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Planar Kinematics

If all links of a mechanical system undergo motion in one plane or in parallel planes, the
system is said to be experiencing planar motion. In this chapter, only planar mecha-
nisms, in which all links experience planar motion, are considered. A more descriptive
explanation of conditions for planar motion is given in Chap. 9.

In Chap. 3 several examples of kinematic analyses were given using a minimal set
of Lagrangian coordinates. Kinematic analysis of mechanical systems using Cartesian
coordinates is no different in principle from the method of analysis with Lagrangian co-
ordinates. The use of Cartesian coordinates, however, results in a larger number of coor-
dinates and constraint equations. The number of degrees of freedom of a system,
however, is the same regardless of the type of coordinates used. Since the number of in-
dependent coordinates is equal to the number of degrees of freedom of a system, then
the number of dependent Cartesian coordinates is generally greater than the number of
dependent Lagrangian coordinates.

Cartesian coordinates are used exclusively in this chapter and the remainder of the
text.

4.1 CARTESIAN COORDINATES

In order to specify the configuration or state of a planar mechanical system, it is first
necessary to define coordinates that specify the location of each body. Let the xy coordi-
nate system shown in Fig. 4.1 be a global reference frame. Define a body-fixed &;m; co-
ordinate system embedded in body i. Body i can be located in the plane by specifying
the global coordinates r; = [x, y]! of the origin of the body-fixed coordinate system and
the angle ¢, of rotation of this system relative to the global coordinate system. This
angle is considered positive if the rotation from positive x axis to positive §; axis is
counterclockwise.
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Figure 4.1 Locating point P relative to
X the body-fixed and global coordinate systems.

A point P; on body i can be located from the origin of the &7, axes by the vector
$¥. The coordinates of point P; with respect to the &,7; coordinate system are & P and nt.
The local (body-fixed) components of vector §; are shown as s'? = [£7, "1 Since P; is
a fixed point on body i, £ P"and 7} are constants, and therefore s'7 is a constant vector.
The global xy components of vector 5% are shown as s’. The elements of s vary when
body i rotates. Point P, may also be located by its global coordinates P =[xy It
is clear that the components of #7 are not necessarily constant, since body i may be in
motion. Position vectors such as r,P . sf', s’f , r;, and so forth, are 3-vectors. However, in
planar motion, since the z component of these vectors remains constant, the vectors are
treated as 2-vectors.

The relation between the local and global coordinates of point P; is

v’ =1+ AsT “4.1)
where
cos ¢ —sin ¢
A = 4.
! [sin ¢ cos d)],- 4.2)

is the rotational transformation matrix for body i. The transformation matrix A, is the
simplified form of the following 3 X 3 matrix:
cos¢p —singd 0
A, =]|sing cosd O
L 0 0 1|,

Equation 4.1 in expanded form can be written as

x" B x} + cos ¢ —sin ¢
)’Pi— Y sin cos ¢ |;

Hl

or
xf =x; t ff cos ¢; — nf sin ¢;
Yl =y, + £ sin &, + ! cos b, @9
Note that .
st = As (4.4)

is the relationship between the local and global components of vector §7.

2
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The vector of coordinates for body i is denoted by the vector

qi = [rT5 d)]lr
=[x,y ¢l 4.5)
For a mechanical system with b bodies, the coordinate vector is the 3 X b vector

q=[q.q....q]
= [xl’yl, ¢1,x2,)’2, ¢27 v s Xps Vs d’b]T (46)

where q without a subscript denotes the vector of coordinates for the entire system.
An algebraic 3-vector with a superscript prime is one that contains local compo-

nents; e.g., 8’7, s/, n;, or @;. An algebraic 3-vector without a superscript prime is one

that contains global components; e.g., s/, s, n;, @, rl, or r;.

