.1 KINEMATIC ANALYSIS PROGRAM (KAP)
The main routine of the kinematic analysis program performs three major tasks:

1. Reads input data, either directly or by making calls to other input subroutines.

2. Splits the working arrays A and [A into smaller subarrays by defining pointers
(addresses in arrays).

3. Makes calls to subroutine KINEM for kinematic analysis.

A detailed explanation of these three major tasks follows.
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Input/Output.  Input is provided to the program through the console in unfor-
matted form: READ(1,#).... The output is written on the console screen with specified
format; e.g., WRITE(1,230)....

Working Arrays. There are two main working arrays in this program — one
real array A and one integer IA. The two arrays are dimensioned to 500 and 200, re-
spectively (MAXA = 500 and MAXIA = 200), which is sufficient for most small
problems. For larger problems— those with larger numbers of bodies or kinematic
joints, for example — these dimensions can be increased. The program computes the
minimum dimensions that are required for the two arrays and provides a warning mes-
sage when the existing dimensions are not sufficient.

Number of Elements. The first request the program makes is to

ENTER NB, NR, NT, NG, NS, ND, NP
These data are defined as follows:

NB  Number of bodies in the system, including ground

NR Number of revolute joints in the system

NT Number of translational joints in the system

NG Number of bodies that are attached to (or considered as) ground
NS Number of simple constraints in the system

ND Number of driving constraints (driving links)

NP Number of points of interest

Further explanation of these variables and their functions is given in the following
sections. The program computes the number of coordinates N and the total number of
constraint equations M, including the driving constraints, from this first set of data. If N
is not equal to M, then an error message is given by the program.

Subarrays. The working arrays A and IA are divided into smaller subarrays,
according to the number of elements in the problem. The subarrays and their corre-
sponding pointers and lengths are shown in Fig. 5.1. Pointers N1, N2, . .. locate the be-
ginnings of subarrays of A, and pointers M1, M2, . . . locate the beginnings of subarrays
IA; e.g., subarray TJ begins at A(N2), so TJ(2) is the same as A(N2+1), and so forth.
Some pointers that have not been used, such as N8, N9, or M8, or other additional
pointers can be included for further expansion of the program. The function of the sub-
arrays is explained in the following sections.

Input Data. The main program makes calls to other subroutines, such as IN-
BODY and INRVLE, to read additional information for the problem at hand. These sub-
routines are discussed in Sec. 5.1.1.

Time Parameters. The last prompt given by the program is

ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT

These values are assigned to the variable names T0, TE, and DT. During the analysis,
the time parameter T is incremented by DT from TO to TE.
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Kinematic Analysis. After all of the input data are read by the program, the
main program makes a call to subroutine KINEM for kinematic analysis. Prior to this
call, three variables are defined and given specific values:

NRMAX Maximum number of iterations allowed for the Newton-Raphson
algorithm at each time step

FEPS Maximum error allowed for constraint violation

EPSLLU Error tolerance for the L-U factorization algorithm

The user may modify the program to assign values to these variables, by a READ state-
ment, depending on the accuracy required in the response computation.
The main routine of the KAP program is as follows:

C..... «+...KINEMATIC ANALYSIS...........
C
Civevrnnnnnnn Main Program...............
C

COMMON /CONST / NRMAX,FEPS,EPSLU

COMVON /MPNTR / M1 ,M2,M3,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10

OOMVON /NEIMNT/ NB,NR,NT,NG,NG3,NS,ND,NP

COOMMON /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N14,N15,N16
COMVMON /ROWCOL/ IR, IC,M,N

COMON /TIME / TO,TE,DT,T

DIMENSION A(500),1A(200)

Covovn For more space in A and IA arrays, increase the dimension and
C..... update MAXA and MAXIA accordingly

MAXA =500

MAXTA=200
C..... Read number of bodies, revolute joints, translational joints,
C.....grounded bodies, simple constraints, drivers, points of interest

10 WRITE(1,200)
READ(1,* ) NB,NR,NT,NG,NS,ND,NP

C..... Determine number of coordinates N and number of constraints M
N=3*NB
M=2* (NR+NT)+3*NG+NS+ND

(o N must be equal to M (including the driver constraints)

IF (M.EQ.N) GOTO 20
WRITE(1,210) N,M
GOTO 10
C.....Define pointers and split A and IA into subarrays
C.....Subarrays for storing input data
20 Ni1=1
N2=N1+4*NR
N3=N2+7*NT
N4=N3+3*NG
N5=N4+ NS
N6=N5+3*ND
N7=N6+2*NB
Mi=1
M2=M1+2*NR
M3=M2+2*NT
M4=M3+6*NG
M5=M4+2*NS
M7=M5+2*ND
C..... Subarrays for vector of coordinates, velocities, etc.
N10=N7+2*NP
N11=N10+N
N12=N11+N
N14=N12+N
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N15=N14+N*M
N16=N15M
NUSED=N16+M-1
M10=M7+NP
MUSED=M10+N-1
C..... Check for sufficient storage space in A and IA arrays
IF(NUSED.LE .MAXA .AND. MUSED.LE.MAXIA)GOTO 30
WRITE(1,220) NUSED,MUSED
STOP
C..... Read initial estimates on the coordinates
30 CALL INBODY (A(N10),NB)
C..... Read revolute joints data
IF (NR.GT.0) CALL INRVLT (A(N1),IA(MI1),NR)
C..... Read translational joints data
IF (NT.GT.0) CALL INTRAN (A(N2),IA(M2),NT,A(N10),NB)
C..... Read ground constraints data
NG3=3*NG
IF (NG.GT.0) CALL INGRND (A(N3),IA(M3),NG,A(N10),NG3,NB)
C..... Read simple constraints data
IF (NS.GT.0) CALL INSMPL (A(N4),1A(M4),NS,A(N10),NB)
C..... Read driver constraints dataA
IF (ND.GT.0) CALL INDRVR (A(N5),IA(MS),ND)
C..... Read special points of interest data
IF (NP.GT.0) CALL INPOIN (A(N7),IA(M7),NP)
C..... Read initial time, final time, and the time increment
WRITE(1,230)
READ(1,* ) TO,TE,DT
C..... End of input data
NRMAX=20
FEPS =0.001.
EPSLU=0.001
C..... Start KINEMATIC ANALYSIS.....
CALL KINEM (A, IA,MAXA ,MAXIA)
STOP
200 FORMAT(SX, *ENTER NB,NR,NT,NG,NS,ND,NP’)
210 FORMAT(5X,’***INPUT ERROR*** N=’,13,’ M=’,13)
220 FORMAT(SX, ’***DIMENSION ON A AND/OR IA ARRAYS NOT SUFFICIENT***’,
+ /,10X, "MINIMM DIMENSION ON A MUST BE’, IS5,
+ /,10X, "MINIMM DIMENSION ON IA MUST BE’,I5)
230 FORMAT(SX,’ENTER STARTING TIME, FINAL TIME, AND DT’)
END

5.1.1 Model-Description Subroutines

The following subroutines are called by the main routine of KAP to read the description
of the model.

Subroutine INBODY. This subroutine reads initial estimates of x;, y, and ¢,
for each body with a prompt:

FOR BODY i ENTER INITIAL EST. ON X, Y, PHI

This information is saved in array Q, dimensioned as Q(3,NB). For example, for body i,
'xi - Q(lsl)
.Yi - Q(23I)
qsi - Q(371)
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Subroutine INBODY is as follows:

SUBROUTINE INBODY (Q,NB)
DIMENSION Q(3,NB)
DO 10 I=1,NB
WRITE(1,200) I
READ(1,*) (Q(J,1),J=1,3)
10 CONTINUE
RETURN
200 FORMAT(SX,’FOR BODY’,I4,’ ENTER INITIAL EST. ON X, Y, PHI’)

END

Subroutine INRVLT. This subroutine is called if NR > 0, to read information
describing the revolute joints in the system (refer to Sec. 4.2.1). The prompt given by
this subroutine is

FOR REV. JOINT NO. k ENTER
BODY NOS. | AND J, THEN
XI-P-1, ETA-P-I, XI-P-J, ETA-P-J

This prompt is repeated for k = 1,...,NR. Body numbers i and j that are connected by
revolute joint k are stored in array IRJ, dimensioned as IRJ(NR,2).

The local components of vectors that locate the revolute joints on the bodies are
stored in array RJ, dimensioned as RI(NR,4). For example, for the kth revolute joint in
a system, connecting bodies i and j, the entries for the IRJ and RJ arrays are

I — IRJ(K,1) J — IRJ(K,2)
£ — RIK,1) ¢ — RIKK,3)
n; = RI(K,2) n; = RI(K.4)

Subroutine INRVLT is as follows:

SUBROUTINE INRVLT (RJ,IRJ,NR)
DIMENSION RJ(NR,4),IRJ(NR,2)
DO 10 K=1,NR
WRITE(1,200) K
. READ(1,*) (IRJ(X,L),L=1,2),(RJ(X,L),L=1,4)
10 CONTINUE

RETURN

200 FORMAT(SX,’FOR REV. JOINT NO.’,I3,’ ENTER BODY NOS. I AND J’,/,
+ 10X, 'XI-P-1,ETA-P-1,XI-P-J,ETA-P-J’)
END

Subroutine INTRAN. The subroutine INTRAN is called if NT > 0, to read
information describing the translational joints in the system (refer to Sec. 4.2.1). The
prompt given by this subroutine is

FOR TRAN. JOINT NO. k ENTER
BODY NOS. | AND J, THEN
XI-P-I, ETA-P-I, XI-Q-l, ETA-Q-|
XI-P-J, ETA-P-J

This prompt is repeated for k = 1,...,NT. Body numbers i and j that are connected by
the kth translational joint are stored in array ITJ, dimensioned as ITJI(NT,2). The local
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coordinates of points P; and P; are stored in array TJ, dimensioned as TI(NT,7). The local
coordinates of point O, are not saved directly. Instead,

a =& — €2, Bi=nl -7}
are stored in vector TJ. For the kth translational joint in the system, the elements of the
ITJ and TJ arrays are:

I— ITI(K,1) J— ITI(K,2)
E7— TI(K,1) £ — TIK,5)
nt — TIK,2) nt — TI(K,6)
o, — TI(K,3) é) — ¢ — TIK,7)
B:— TI(K,4)

Subroutine INTRAN is as follows:

SUBROUTINE INTRAN (TJ,ITJ,NT,Q,NB)
DIMENSION TJ(NT,7),ITJ(NT,2),Q(3,NB)
DO 10 K=1,NT
WRITE(1,200) K
READ(1,*) (ITJ(X,L),L=1,2),(TJ(X,L),L=1,6)
TI(K,3)=TJ(K,1)-TI(K,3)
TJ(K,4)=TI(K,2)-TI(K,4)
10 TI(K,7)=Q(3,ITJ(K,1))-Q(3,ITI(K,2))
RETURN
200 FORMAT(5X, 'FOR TRAN. JOINT NO.’,I13,’ ENTER BODY NOS. I AND J',/,
+10X, ’XI-P-1,ETA-P-1,X1-Q-1,ETA-Q-1,XI-P-J,ETA-P-J"’)
END

Subroutine INGRND. The subroutine INGRND is called if NG > 0, to read
the number(s) of a body or bodies constrained to the ground by giving the prompt

ENTER BODY NO. FOR NO. k GROUNDED BODY

This prompt is repeated NG times. This subroutine also transfers initial estimates of
the coordinates for the grounded bodies from array Q to array GR, dimensioned as
GR(3*NG). Each body that is constrained to the ground is treated as having three simple
constraints on its x, y, and ¢ motion. This information is stored in an integer array IGR,
dimensioned as IGR(3*#NG,2). The way the data are stored in the IGR and GR arrays is
similar to the storage of data in the SM and ISM arrays for simple constraints, as will be
shown in the next subsection.
Subroutine INGRND is as follows:

SUBROUTINE INGRND (GR, IGR,NG,Q,NG3,NB)
DIMENSION GR(NG3), IGR(NG3,2),Q(3,NB)
DO 10 K=1,NG
WRITE(1,200) K
READ(1,*) IB
DO 10 J=1,3
KK=(K-1)*3+J
IGR(XK,1)=IB
IGR(KK,2)=J
GR(KK)=Q(J,IB)
10 CONTINUE
RETURN
200 FORMAT(5X, ’ENTER BODY NO. FOR NO.’,13,’ GROUNDED BODY’)
END
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Subroutine INSMPL. This subroutine is called if NS > 0, to read informa-
tion on the bodies that have simple constraints (refer to Eqs. 4.31, 4.32, and 4.33). The
prompt given by this subroutine is

FOR SIMPLE CONSTRAINT NO. k ENTER
BODY NO. AND 1, 2, OR 3 FOR X, Y, OR PHI CONSTRAINT DIRECTION

This prompt is repeated NS times. The information is stored in array ISM, dimensioned
as ISM(NS,2). In addition, this subroutine transfers the initial values of the coordinates
from array Q to array SM, dimensioned as SM(NS). For example, if the kth simple con-
straint acts in the y direction on body i, then

| — ISM(K,1), 2(for y) — ISM(K,2) , Q(2,]) = SM(K)

where Q(2,I) contains the initial value on the y coordinate of body i.

The entries of array SM will be used as the constant ¢, ¢,, or ¢; in Eq. 4.31, 4.32,
or 4.33.

Subroutine INSMPL. is as follows:

SUBROUTINE INSMPL (SM,ISM,NS,Q,NB)
DIMENSION SM(NS), ISM(NS,2),Q(3,NB)
DO 10 K=1,NS
WRITE(1,200) K
READ(1,*) (1sM(K,L),L=1,2)
SM(K)=Q(ISM(K,2),IsM(K,1))
10 CONTINUE
RETURN
200 FORMAT(SX,’FOR SIMPLE CONSTRAINT NO.’',13,’ ENTER BODY NO.’,/,
+ 10X,’AND 1,2,0R 3 FOR X,Y,OR PHI CONSTRAINT DIRECTION’)
END

Subroutine INDRVR. This subroutine is called if ND > 0, to read informa-
tion on the driving link(s) (refer to Sec. 4.2.8). The prompt given by this subroutine is

FOR DRIVER NO. k ENTER
BODY NO., 1,2, OR 3 FOR X, Y, OR PHI, THEN
INITIAL POSITION, VELOCITY, AND ACCELERATION

This prompt is repeated ND times. The body number(s) and indices indicating x, y, or ¢
are constrained and stored in an integer array IDR, dimensioned as IDR(ND,2). The ini-
tial value of x, y, or ¢ and its velocity and acceleration at ¢+ = O are stored in array DR,
dimensioned as DR(ND,3). For example, if the kth driver constraint is acting on the ro-
tation of body i as follows: '

¢ — ¢) — wt — 0.5t = 0
then

I — IDR(K, 1), 3 (for ¢) — IDR(K,2),
¢? — DR(K,1), o — DR(K,2), a — DR(K,3)
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Subroutine INDRVR is as follows:

SUBROUTINE INDRVR (DR, IDR,ND)
DIMENSION DR(ND, 3), IDR(ND,2)
DO 10 K=1,ND
WRITE(1,200) K
READ(1,*) (IDR(K,L),L=1,2),(DR(K,L),L=1,3)

10 CONTINUE
RETURN
200 FORMAT(5X, 'FOR DRIVER NO.’,13,’ ENTER BODY NO.’,/,
+ 10X,’t, 2, OR 3 FOR X, Y, OR PHI’,/,
+ 10X, *INITIAL POSITION, VELOCITY, AND ACCELERATION’)
END

Subroutine INPOIN. This subroutine is called if NP > 0, to read information
on points of interest defined by the user. The user may specify some points of interest on
one or more bodies (refer to Eqgs. 4.1, 4.43, and 4.45). Hence, the program will report
the global position, velocity, and acceleration for these points at every time step. Note
that the program reports the coordinates of all the bodies in the system automatically,
and therefore there is no need to specify the centroid of a body as a point of interest.
The prompt from this subroutine is

FOR POINT OF INTEREST NO. k ENTER
BODY NO., THEN XI-P AND ETA-P COORDINATES

This prompt is repeated NP times. The body numbers are stored in array IPI, dimen-
sioned as IPI(NP). The &f and 0’ coordinates are stored in array PI, dimensioned as
PI(NP,2).