Example 4.1
For the mechanism shown in the illustration, body 3 has translational coordinates
r; = [1.2,2.5]" and ¢p; = 5.67 rad. Point B on body 3 has local coordinates £ =
—1.8 and 5 = 1.3. Find the global components of vector §3 and the global coor-
dinates of B. . L R ey
PN ) /QL}E

S

o e
\ : \\‘ i,” ; 3 <

Solution The global components of 5 are found to be

&= A = cosp —sing||-1.8] [-0.72
? 3 sing cos |y 1.3 2.10

Hence the global coordinates of B are

ﬁ—r+§—12+ -0.72| _ [0.48
o3 2.5 2.10 4.60
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4.2 KINEMATIC CONSTRAINTS

In a mechanical system, the links and bodies may be interconnected by one or more kine-
matic joints. For example, the quick-return mechanism shown in Fig. 4.2(a) consists of
five moving bodies interconnected by five revolute joints and two sliding joints. Since
this mechanism undergoes planar motion, the motion of each moving body is described
by three coordinates —two translational and one rotational. The kinematic joints in this
system can be described as algebraic constraint equations.

In the following subsections, several commonly used kinematic joints are formu-
lated. Some of these joints fall under the lower-pair category (LP) and the rest fall in the
higher-pair (HP) category. The technique employed to formulate kinematic constraint
equations for these joints may be applied to most other commonly used or special-
purpose joints.

In general, formulation of lower-pair joints does not require any information on the
shape (outline) of the connected bodies. For example, the quick-return mechanism of
Fig. 4.2(a) can also be represented as shown in Fig. 4.2(b), where the body outlines are
drawn arbitrarily. To derive constraint equations describing each joint, one need know
only the position of the joint with respect to the bodies to which it is connected.

In some higher-pair joints, either the entire shape or a partial shape of the body
outline must be known. For example, in analyzing the motion of a cam-follower pair,
the full or partial outlines of the cam and the follower must be described. In some other
higher-pair joints, instead of the shape of the outline, the shape or curvature of a slot on
one of the bodies must be known.

In the following subsections, the constraint equations are denoted by ® with a
superscript indicating the constraint type and the number of algebraic equations of that

(a) (b}

Figure 4.2 Quick-return mechanism: (a) schematic presentation and (b) its equivalent
representation without showing the actual outlines.
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expression. For example, @7 denotes the revolute joint constraint which contains two
equations, and ®""" denotes the revolute-franslational joint constraint which contains
one equation.

4.2.1 Revolute and Translational Joints (LP)

Revolute and translational joints are lower-pair kinematic joints. Examples of revolute
joints are joints A, B, C, D, and O in the quick-return mechanism of Fig. 4.2. Schematic
yrepresentation of a revolute joint connecting to bodies i and j is shown in Fig. 4.3. The
center of the joint is denoted by point P. This point can be considered to be two coinci-
dent points; point P; on body i and point P; on body j. Location of point P on body i and
body j can be described by the two vectors 57 and §f, where s’/ = [£7,1"]] and
s’j’-’ =&, 9" ]jT are constants. The constraint equations for the revolute joint are obtained
from the vector loop equation

> P
r,-+§f—§j—Fj=

()

or
rts —r—s =20
which is equivalent to
O =1+ AsT -1, —AsT =0 4.7

More explicitly, Eq. 4.7 can be written in the form

L 0
D¢ = [’“ x,] = [ } (4.8)
yi =y 0

Equation 4.8 can be written in expanded form, using Eq. 4.3, as

x; + &7 cos ¢, — Ml sin ; — x; — &7 cos ¢; + m? sin @, 0
(I)(r,2) = j J J J T =
y, + &5 sin ¢, + i cos ¢, — y; — &7 sin ¢; — 7] cos ¢, 0
“4.9)

The two constraints of Eq. 4.7 reduce the number of degrees of freedom of the system
by 2. Therefore, if the two bodies of Fig. 4.3 are not connected to any other bodies,
then they have 4 degrees of freedom.

Figure 4.3 Revolute joint P connecting
bodies i and j.
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In the quick-return mechanism of Fig. 4.2, the two sliders (T, and T,) are good
examples of translational joints. This type of joint may appear in different shapes in a
mechanism. Figure 4.4 illustrates several forms and presentations of translational joints.
In a translational joint, the two bodies translate with respect to each other parallel to an
axis known as the line of translation; therefore, there is no relative rotation between the
bodies. For a translational joint, there are an infinite number of parallel lines of translation.

Figure 4.4 Different representations of a translational joint.