Subroutine INPOIN is as follows:

SUBROUTINE INPOIN (PI,IPI,NP)
DIMENSION PI{(NP,2),IPI(NP)
DO 10 K=1,NP
WRITE(1,200) K
READ(1,*) IPI(X),(PI(X,L),L=1,2)
10 CONTINUE
RETURN
200 FORMAT(5X,'FOR POINT OF INTEREST NO.’,I13,’ ENTER BODY NO.’,/,
+ 10X,’XI-P AND ETA-P COORDINATES’)
END

5.1.2 Kinematic Analysis

Following the process of inputting data to describe a model, the main routine calls sub-
routine KINEM. This subroutine is organized according to Algorithm K-II of Sec. 3.2.2,
with a few minor additional steps.

Subroutine KINEM. This subroutine increments the time variable T from the
initial time TO to final time TE by steps DT. At each time step, the subroutine performs
position, velocity, and acceleration analysis, and reports the results by making calls to
other subroutines. Two flags are set by this subroutine:

JACOB A flag for Jacobian matrix evaluation.
EQ.0: Jacobian matrix does not need to be evaluated.
EQ.1: Jacobian matrix must be evaluated.
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IENCT A flag for evaluation of constraint equations.
EQ.0: No function needs to be evaluated.
EQ.1: Constraint equations must be evaluated.
EQ.2: The right side of the velocity equations must be evaluated.
EQ.3: The right side of the acceleration equations must be evaluated.

Position Analysis. The flags JACOB and IFNCT are both set to 1 and a call
is made to subroutine NUTON?2 for position analysis.

Velocity Analysis. The flag JACOB is set to 1 and IFNCT is set to 2. A call
to subroutine FUNCT evaluates the Jacobian matrix and the right side of the velocity
equations. At this step, subroutine LINEAR (refer to Sec. 3.3.5) is used to solve for the
velocities according to Eq. 3.14.

Acceleration Analysis. The flag JACOB is set to 0, since the Jacobian matrix
and its corresponding L and U matrices are still valid from the velocity analysis step,
and IFNCT is set to 3. A call to subroutine FUNCT evaluates the right side of accelera-
tion equations. At this step, subroutine LINEAR is used to solve for the acceleration,
according to Eq. 3.16.

The velocities and accelerations determined by subroutine LINEAR are originally
stored in array F. The velocities and accelerations are then transferred from array F to
arrays QD and QDD, respectively, by subroutine TRANSFE. The contents of arrays QD
and QDD are organized in a way similar to the arrangements of array Q.

Computationally, the evaluation of trigonometric functions is time-consuming.
Each time new values for coordinates are calculated, the sine and cosine of the rotational
coordinates are computed and stored in array RB by subroutine TRIG. Array RB is
dimensioned RB(NB,2), and, for example, for body i,

sin ¢, = RB(1,1), cos ¢; — RB(1,2)
The contents of array RB are used in several other subroutines.
Subroutines KINEM, TRANSF, and TRIG are as follows:

SUBROUTINE KINEM (A, 1A ,MAXA ,MAXIA)

COMMON /ANALYS/ JACOB, IFNCT

OCOMMON /CONST / NRMAX, FEPS,EPSLU .

COOMMON /MPNTR / M1 ,M2 ,M3 ,M4 ,MS ,M6 ,M7 ,M8 ,M9 ,M10

COMMON /NELMNT/ NB,NR,NT,NG,NG3,NS,ND,NP

COMVDN /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N14,N15,N16
COMMON /ROWCOL/ IR, IC,M,N

COMWON /TIME / TO,TE,DT,T

DIMENSION A(MAXA), IA(MAXIA)

WRITE (1,200)

C..... Initialize time variable
ISTEP=0
T=TO
C.... Calculate sine and cosine of rotational coordimnates
CALL TRIG (A(N6),A(N10),NB)
C..... Position (coordinate) analysis......
10 JAQOB=1 )
IENCT=1
CALL NUTON2 (A, IA,MAXA ,MAXIA,A(N10),A(N15),NB,JACOB)
C..... Velocity analysis........ovvvuueenns
IENCT=2

CALL FUNCT (A, IA,MAXA,MAXIA,A(N10),A(N11),A(N14),A(N15),JACOB)
CALL LINEAR (A(N14),A(N15),A(N16),IA(M10) M, JACOB,EPSLU)
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C..... Transfer velocities from F array to QD array
CALL TRANSF (A(N11),A(N15),N)

C..... Acceleration analysis............ ...
JACOB=0
IFNCT=3

CALL FUNCT (A, IA,MAXA,MAXIA, (N10),A(N11),A(N14),A(N15), JACOB)
CALL LINEAR (A(N14),A(N15),A(N16),IA(M10),M, JACOB,EPSLU)

C.....Transfer accelerations from F array to QDD array

CALL TRANSF (A(N12),A(N15),N)
C..... Report the result for this time step

CALL REPORT (A(N6),A(N7),A(N10),A(N11),A(N12),I1A(M7),NB,NP ,T)
C..... Increment the time variable

ISTEP=1STEP+1
T=TO+DT*FLOAT( I STEP)
IF (T.GT.TE.OR.DT.EQ.0.0) STOP
GO TO 10
200 FORMAT(///,10X,’***** KINEMATIC ANALYSIS *****> //)
END

SUBROUTINE TRANSF (B,F,N)
DIMENSION B(N),F(N)
DO 10 I=1,N
10 B(1)=F(I)
RETURN
END

SUBROUTINE TRIG (RB,Q,NB)

DIMENSION RB(NB,2),Q(3,NB)

DO 10 I=1,NB
RB(I,1)=SIN(Q(3,1))
RB(1,2)=008(Q(3,1))

10 CONTINUE
RETURN
END

Subroutine NUTON2. Subroutine NUTON2 is similar to subroutine NEW-
TON of Sec. 3.4.3, with minor modifications. This subroutine is called by subroutine
KINEM for position analysis when JACOB = 1 and IFNCT = 1. This subroutine calls
subroutine FUNCT to evaluate the Jacobian matrix and constraint equations. If Newton-
Raphson iteration fails to converge in NRMAX iterations, analysis will be terminated
with the message

***CONVERGENCE FAILED***
This failure may be caused by either of the following:

1. Large time increments DT (numerical failure)
2. Nonexistence of a solution (physical impossibility)

Subroutine NUTON?2 is as follows:

SUBROUTINE NUTON2 (A,IA,MAXA,MAXIA,Q,F,NB,JACOB)

COMMON /CONST / NRMAX, FEPS,EPSLU

COMMDN /MPNTR / M1 ,M2,M3,M4 ,M5,M6,M7 ,M8 ,M9 ,M10 ‘

OOMMON /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N14,N15,N16

OOMVON /ROWCOL/ IR, IC,M,N

DIMENSION Q(N),A(MAXA), TAMAXIA),F(M)

DO 20 I=1,NRMAX
CALL FUNCT (A,IA,MAXA,MAXIA,A(N10),A(N11),A(N14),A(N15),JACOB)
CALL LINEAR (A(N14),A(N15),A(N16),TA(M10),M, JACOB,EPSLU)
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1CONVR=0
DO 10 J=1,N
IF(ABS(F(J)).GT.FEPS) ICONVR=1
10 Q(IN=Q(¥)-F(I)
CALL TRIG (A(N6),Q,NB)
IF (ICONVR) 30,30,20
20 CONTINUE
WRITE(*,200)
STOP
30 RETURN
200 FORMAT(SX, ’® ***CONVERGENCE FAILED***’)
END

Subroutine REPORT. This subroutine reports the values of coordinates for all
bodies in the system at the end of each time step. In addition, the global coordinates,
velocities, and accelerations of the special points of interest are computed and reported.