A constraint equation for eliminating the relative rotation between two bodies i

and j is written as
b — & — (b — ) =0 (4.10)
where ¢? and ¢ are the initial rotational angles. In order to eliminate the relative motion
between the two bodies in a direction perpendicular to the line of translation, the two
vectors §; and d shown in Fig. 4.5 must remain parallel. These vectors are defined by
Jocating three points on the line of translation—two points on body i and one point on
body j. This condition is enforced by letting the vector product of these two vectors be

X

Figure 4.5 A translational joint between bodies i and j.
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zero. A simple method would be to define another vector i; perpendicular to the line of
translation and to require that d remain perpendicular to 7;; i.e., that

nd=0
or
=X ef = 2D+ F =y -y =0 @.11)

where

xf - xf x}.J —_ xf

n; = [ P _ R d=|75 P

Yi Vi Y Vi

If n; = s;, then

AR B G )
N B G I R

Therefore, Eqs. 4.10 and 4.11 yield the two constraint equations for a translational joint as’

0D — [(xf =07 =D = OF =yAeT =aD| 0] )
¢i_¢j—(¢i_¢j) 0
Note that a translational joint reduces the number of degrees of freedom of a system by 2.

Example 4.2

For the revolute and translational joints shown in the accompanying illustration,
define the points needed in order to use Eqs. 4.9 and 4.12 and determine their
coordinates.

(4)

Solution The body-fixed coordinates of point A are
& = —L6, n3 = 2.3, £ =0, ng = —1.5

"The vector product of §; and d gives directly the first constraint of Eq. 4.12.
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These can be used for the revolute joint constraints of Eq. 4.9. For the transla-
tional joint, two points on body 2 and one point on body 3 are selected on a line
parallel to the line of translation. The coordinates of these points are:

¢ =0, m; =0, & =1, n; =0, & =0, n; = —0.5
These coordinates can be used in the translational joint constraints of Eq. 4.11.

4.2.2 Composite Joints (LP)

The total number of constraint equations and coordinates describing a mechanical system
can be reduced if some of the joints and bodies are combined into composite joints. This
technique only simplifies the analytical formulation without changing the physical kine-
matic characteristics of the system. For example consider three bodies connected by two
revolute joints, as shown schematically in Fig. 4.6(a). This system requires nine coordi-
nates (three per body) and four constraint equations (two per revolute joint). Therefore,
this system has 9 — 4 = 5 degrees of freedom. This system may be represented by the
kinematically equivalent system shown in Fig. 4.6(b). In this representation, body k and
the two revolute joints are considered to be a revolute-revolute joint (rigid link) without
any coordinates. This configuration requires six coordinates for bodies i and j, and as
will be shown presently, one constraint equation for the revolute-revolute joint. There-
fore, this equivalent system has 6 — 1 = 5 degrees of freedom.

CXATS T

(a) (b}

Figure 4.6 Two representations of the same system: (a) with three bodies and two revolute joints;
(b) with two bodies and one revolute-revolute joint.

To formulate the constraint equation for a revolute-revolute joint, see Fig. 4.7,
which illustrates two bodies connected by a link having length /. The length of the link
is the distance between the centers of two revolute joints. The joint connectivity points
on bodies i and j are shown as P; and P;. These points have fixed components s'f and s’f
with respect to their corresponding body-fixed coordinate systems. The constraint equa-
tion can be derived by requiring that the magnitude of vector

P P
X, — X
d=r+s—-r,—s =7 7}
Yi — i
connecting points P; and P; remain constant and equal to /. This constraint is written in
the form

Pl =d'd-12=0 (4.13)
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Figure 4.7 Revolute-revolute joint: a link
connecting two bodies with two revolute
joints.

Equation 4.13, if expanded, is written
D= (f - X+ O =y - 1P=0 (4.14)

A second type of composite joint is called the revolute-translational joint. Fig-
ure 4.8 illustrates three examples of this type of joint. In Fig. 4.8(a), body i is connected
to body & by a revolute joint and body k is connected to body j by a translational joint.
The revolute joint, the translational joint, and body k can be combined into a composite
joint in which point P on body i moves along an axis T on body j. Similar composite
joints can be used in the mechanism of Fig. 4.8(b) by eliminating roller k as a body. The
mechanism of Fig. 4.8(c) is identical in principle to the other two mechanisms; here,
point P on body i moves on an axis parallel to the line of translation.