Subroutine REPORT is as follows:

SUBROUTINE REPORT (RB,PI,Q,QD,QDD,IPI,NB,NP,T)
DIMENSION Q(3,NB),QD(3,NB),QDD(3,NB),PI(NP,2),IPI(NP),RB(NB,2)
WRITE(1,200) T
DO 10 I=1,NB
10  WRITE(1,210)I,(Q(J,1),J=1,3),(QD(J,1),J¥=1,3),(QDD(J,1),J=1,3)
15 IF (NP.EQ.0) RETURN
WRITE(1,220)
DO 20 K=1,NP
I=IPI(K)
XPMX=PI(K,1)*RB(1,2)-PI(X,2)*RB(I,1)
YPMY=PI(K,1)*RB(I,1)+PI(X,2)*RB(I,2)
XP =Q(1,I)+XPMX
YP =Q(2,I1)+YPMY
XDP =QD(1,1)-YPMY*QD(3,1)
YDP =QD(2,1)+XPMX*QD(3,1)
XDDP=QDD(1,1)-XPMX*QD(3,1)**2-YPMY*QDD(3,1)
YDDP=QDD(2,1)-YPMY*QD(3, 1) **2+XPMX*QDD(3,1)
WRITE(1,230) K,XP,YP,XDP,YDP,XDDP, YDDP

20 CONTINUE
RETURN

200 FORMAT(/,'TIME =’ ,F10.4,/," == =-n-nm=-nzmm=- '/,
+ »"BODY’ , 5X, 'X’,7X, 'Y’ ,5X, *PHI’ ,6X, XD’ ,6X, YD’ ,4X, 'PHID’,
+ 'XD’ , 6X, YD’ ,6X, *XDD’ , 6X, *YDD')

210 FORMAT(I3,6F8.3,3F9.3)
220 FORMAT(’POINTS OF INTEREST',/,’ NO.’,5X,’'X’,7X,’Y’,6X,
*XD’ , 6X, 'YD’ ,6X, 'XDD’, 6X, *YDD’
230 FORMAT(I3,4F8.3,2F9.3)
END

5.1.3 Function Evaluation

Subroutine FUNCT. The constraint equations, the right sides of the velocity
and acceleration equations, and the Jacobian matrix are evaluated by calling subroutine
FUNCT. This subroutine initializes a row number counter IR to zero. This counter gives
the total number of functions or rows in the Jacobian matrix. The counter is incremented
by subroutines RVLT, TRAN, SMPL, and DRVR. After all of the constraint equations
have been considered, IR is equal to M (or N). )

Prior to evaluation of the entries in the Jacobian matrix, the entries in the matrix
FQ are initialized to zero. Subroutine FUNCT calls subroutines RVLT, TRAN, SMPL
(twice), and DRVR to evaluate those equations and the Jacobian matrix corresponding
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to revolute joints, translational joints, ground, simple constraints, and driver links. The
order of calling these subroutines has been written arbitrarily and does not have any

significance.
Subroutine FUNCT is as follows:

SUBROUTINE FUNCT (A, IA,MAXA,MAXIA,Q,QD,FQ,F, JACOB)

OOMMON /MPNTR / M1 ,M2,M3,M4 ,M5 ,M6 ,M7 ,M8 ,M9 ,M10

COMMDN /NELMNT/ NB,NR,NT,NG,NG3,NS,ND,NP

COMVDN /NPNTR / N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N14,N15,N16
COMMON /ROMCOL/ IR, IC,M,N

DIMENSION A(MAXA), IA(MAXIA),Q(N),QD(N),FQ(M,N),F(M)

IR=0
IF (JACOB.EQ.0) GOTO 20
DO 10 I=1,M
DO 10 J=1,N
10 FQ(1,J)=0.0
20 IF (NR.GT.0) CALL RVLT (A(N1),1A(M1),A(N6),Q,QD,FQ,F,NR,NB)
IF (NT.GT.0) CALL TRAN (A(N2),I1A(M2),A(N6),Q,QD,FQ,F,NT,NB)
IF (NG.GT.0) CALL SMPL (A(N3),I1A(M3),Q,FQ,F,NG3,NB)
IF (NS.GT.0) CALL SMPL (A(N4),1A(M4),Q,FQ,F,NS,NB)
IF (ND.GT.0) CALL DRVR (A(NS5),IA(MS),Q,FQ,F,ND,NB)
RETURN
END

Subroutine RVLT. Subroutine RVLT is called by subroutine FUNCT when
NR > 0. It evaluates the constraint equation violations, the right sides of the velocity
and acceleration equations, and the entries of the Jacobian matrix corresponding to the
revolute joints in the system (refer to Sec. 4.2.1). Array F is used to store the constraint
equation violations and the right sides of the velocity and acceleration equations,
depending on the value of the flag IFNCT. The nonzero entries of the Jacobian matrix
are stored in matrix form in array FQ, when JACOB = 1.

Subroutine RVLT is as follows:

SUBROUTINE RVLT (RJ,IRJ,RB,Q,QD,FQ,F,NR,NB)
COMVDN /ANALYS/ JACOB, IFNCT
COWDON /ROMOL/ IR, IC,M,N
DIMENSION RJI(NR,4),IRJ(NR,2),RB(NB,2),Q(3,NB),QD(3,NB),
+ FQM,N) ,F(M)
DO 100 K=1,NR
I=IRJ(K,1)
J=IRJ(X,2)
XPIMXI= RJ(K,1)*RB(I,2)-RJ(K,2)*RB(I,1)
YPIMYI= RJ(K,1)*RB(I,1)+RJ(K,2)*RB(I,2)
XPIMXJ= RJ(K,3)*RB(J,2)-RI(K,4)*RB(J,1)
YPIMYJ= RI(K,3)*RB(J,1)+RJ(K,4)*RB(J,2)
GOTO (10,20,30) ,IFNCT
C...... Constraint equations
10 F(IR+1)= Q(1,1)+XPIMXI-Q(1,J)-XPIMXJ
F(IR+2)= Q(2,1)+YPIMYI-Q(2,J)-YPIMYJ
GOTO 40
C..... Right-hand-side of velocity equations
20 F(IR+1)= 0.0
F(IR+2)= 0.0
GOTO 40
Coo.t Right-hand-side of acceleration equations
30 F(IR+1)= XPIMXI*QD(3,I)**2-XPIMKI*QD(3,J)**2
F(IR+2)= YPIMYI*QD(3,I)**2-YPIMYJ*QD(3,J)**2
40 IF (JACOB) 60,60,50
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C..... Jacobian matrix nonzero entries
50 ICI= 3*(I-1)
ICI= 3*(J-1)
FQ(IR+1,ICI+1)= 1.0
FQ(IR+1,ICI+3)=-YPIMYI
FQ(IR+1,ICJ+1)=-1.0
FQ(IR+1,ICJ+3)= YPIMYJ
FQ(IR+2,ICI+2)= 1.0
FQ(IR+2,ICI+3)= XPIMXI
FQ(IR+2,ICJ+2)=-1.0
FQ(IR+2,1CJ+3)=-XPIMXJ
60 IR=IR+2
100 CONTINUE
RETURN
END

Subroutine TRAN. This subroutine is called by subroutine FUNCT when
NT > 0. It evaluates the constraint equation violations, the right sides of the velocity
and acceleration equations, and the entries in the Jacobian matrix corresponding to the
translational joints in the system (refer to Secs. 4.2.1 and 4.3.1). The organization of
this subroutine is similar to that of subroutine RVLT.