Figure 4.9 illustrates schematically a revolute-translational joint between bodies i
and j. Point P, on body i (the revolute joint) can move along the line of translation 7 (the
translational joint) on body j. Two arbitrary points P; and Q; are chosen on the line of
translation. A constraint equation for this joint is found by requiring two vectors d and
§; to remain parallel. Or, if a vector ii; is defined perpendicular to the line of transla-
tion, then

nd=0 4.15)

{c)

‘Figure 4.8 Examples of composite revolute-transational joints.
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Figure 4.9 Revolute-translational joint configuration.

provides the same condition. If s; = n,, then

W[4 -3
S T v xj = %} yP Vi

and the constraint equation is written as
OV = (x? = xN)(yf —y) — P —yD 6P —x) =0 (4.16)
Figure 4.10 shows an example of a mechanism with two revolute-translational joints.
The slider and the revolute joint at point B can be combined to represent a revolute-

translational joint. Similarly, the roller A and the revolute joint O can be combined and
modeled as another revolute-translational joint.

Figure 4.10 A mechanism with two revo-
Jute-translational joints.

4.2.3 Spur Gears and Rack and Pinion (HP)

Spur gears are used to transmit motion between parallel shafts. A pair of spur gears is
shown in Fig. 4.11. The gears in Fig. 4.11(a) give the same motion to the shafts as the
pair of equivalent roiling cylinders in Fig. 4.11(b). It is assumed that there is no slippage
between the two cylinders.

The constraint formulation for a pair of spur gears as represented in Fig. 4.12(a)
can be found easily. In this configuration the centers of the gears (shown here as circles)
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// (7)\\

o ]

o \
/
() /
/
\\ _ /
Figure 4.11 (a) A pair of spur gears, and
(a) {b) (b) a pair of equivalent rolling cylinders.

(a) (b)

Figure 4.12 A pair of spur gears attached to (a) a nonmoving body and (b) a moving body.

do not move with respect to the xy coordinate system (ground or chassis). The points of
contact R; and R;, at time ¢, have equal velocities; i.e.,

vi = vf (@)
If body-fixed &;m, and &;m; coordinate systems are defined for each gear, then Eq. a can
be written as

. . pidi = —p; )
Note that ¢, and ¢, always have opposite signs. Integrating Eq. b yields
et = (= dp; + (& — ¢))p; = 0 4.17)

where ¢ and ¢J‘-’ are the initial conditions. Equation 4.17 is the constraint equation for a

pair of spur gears with nonmoving centers. In this equation ¢, and ¢; must be assigned

their accumulated angle of rotation; i.e., when bodies i and j rotate, the magnitudes of
¢, and ¢; may exceed 2m, 4, . . ..
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The constraint formulation for a pair of spur gears attached to a moving body k is
shown in Fig. 4.12(b). Since all three bodies, i, j, and k, can rotate, the no-slippage
condition at the contact point between bodies i and j can be written as

(é’i - oJp; = —(¢j - ¢k)Pj ()
Integrating Eq. c yields
¥ = [(; — ¢°) — (b — dDIpi + [(§ — &) = (b = SDIp; = 0
(4.18)
If body k does not rotate, then ¢, = ¢ and Eq. 4.18 becomes identical to Eq. 4.17.

In the constraint formulation of Egs. 4.17 and 4.18, it is assumed that bodies i and
j remain in contact. This condition is provided by the revolute joints connecting the
gears to a third body. Therefore, there is only one relative degree of freedom between
bodies i and j.

A rack and pinion can be considered a special form of a pair of spur gears in
which the rack is a portion of a gear having an infinite pitch radius; thus its pitch circle
is a straight line. A rack and pinion and its equivalent system, consisting of a rolling
cylinder on a flat surface (a straight line), are shown in Fig. 4.13(a) and (b). It is
assumed that no slippage occurs at the point of contact for the equivalent system.

P RN )

() ? v
Figure 4.13 (a) A rack-and-pinion mecha-
(a) {b) nism, and (b) the equivalent system.