Subroutine TRAN is as follows:

SUBROUTINE TRAN (TJ,ITJ,RB,Q,QD,FQ,F,NT,NB)

OOMMON /ANALYS/ JACOB, IFNCT

COMVON /ROMCOL/ IR, IC,M,N

DIMENSION TJ(NT,7),ITJ(NT,2),RB(NB,2),Q(3,NB),QD(3,NB),

+ FQM,N) ,F(M)
DO 100 K=1,NT
1=ITJ(K,1)
J=ITI(K,2)

XPIMXI = TJ(X,1)*RB(I,2)-TJ(X,2)*RB(I,1)
YPIMYI = TJ(K,1)*RB(I,1)+TJ(K,2)*RB(I,2)
XPJMXJ = TI(K,5)*RB(J,2)-TI(K,6)*RB(J,1)
YPIMYJ = TI(K,5)*RB(J,1)+TJ(K,6)*RB(J,2)
XPIMXQI= TJ(K,3)*RB(I,2)-TJ(K,4)*RB(I,1)
YPIMYQI= TJ(K,3)*RB(I,1)+TJ(K,4)*RB(I,2)
Goro (10,20,30) ,IENCT

Covvnnn Constraint equations
10 F(IR+1)= XPIMXQI*(Q(2,J)+YPIMYJ-Q(2,1)-YPIMYI)
+ -YPIMYQI * (Q(1,J)+XPIMXJ-Q(1, 1) -XPIMXI)
F(IR+2)= Q(3,1)-Q(3,3)-TI(K,7)
GOTO 40
Coovns Right-hand-side of velocity equations

20 F(IR+1)= 0.0
F(IR+2)= 0.0
GOTO 40
C.oovvnn Right-hand-side of acceleration equations
30  FCIR+1)=-QD(3,1)*(2.*(XPIMXQI*(QD(1,1)-QD(1,J))
+ +YPIMYQI *(QD(2,1)-QD(2,7)))
+ +QD(3,1)*(XPIMKQI*(Q (2,1)-Q (2,3))
+ © YPIMYQI*(Q (1,1)-Q (1,1))))
F(IR+2)= 0.0
40 IF (JACOB) 60,60,50
Coovenns Jacobian matrix nonzero entries
50. ICI= 3*(I-1)
ICJ= 3*(J-1)
FQ(IR+1,ICI+1)= YPIMYQI
FQ(IR+1,ICI+2)=-XPIMXQI
FQ(IR+1,ICI+3)=-(Q(1,J)+XPIMXJ-Q(1,1))*XPIMXQI
+ -(Q(2, 1)+YPIMYT-Q(2,1))*YPIMYQI
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FQ(IR+1, ICJ+1)=-YPIMYQI
FQ(IR+1,ICJ+2)= XPIMXQI
FQ(IR+1, ICJ+3)= XPJMXJ*XPIMXQI+YPJMYJ *YP IMYQI
FQ(IR+2,ICI+3)= 1.0
FQ(IR+2,ICJ+3)=-1.0
60  IR=IR+2
100 CONTINUE
RETURN
END

Subroutine SMPL. Subroutine SMPL evaluates the constraint equation viola-
tions, the right sides of the velocity and acceleration equations, and the entries in the
Jacobian matrix for simple constraints (refer to Sec. 4.2.7). It is called by subroutine
FUNCT when NG > 0 and NS > 0. Grounded bodies are treated as bodies with three
simple constraints. The organization of this subroutine is similar to that of subrou-
tine RVLT.

Subroutine SMPL is as follows:

SUBROUTINE SMPL (SM, I1SM,Q,FQ,F,NS,NB)

COMMDN /ANALYS/ JACOB, IFNCT

COMMDN /RONMOOL/ IR, IC,M,N

DIMENSION SM(NS),ISM(NS,2),Q(3,NB),FQ(M,N),F(M)
DO 100 K=1,NS

I=ISM(K,1)
L=1SM(K,2)
GoTO (10,20,20) ,IFNCT
C...... Constraint equation
10 F(IR+1)= Q(L,I)-SM(K)
GOTO 40
C...... Right-hand-side of velocity/acceleration equation

20 F(IR+1)= 0.0
40 IF (JAOOB) 60,60,50
C...... Jacobian matrix nonzero entry
50 ICI= 3*(I-1)
FQ(IR+1,ICI+L)= 1.0
60 IR=IR+1
100 CONTINUE
RETURN
END

Subroutine DRVR. This subroutine is called by subroutine FUNCT when
ND > 0. It evaluates constraint equation violations, the right sides of the velocity and
acceleration equations, and the entries in the Jacobian matrix for the driver links in the
system (refer to Sec. 4.2.8). This is the only function evaluation subroutine in which the

time variable T is used explicitly.
Subroutine DRVR is as follows:

SUBROUTINE DRVR (DR, IDR,Q,FQ,F,ND,NB)

COMMON /ANALYS/ JACOB, IFNCT

OCOMMON /ROMCOL/ IR, ICM,N

COMWDN /TIME / TO,TE,DT,T

DIMENSION DR(ND, 3), IDR(ND,2),Q(3,NB) ,FQ(M,N) ,F(M)

DO 100 K=1,ND
I=IDR(K,1)
L=IDR(K,2)
GoTo (10,20,30) ,IENCT

Covvnn Constraint equation
10 F(IR+1)= Q(L,I)-DR(K,1)-T*(DR(K,2)+T*DR(X,3)/2.0)

GOTO 40
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C.oovtts Right-hand-side of velocity equation
20 F(IR+1)= DR(K,2)+T*DR(K, 3)
GOTO 40
Coovvtn Righ-hand-side of acceleration equation

30 F(IR+1)= DR(K,3)
40 IF (JACOB) 60,60,50
Covenne Jacobian matrix nonzero entry
50 ICI= 3*(I-1)
FQ(IR+1,ICI+L)= 1.0
60 IR=IR+1
100 CONTINUE
RETURN
END

5.1.4 Input Prompts

A list of all the prompts given by the program KAP is given here. The prompts are

labeled for easy reference, from @ through @ In examples that follow, each prompt
is referred to by its corresponding label. The parameter k in the prompts is problem-

dependent. For example, in a model with two revolute joints, prompt @ is repeated
twice and k takes on values of 1 and 2.
The prompts given are as follows:

@ 060 ® 0o

®
®

ENTER NB, NR, NT, NG, NS, ND, NP
FOR BODY k ENTER INITIAL EST. ON X, Y, PHi

FOR REV. JOINT NO. k ENTER BODY NOS. | AND J
XI-P-1, ETA-P-|, XI-P-J, ETA-P-J

FOR TRAN. JOINT NO. k ENTER BODY NOS. | AND J
XI-P-l, ETA-P-l, XI-Q-l, ETA-Q-I, XI-P-J, ETA-P-J

ENTER BODY NO. FOR NO. k GROUNDED BODY

FOR SIMPLE CONSTRAINT NO. k ENTER BODY NO.
AND 1, 2, OR 3 FOR X, Y, OR PHI CONSTRAINT DIRECTION

FOR DRIVER NO. k ENTER BODY NO.
1,2,0R3 FOR X, Y, OR PHI
INITIAL POSITION, VELOCITY AND ACCELERATION

FOR POINT OF INTEREST NO. k ENTER BODY NO.
XI-P AND ETA-P COORDINATES

ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT

5.2 SIMPLE EXAMPLES

In the following sections, several simple examples are presented. The steps needed to
set up a model for each mechanism are explained. Input data for the kinematic analysis
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program are listed for each example. Similar steps can be followed to analyze many
other mechanisms using this program.

5.2.1 Four-Bar Linkage

The four-bar linkage shown in Fig. 5.2(a) is considered for kinematic analysis. This
mechanism consists of four bodies, including ground; four revolute joints; one driver;
and one point of interest (point P). The body numbers and their corresponding coordi-
nate systems and the revolute joint numbers are shown in Fig. 5.2(b).

Initial estimates for the coordinates are as follows:

x, = 0.0, y = 0.0, ¢, = 0.0

x, = 0.5, y, = 0.8, ¢, = 60.0°

x; = 2.6, y; = 2.6, ¢, = 30.0°

x, = 3.5, v, = 1.8, b, = 60.0°
The local coordinates for the revolute joints are

&1 =0.0, 7t = 0.0, & =-1.0, 75 = 0.0
£ =1.0, n5 = 0.0, &= -2.0, 75 = 0.0
£ =120, 7§ = 0.0, £ =120, 75 =0.0
£ = -2.0, 1y = 0.0, b=12s5, 7% =0.0

Body 2 is the driver link, and its corresponding driving variable is ¢,, with
¢ = 1.0472 rad (60°) and a constant angular velocity of @ = 6.2832 rad/s. For one
complete revolution, one second of simulation time is required. A time increment of
0.025 s results in increments of 9° in ¢,.

a X D
|
1

< 2.5

(a) (b}

Figure 5.2 (a) A four-bar linkage, and (b) the corresponding joint numbers and body-fixed coor-
dinate systems.
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The point of interest (point P) is located on body 3. The local coordinates of this

point are

& =05,

nt =15

When KAP is executed, the following sequence of prompts is given by the pro-
gram (refer to Sec. 5.1.4), followed by inputs from the user to describe the model:

_U
I
o
3

=
=3

OEEEEOOOEOEOE

k

-

A WON

A W N

input

4,4,0,1,011
0.0,0.0,0.0
0.5,0.8,1.047
2.6,2.6,05
3.5,1.8,1
1,2,0.0,0.0,—1.0,0.0
2,3,1.0,0.0,—2.0,0.0
3,4,2.0,0.0,2.0,0.0
4,1,-2.0,0.0,2.5,0.0
1
2,3,1.0472,6.2832,0.0
3,05,1.5
0.0,1.0,0.025

Note that all of the angles are given in radians. The coordinates are given as estimates,
except for ¢, (since this is the independent variable) and the coordinates of the nonmov-

ing body 1.

The output of this simulation for one second, with increments of 0.025 s, provides
41 time steps (including ¢t = 0 s). A portion of the output for the first two time steps is

as follows:
x K KXk K
TIME = 0000

BODY X Y
1 .000 .000
2 .500 .866
3 2.824 2.553
4 3.574 1.687
POINTS OF INTEREST
NO. X Y
1 2.663 4.126

PHI
.000
1.047
.423
1.004

XD
-11.472

KINEMATIC ANALYSIS

XD
.000
-5.441
-11.085
-5.644

YD
6.692

* K K K K

YD
.000
3.142
6.732
3.590

XDD
-77.042

PHID XDD YDD PHIDD
.000 .000 .000 .000
6.283 -19.739 -34.190 .000
.246 -52.441 -39.898 15.646
3.344 -32.702 -5.709 12.264
YDD
-42.500
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TIME = 0250

BODY X Y PHI XD YD PHID XDD YDD PHIDD
1 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .358 .934 1.204 -5.866 2.252 6.283 -14.148 -36.856 .000
3 2.531 2.708 .434 -12.220 5.558 .581 -38.613 -53.046 11.545
4 3.423 1.774 1.091 -6.354 3.306 3.581 -24.465 -16.189 7.116
POINTS OF INTEREST
NO. X Y XD YD XDD YDD
1 2.355 4.279 -13.133 5.455 -56.693 -55.617

It can be observed that at + = 0, the program corrects the initial estimates on the
coordinates. The value of ¢, is kept constant according to the value given with the driv-
ing constraint. Also, the coordinates of body 1 remain unchanged, since body 1 is the
ground. At each time step, the body numbers and the corresponding coordinates, veloc-
ities, and accelerations of their points of interest are reported. Figure 5.3 shows the path
taken by point P for one revolution of the crank.

Figure 5.3 Path covered by point of inter-
est P.

5.2.2 Slider-Crank Mechanism

The slider-crank mechanism of Sec. 4.4.1 is now considered for kinematic analysis. The
mechanism is modeled in two slightly different forms.

Model 1. The first model considers the mechanism as discussed in Sec. 4.4.1.
There are four bodies, three revolute joints, and one translational joint in this model.
The flow of input data that describe this model is as follows:

Prompt k Input
©) 4,3,1,1,0,1,0
® 1 0.0,0.0,0.0
® 2 ~86.6,50.0,5.76
) 3 ~467.0,40.0,0.2
® 4 ~663.1,0.0,0.0
© 1 4,3,0.0,0.0,-200.0,0.0
© 2 3,2,300.0,0.0,~100.0,0.0
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© 3 2,1,100.0,0.0,0.0,0.0

@ 1 4,1,0.0,0.0,100.0,0.0,0.0,0.0
® 1 1

© 1 2,3,5.76,-1.2,0.0

©) 0.0,5.3,0.1

Figure 5.4 shows acceleration of the slider for one complete revolution of the crank.

600

8
=)

200

—200

Time (sec)

Figure 5.4 Acceleration of the slider versus time.

Model 2. The translational joint of the first model is replaced in model 2 by
two simple constraints. The slider, body 4, is constrained in the y and ¢ directions. The
flow of input data that describe this model is as follows:

Prompt k v Input

4,3,0,1,2,1,0

®
@ 1 0.0,0.0,0.0
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-86.6,50.0,5.76
~467.0,40.0,0.2
~663.1,0.0,0.0
4,3,0.0,0.0,—200.0,0.0
3,2,300.0,0.0,—100.0,0.0
2,1,100.0,0.0,0.0,0.0

1

4,2

43

2,3,5.76,-1.2,0.0
0.0,5.3,0.1

Consider the quick-return mechanism of Sec. 4.4.2. Model 1 consists of six bodies, five
revolute joints, and two translational joints. The flow of input data for this model is

as follows:

)
X
o
3

e
=3

OOOEEOOOOOEEEEEEE

-

D oA WN

g s W N

-

Input

6,5,2,1,0,1,0

0.0,—300.0,0.0
70.0,—60.0,1.1

50.0,40.0,0.5

90.0,60.0,1.1

80.0,180.0,6.0

0.0,200.0,0.0
3,4,50.0,0.0,0.0,0.0
2,5,250.0,0.0,60.0,0.0
1,2,0.0,0.0,—250.0,0.0
5,6,—60.0,0.0,0.0,0.0
1,3,0.0,300.0,—50.0,0.0
4,2,0.0,0.0,—10.0,0.0,0.0,0.0,
6,1,0.0,0.0,—10.0,0.0, 0.0,500.0
1

3,3,0.52,3.0,0.0

0.0,2.1,0.025 -
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The velocity of body 6 (the slider) is plotted from the output in Fig. 5.5.

750

N\

500

250

| I |

| I T |

—250

(

500 — 7771717 T 1T T [ 7T T T T [ T T T T

0.0 0.5 1.0 1.5 2.0
Time (sec)

Figure 5.5 Slider velocity of a quick-return mechanism versus time.

5.3 PROGRAM EXPANSION

The computer program that is listed in the opening of Sec. 5.1 and in subsections 5.1.1
through 5.1.3 has been presented in its simplest form. This program may be expanded to
accommodate, for example, other forms of input/output or other types of kinematic
joints. These improvements to KAP are suggested at the end of this chapter, through a
series of exercises (problems). These suggestions are only guidelines — the modifica-
tions can also take other forms. Actual use of the program, for modeling and analyzing
a wide range of examples, will provide the user with additional ideas for expansion and
modification.

PROBLEMS

The following problems provide examples that can be simulated by using a kinematic analysis
program such as KAP. Many of the problems can be simulated on the existing listed version of
KAP. Other problems may require some modifications or extensions to the program. Guidelines
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for improving the versatility and increasing the capability of KAP are included for some of those
problems. The majority of the problems involve the analysis of four-bar mechanisms. The four-
bar mechanism is one of the simplest closed-loop mechanisms, since it has only 1 DOF. A wide
variety of motion can be generated by this mechanism. In the following four-bar mechanisms, a,
b, c, and d denote, respectively, the length of the crank, coupler, follower, and frame. The four-
bar mechanisms are classified under various types. The following nomenclature is used to describe
each type of four-bar mechanism:"

s = length of shortest link
[ = length of longest link
m, n = lengths of the other two links

5.1 A double-crank four-bar mechanism is shown in Fig. P.5.1. For this class, s + [ <m + n
and the shortest link is the frame. Assume a = 2.1, b = 1.6, ¢ = 2.6, and d = 0.9 (any
unit). Drive link AB through 360° with a constant angular velocity. Monitor the path, veloc-
ity, and acceleration of points B and C.