Constraint formulation for a rack and pinion is derived for the two configurations
in Fig. 4.14. The first configuration of a rack and pinion is shown in Fig. 4. 14(a), where
the pinion (body i) can rotate only with respect to the xy coordinate system and the rack
can translate only parallel to the x axis. The condition for no slippage at the point of
contact is written as

bip; = X; (d)
Integrating Eq. d yields
QU7 = (¢; — dDp; — (x; — x?) =0 (4.19)

A second configuration of a rank-and-pinion mechanism is shown in Fig. 4.14(b),
where the pinion can both rotate and translate parallel to the rack and the x axis. The
no-slip condition is

X+ ('bipi = X; (e)
Integrating Eq. e yields

P2 = (g al) + (¢~ $Dpy — (g = x)) =0 (4.20)
In the constraint formulation of Eqs. 4.19 and 4.20, it is assumed that bodies i and
j remain in contact. This condition is provided by the revolute and translational joints
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! — 0]
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L

Figure 4.14 Rack-and-pinion mechanism in two different configurations.

(@) (b)

connecting bodies i and j to a third body. Therefore, there is only one relative degree of
freedom between bodies i and j.

In the configurations shown in Fig. 4.14, it is assumed that the line of translation
remains parallel to the x axis. Constraint equations for the general case can also be
derived where the third body can be in motion with respect to the xy coordinate system.
Derivation of this constraint equation is left as an exercise for the reader.

4.2.4 Curve Representation

In some of the higher-pair joints, the shape of the outline of contacting bodies must be
described analytically or numerically for kinematic analysis. If, for example, the outline
of a cam is circular or elliptical, then it can be described analytically. However, in gen-
eral, the outline must be described numerically.

Consider, as an example, the cam shown in Fig. 4.15(a). The outline of this cam
can be discretized and described in polar coordinates at the points shown in Fig. 4.15(b).
Angle 0 is incremented counterclockwise from zero to 27r in equal or variable incre-
ments, and the corresponding values of s are recorded, as shown in Table 4.1. In order
to describe this outline in a closed-form expression, a cubic interpolating spline function
can be used.

A spline function is a function consisting of polynomial pieces on subintervals,
joined together according to certain smoothness conditions. The choice of degree for the
polynomial pieces most often made is 3. In this case, the resulting splines are termed
cubic splines. The cubic polynomials are joined together in such a way that the resulting
spline function has continuous first and second derivatives everywhere. For the curve
segments shown in Fig. 4.16, if two cubic polynomials s, and s, are determined, then,
the continuity conditions at point B, i.e., those for § = 6°, are

S = 85
ds, _ ds,
de deo

de*  do’
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2

(a) (b)

Figure 4.15 (a) A cam follower, and (b) discretization of the cam outline.

TABLE 4.1
Number 6 (deg) s (cm)

1 0 3.70
2 30 4.55
3 60 6.80
4 70 8.38
5 80 10.65 C §,= b30% + 5,07 + b0 + by
6 90 12.46
7 100 11.10
2 iég ggi s, =830% + 2,07 + 3,0 + ag
10 150 4.63
11 180 3.80
12 225 3.62
13 270 3.80
14 315 3.62
15 360 3.70

Figure 4.16 Two cubic polynomials describing segments of a curve.

A detailed discussion of cubic splines is outside the scope of this text. In most
textbooks covering this subject, well-developed algorithms and computer programs are
presented that can be applied to a discretized table of data, such as Table 4.1, to deter-
mine the corresponding cubic polynomials.

Example 4.3

The curve shown in the illustration is discretized and a portion of the recorded
data is listed. A cubic spline function algorithm finds three cubic polynomials for
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three segments of the curve as follows:

s, = —6.5380° + 3.2300° — 2.1730 + 4.108
6.5380° — 8.5386> + 1.3580 + 3.755
~9.6156° + 10.8466° — 6.3966 + 4.788

Show that s, and s, and their first and second derivatives are continuous at point B.
Also, for a point P where 6” = 0.26 rad, find s, ds/d0, and d’s/d¢".