5.2 A rocker-crank four-bar mechanism is shown in Fig. P.5.2. For this class, s + | <m + n
and the shortest link is one of the side links. Assume that a = 0.8, b = 2.1, ¢ = 1.6, and
d = 2.5. Drive link AB through 360° and find the forbidden zones for the rocker CD and the
angle of oscillation o.

Figure P.5.1 ] Figure P.5.2

5.3 A double-rocker four-bar mechanism is shown in Fig. P.5.3. For this class, s + [ <m + n
and the shortest link is the coupler. Assume thata = 2.1, b = 0.8, ¢ = 2.5, and d = 1.6.
Drive the coupler BC through one revolution. Determine the forbidden zones and the range
of the angles of oscillation for the two rockers AB and CD.

Figure P.5.3
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5.4 Repeat Prob. 5.3 but instead of driving the coupler BC, drive one of the rockers:

(a) Drive the rocker AB counterclockwise.

(b) Drive the rocker AB clockwise.

(¢) Determine the forbidden zones and the range of the angle of oscillation, and then com-
pare the result with the result of Prob. 5.3.

5.5 Figure P.5.5 shows a change-point four-bar mechanism. For this class, s + [ =m + n.
Assume that a = 1.2, b = 1.4, ¢ = 1.6, and d = 1.0. Drive link AB through 720°. Ob-
serve that after one revolution of AB, point C finds a new position at C'. After the second
revolution of AB, point C returns to its initial position. Plot the rotational acceleration of CD
versus its rotational angle.

5.6 The Galloway mechanism (Fig. P.5.6) is another example of a change-point four-bar mecha-
nism. In this mechanism, @ = d, b = ¢, and a < b. Assume that a = 1.0 and b = 1.5.
Drive AB through 720° and observe that CD executes only 360°.

Figure P.5.5 Figure P.5.6

5.7 Figure P.5.7 shows another example of a change-point four-bar mechanism. Configura-
tion (a) is usually called parallelogram linkage and configuration (c) is called antiparallel
linkage. Configuration (b) is the change-point state. A mechanism starting in configuration
(2) and going through configuration (b) may end up in configuration (a) or (c). During posi-
tion analysis, if the mechanism is near the change-point state, the Newton-Raphson iteration
may converge to any of the two solutions. Drive AB through 360° and monitor the position
of point C. Repeat for different values of time increment DT.

b c
e}
a
A B D c
D QO (@) ) (@]
2 /. 4
(a) (b) {c)
Figure P.5.7

Note: A mechanism at a change-point state becomes kinefnatically indeterminate. During
numerical analysis, if the constraint equations are assembled in the exact change-point state,
the Jacobian matrix loses rank; i.e., the number of degrees of freedom increases at the
change-point state. Since the Jacobian matrix becomes singular, a solution cannot be ob-
tained at such a state. '
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5.8 1t would be useful to save the input data in a file, in the same sequence in which it is entered
interactively. This input data file could then be used if further simulation of the same prob-
lem were needed.

(a) Include any required statements in the program to save a copy of the interactively en-
tered data in a disk file. The name of the file should be specified by the user.

(b) The program should be able to accept data either interactively or from a file.

(¢) Include a WRITE statement after each READ statement to echo a copy of the input data
to the output unit.

5.9 Provide the capability for the program to save the output response at every time step in an
output file.

5.10 If the output is written into the terminal, the flow of data may be fast. In subroutine
KINEM, after reporting the response and before incrementing T, include a WRITE and a
READ statement making the program pause. The write statement should prompt the user to
enter a C for continue or a T to terminate.

5.11 Modify the program to accept data on angles either in radians or in degrees. If the data are
given in degrees, then the program must convert them to radians. Similarly, the program
should provide the output in either radians or degrees.

5.12 For some mechanisms, the user may be interested in a complete kinematic analysis. How-
ever, sometimes position analysis or position and velocity analysis may be sufficient. It
would be more efficient to avoid unwanted levels of analysis. Modify the program by intro-
ducing a flag as follows:

IANAL = 1: Perform position analysis.
IANAL = 2: Perform position and velocity analysis.
IANAL = 3: Perform position, velocity, and acceleration analysis.

5.13 Formulate additional kinematic joints in the program. Follow the form of the subroutines for
the revolute joint that already exists in KAP. Include the following joints:

(a) Revolute-revolute joint (Eq. 4.14.)
(b) Revolute-translational joint (Eq. 4.16)
(¢) Spur gears (Eq. 4.18)

5.14 Include other types of driver constraints in the program. Some useful constraints are:
@ = —c@)=0
) x; —x; — c(t) =0
©y—y—at)=0
(d) Eq. 4.39
(e) Eq. 4.40
The time-dependent functions can be provided either as a table of data or as a closed-form
function such as a sine or a cosine function.

5.15 In position analysis, the Newton-Raphson algorithm uses values of the coordinates from the
previous time step as an estimate on ¢ to start the iteration. These estimates can be im-
proved as follows:

qi ~ qifl + At"li——l + %Athi—l
Include this modification in subroutine KINEM to improve the efficiency of the program.

5.16 Employ a Gaussian elimination (or L-U factorization) algorithm with full or partial (row in-
terchange) pivoting in KAP to identify any redundant constraint equation. This process can
be performed once on the Jacobian matrix before the start of the kinematic analysis.

5.17 Simple but general algorithms and program listings for spline functions can be found in most
numerical computation textbooks. Include such a program in KAP. These subroutines may
be called for interpolation when a curve is defined in discrete form.
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5.18 When nonstandard constraint equations are to be included in KAP to model a particular
mechanism, it is not efficient to modify and compile the entire program. In this case a user-
supplied subroutine can be written to implement the constraints. In subroutine FUNCT, in-
clude a call to a subroutine USRCON before the return statement, as follows:

CALL USRCON (A, 1A, MAXA, MAXIA)

Then, include a dummy user-supplied subroutine:

SUBROUTINE USRCON (A, 1A, MAX, MAXIA)
C.....Include all of the common blocks

DIMENSION A(MAXA), IA(MAXIA)

C....Insert new constraints, define the Jacobian, etc.
RETURN

END

This subroutine will be called by subroutine FUNCT at every time step. If there is no non-
standard function in the model, this subroutine will not affect the simulation. However, if
equations are inserted in this subroutine and it is linked to KAP, then each time this subrou-
tine is called, the nonstandard constraints will be included in the model.

5.19 When constraint equations are formulated in terms of a set of Cartesian coordinates, the re-
sultant Jacobian is a sparse matrix; i.e., most of the elements of the matrix are zero. There
are matrix factorization algorithms designed specifically for sparse matrices:’ These al-
gorithms are much more efficient than the standard full-matrix algorithms, such as subrou-
tine LU used in KAP. If you have access to such sparse-matrix algorithms, employ them in
KAP to improve the efficiency of the program.

5.20 The linkage shown in Fig. P.5.20 is used to advance a film strip intermittently by the motion
of point P, which periodically engages and disengages from the sprocket holes in the film-
strip as crank CD rotates clockwise at 1800 rpm. "

(a) Plot the path of point P.
(b) How far apart should the sprocket holes be placed on the film strip?
(c) What is the mean speed of the film strip?

Figure P.5.20

5.21 Assign values to the lengths of the links of the four-bar mechanism shown in Fig. P.5.21.
Rotate the crank and monitor the path of several points on the coupler, such as Py, P, .. ..

*The HARWELL Subroutine Library offers FORTRAN subroutines for sparse-matrix factorization. For
more detail, write to HARWELL Subroutine Library, United Kingdom Atomic Energy Authority, Computer
Science and System Division, AERE Harwell, Oxfordshire.
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Figure P.5.21 Figure P.5.22

5.22 The crank-rocker four-bar mechanism shown in Fig. P.5.22 is a web cutter.” Link AB ro-

tates with a constant angular velocity of 100 rpm.
(a) Determine the angle of the crank at the time of cutting.
(b) What should be the velocity of the web at the time of cutting?

5.23 Figure P.5.23 shows an elliptic trammel. Any point P on the link KL traces out an ellipse.
Define several points Py, P,, . . . as special points of interest on link KL, and then rotate this
link through 360° and plot the paths of these points.

5.24 A dough-kneader mechanism is shown in Fig. P.5.24.' The crank AB rotates through 360°.
Note that in order to model this mechanism two revolute joints are needed at B. Plot the
path of point P. Assume AB = 6, BC = EF = 13, BE = CF = 6, DC = 15, AD = 18,
BP = 26.

Z

-~ —_

Figure P.5.23 Figure P.5.24

*These mechanisms have been adopted for kinematic simulation from the following reference:
Artobolevsky, L. 1., Mechanisms in Modern Engineering Design, Vol. 1, MIR Publishers, Moscow, 1975. Many
other simple to complicated mechanisms can be found in this and subsequent volumes of the same reference.
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5.25 Figure P.5.25 shows a translator mechanism for a drafting table.' The lengths of the links
comply with the conditions AB = DC, AD = BC, FG = EH, and EF = HG. Verify that
the system has 2 DOF. Also show that parallel lines can be drawn by link p. This can be
done in several ways; for example, keep the angle between EF and EH constant (include the
constraint ¢, — ¢; — ¢ = 0), and then rotate link AB.

Figure P.5.25

5.26 Repeat Prob. 5.25 and assume that ring g consists of two rings g, and ¢, as shown in Fig.
P.5.26. The two rings are connected by revolute joint /. Angle o between the two rings can
be varied in order to change the angle of link p. While keeping « constant during any given
simulation, perform several simulations for different values of a.

Figure P.5.26

5.27 Figure P.5.27 shows two pantograph mechanisms where T is the tracing point and D is the
drawing point. Since O, D, and T are on a straight line, the paths traced by 7" and D are

*See footnote to Prob. 5.24.
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(a) (b)
Figure P.5.27

geometrically similar. In order to set up a simulation model, the following tasks must
be performed:

(a) Carry out Prob. 5.12 for position analysis only.
(b) Carry out Prob. 5.14(d) and ().

Select an outline to be traced; for example, a known geometrical shape. Discretize the out-
line into several points, and then find the x and y coordinates of these points with respect to
the global xy coordinate system. These coordinates provide driver constraints on x"and y”.
A pantograph mechanism can be modified easily to draw nonsimilar or warped traces. For
example if point D is moved to position D, (see Fig. P.5.28), the shape of the drawn path
will be different from the traced path. Similarly, if D is moved to position D,, then the
drawn path will be quite different from the traced path. By moving D to different positions,
completely unfamiliar shapes can be generated. If the result is displayed on a graphics ter-
minal, interesting paths may be observed. Make this problem a computer graphics oriented
project.

The mechanism shown in Fig. P.5.29 is known as a Kostitsyn approximate straight-line sys-
tem, where b = 4a, ¢ = 5a, and AD = b.* When link BF rotates, point E describes a path

Figure P.5.28 Figure P.5.29

*See footnote to Prob. 5.24.
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of which a portion is an approximate straight line. Verify this and note that the linkage
ABCD is a change-point four-bar mechanism.

5.30 Figure P.5.30 shows the Peaucellier-Lipkin exact straight-line mechanism. Choose

e=12,f=30,andg = 1.4. Rotate link RE and observe that point § describes a straight
line. Determine the length of the straight line drawn by point S.

5.31 The Peaucellier-Lipkin circle inversion mechanism is shown in Fig. P.5.31." Assume that

a=20,b=16,and c = 1.4, where FE < c¢. Rotate link ER and observe that point S
describes a circle ¢ centered at point O. Verify that FO = FE@® — bY/ (c? — FE® and
that the radius of the circle is r = c(F' 0/FE) (for simulation assume FE = 0.8).

Figure P.5.30 Figure P.5.31

5.32 The Hart mechanism for drawing ellipses is shown in Figure P.5.32. The lengths of the links

comply with the conditions n = omand e = V2m. Verify that when link MR rotates, point
S describes a straight line and any intermediate point P on link RS describes an ellipse.

5.33 The Chebyshev six-bar reversing mechanism is shown in Fig. P.5.33. Verify that one rcevo-

lution of crank EF corresponds to one revolution of link JK in the opposite direction. As-
sume EF = 1.08, FG = GH =GI =2,1J =JK = 1.14, HK = 2.78, and EH = 2.66.

5.34 The mechanism shown in Fig. P.5.34 is a simplified version of a thread-and-needle guiding

system of a sewing machine.’ Rotate crank ¢ and plot the path of point H. Assume AB = 10,
BE =9,DE = DF = 6.5,EF =5,FG = 17.5,a =f=10,b =7,d = l,and e = 4.

5.35 For the mechanism shown in Fig. P.5.35, verify that when the crank rotates, the output link

dwells. Plot the angular velocity of the output link versus the crank angle. Assume that
OA = 0.8, AB = 3.6, BC =2.3,CH = DE = EF =3.5,0H =15, AD = CG = 4,
BD =2, and FG = 1.

5.36 For the mechanism shown in Fig. P.5.36, find that portion of the crank orientation for which

the output link dwells. Plot the path of the motion of the slider. Assume OA = 1, AB = 4,
BC = OF =3.5,CE = 5,and BD = OF = 2.5.

5.37 A Geneva-wheel mechanism is shown in Fig. P.5.37. For a specific design, the following

information is known: the radius of the crank p; the number of slots n; the half angle be-
tween two adjacent slots 8 = ar/n; the center distance d = p/sin B. 1t is also known that
the crank axis is perpendicular to the slot axis at the moment of engagement or disengage-

*See footnote to Prob. 5.24.
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Figure P.5.32 Figure P.5.33 "

D

Figure P.5.34 Figure P.5.36
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Wheel

Figure P.5.37

ment. In order to model this mechanism, two types of constraints must be employed inter-

changeably:

(a) When the pin is disengaged from the wheel, the wheel does not rotate.

(b) When the pin is engaged with a slot, the pin-slot combination can be modeled as a revo-
lute-translational joint. It is clear that the axis of the translational joint will be different
from one revolution to the next.

Include the constraint equations and the proper logic for switching between these equations

in KAP.

A walking robot mechanism is shown in Fig. P.5.38(:;1).]IE The mechanism consists of two

identical TI-shaped legs, each having two feet. When one pair of feet is on the ground, the

D, Dy

tSee footnote to Prob. 5.24.
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(b)

Figure P.5.38

other pair moves forward by the rotation of two parallel cranks A;C’'A, and A;C 1A, The
lengths of the links comply with the conditions:

AB =BD,=1 i=1,234
B,C = B,C = B,C, = B,C, =1
A,C' = A,C" = A,C| = A,C]| = 0.355
AA, = AJA, = C'C| = 0.634

CC' = C,C| = 0.785
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A kinematic analysis of this system requires the following:

(a) If all of the bodies and revolute joints that are shown in the figure are included in the
model, redundant constraint equations will result. Therefore, the redundant equations
must be eliminated.

(b) During one-half of the crank revolution, one pair of feet must be constrained to the
ground, and during the other half of the crank revolution, the other pair of feet must be
constrained to the ground. This process must be performed interchangeably in every rev-
olution of the crank.

If the result of the simulation is viewed on a graphics terminal, a sequence of graphs, as

shown in Fig. P.5.38(b), will be observed.

Some relatively complex mechanisms can become interesting simulation projects. For the

more complex systems, graphics output can be a valuable analysis and design tool. Exam-

ples of such mechanisms can be found in the following:

(a) Recliner chairs

(b) Sofa-sleepers

(¢) Crank mechanisms for automobile windows

(d) Convertible tops in some automobiles

Find data on these mechanisms and try to. simulate their kinematics.