S

S3

Point 6 (rad) s (cm)
A 0.2 3.75
B 0.3 3.57
c 0.4 3.35
D

0.5 3.10

Solution At B, 6° = 0.3; therefore s, = s, = 3.57. The first derivatives of s,

and s, are
- dsy 2
— = —19.6146° + 6.4606 — 2.173
dé
ds, 2
i 19.6146° — 17.0760 + 1.358

Evaluating the first derivatives for § = 0.3 yields ds,/df = ds,/df = —2.000.
The second derivatives of s, and s, are

d’s,
— = —39.2280 + 6.460
do* ? ,
d’s,
—= = 39,2280 — 17.076
do*
Evaluating the second derivatives for § = 0.3 yields d’s,/d6’ = d’s,/d6* =

—5.308.
For point P, since #° < 6° < @*, function s, yields s = 3.646, ds/df =
—1.819, and d%s/d6* = —3.739.

For any point on a curve, the én coordinates are found from the relations

= 0
§ = s cos .21)
m = s sin 0
Then, the first and second derivatives of ¢ and 7 with respect to 6 are
ﬁ= -5 sin0+§cos0
dé do
(4.22)
@ _ cos 6 + ds sin 0
g o
dé do
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and
2 d d2
%égz=—scos()—2d—;sin0+gaicos0
4.23)
2 d 2
dn:—ssin0+2-—scos6+d—-s-sin0

6 do d6*
For a point P, Eq. 4.22 represents the components of a vector tangent to the curve at P,

as shown in Fig. 4.17, such as
g’ = [”‘] (4.24)
v

where u = d¢/df and v = dn/df.

Figure 4.17 Vector tangent to a curve at
point P.

Example 4.3a
Determine the &n components of P, as defined at the beginning of Example 4.3,
and then find the tangent vector g at P.

Solution Taking 6 = 0.26 and s = 3.646 and substituting into Eq. 4.21 yields
&P = 3,523 and 7" = 0.937. Since ds/d9 = —1.819, then Eq. 4.22 yields
dé/de = —2.695 and dn/dd = 3.056; i.e., gh= [—2.695,3.056]".

The outline (or a portion of the outline) of a body can be expressed in polar coordi-
nates with respect to a point different from the origin of the £n) axes. As shown in Fig. 4. 18,
the discretized portion of the outline is defined in terms of s and 6 with respect to a point Q

Figure 4.18  Polar coordinates of a point P
with respect to point Q and the £ axis.
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and an axis parallel to the £ axis. In this case, the £ and n coordinates of any point on
that portion of the outline are

E=¢%2+ s cos 0

(4.25)
n=mn%+ssin0

4.2.5 Cam-Followers (HP)

Cam-followers are used in a variety of designs; Fig. 4.19 shows a few of the many pos-
sible design variations. The contacting surfaces of a cam or a follower, in general, are

(b} {c)

s

Y

(e

Figure 4,19 Several commonly used cam followers: (a) disk cam with offset point fol-
lower, (b) disk cam with radial roller follower, (c) disk cam with offset flat-faced fol-
lower, (d) translating cam with roller follower, (e} disk cam with oscillating roller
follower, and (f) disk cam with oscillating flat-faced follower.
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not expressible in closed-form functions. In this case, the cubic spline function method
of Sec. 4.2.4 can be employed. In this section, the Kinematic formulations for some of
the cam-follower configurations are derived. It is assumed that the cam and the follower
always remain in contact; i.e., no chattering is allowed.

The first formulation is derived for a disk cam with an offset point follower, as
shown in Fig. 4.20. The cam is connected to a third body (possibly the chassis) with a
revolute joint, and the follower is connected to this body with a translational joint. The
third body may or may not move with respect to the global xy coordinate system. The
coordinates of the contacting point P on body j (the follower) are known constant quan-
tities s’ = [¢",7"]]. The global coordinates of P, are

P 1P
r; —rj+Ajsj

The contacting point on body # (the cam) does not have constant coordinates; i.e., the
elements of vector 8" = [¢”, 7”17 are functions of 6. The global coordinates of P; are

rf =+ A"
Then, the constraint equations for this cam-follower pair can be written as

) = — =0 (4.26)

J

Figure 4.20 A disk cam and point-fol-
lower pait.
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7]~ L

(4.27)

In expanded form, Eq. 4.26 is written
X, cos¢p —sin¢ [|scos@| |x| _ |cos ¢ —sin ¢
vl sing cos ¢p|;]s sin b |, v singp coso|;

Another type of cam-follower pair is the disk cam with offset roller follower
shown in Fig. 4.21(a). The contact points P; and P; do not have known constant coordi-
nates with respect to the bodies they are on. Vector d connecting point P; to point Q; is
perpendicular to the tangent vector to either of the outlines at the contact point. The
components of vector d can be found as follows:

d=r1, +As'? —r,— As?
Vector d is perpendicular to the tangent vector to the cam outline at P;; therefore gld=0.
This condition alone does not eliminate the possibilities of penetration and separation
shown in Fig. 4.21(b) and (c). If the magnitude of vector d is equal to the radius p of
the roller, then there is no penetration or separation. This condition can be written as
d’d — p’ = 0. Hence, there are two constraint equations for this pair:

T
(f2,2) _ g:d — 0
P [de _ p{| l:o] (4.28)

This formulation is also valid for the cam-follower of Fig. 4.19(e).

2
[ i
(b)
Pi
[
(c)

(a)

Figure 4.21 - (a) Vector loop closure for a disk cam with follower pair, (b) penetration,
and (c) separation of the outlines.
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(a}
{c)

Figure 4.22 (2) A disk cam with an offset flat-faced follower, (b) penetration, and (¢)
separation of the outlines.

A disk cam with an offset flat-faced follower is shown in Fig. 4.22(a). A vector i
is defined perpendicular to the contacting line (or face) of the follower, which must
remain perpendicular to the tangent vector g ie., giTnj must be equal to 0. This con-
dition alone does not eliminate the possibility of penetration or separation shown in
Fig. 4.22(b) and (c). A vector connecting points P; and @; is defined as d = r/ — rf.
This vector must also remain perpendicular to i e, d'n; must be equal to 0. There-
fore, the two constraint equations for this pair are

n. 0
e [ﬁ ':1] _ [O] (4.29)
J.

This formulation is also valid for the cam-follower of Fig. 4.19(f).

In the cam-follower formulation, @ is treated as an artificial coordinate. Hence, the
vectors of coordinates for bodies i and j of a cam-follower pair are q; = [x,, ¢, 0] and
q; =[x,y (b]jT. It can be observed that for any of the cam-follower pairs shown in
Fig. 4.19, there is one relative degree of freedom between the cam and its correspond-
ing follower.

The constraint formulation has been derived in Egs. 4.26, 4.28, and 4.29 for a
general configuration applicable to various cam-follower mechanisms. For specific
cases, the constraint formulation can be obtained in a much simpler form. The following
example illustrates this point.

Example 4.4

Derive the constraint equation for the disk cam—follower shown in the illustration.
The cam and the follower are attached to a nonmoving body. The motion of the
follower is in the y direction, and the outline of the cam is circular.
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Solution If the radii of the cam and the roller are p; and p;, then a constraint
equation can be written as

O=y-y+n~-d=0 @)
where d is expressed as a function of ¢;:
d = (p, + p;) cos y + & sin ¢,
The angle vy is found from the equation

siny =
pi Tt p;
It can be observed that for this special case, only one constraint equation is
needed, and there is no need to introduce an artificial coordinate.

4.2.6 Point-Follower (HP)

Figure 4.23 shows part of a mechanism in which a slot is cut into one of the bodies.
Pin A, which is rigidly attached to the other body, can slide in the slot. This type of
kinematic higher pair is called a point-follower joint.

A point-follower joint between bodies i and j is shown schematically in Fig. 4.24.
Pin P, which is attached to body i, can slide and rotate in a slot on body j. The coordi-
nates of any point on the slot, relative to the body-fixed coordinate system on body j,
can be described by Eq. 4.21; i.e., §f =g cos 0 and nj’-’ = s sin 0. The constraint
equations for this joint are similar to the constraint equations of a revolute joint, with the
exception that the position of point P on body j is not constant but varies as a function
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/5

()

b

X

Figure 4.23 The motion relative to Figure 4.24 Point-follower joint: Pin P is attached rigidly
body 1 of point A attached to body 2 can to body i and can move in the slot embedded in body j.
be modeled by a point-follower joint.

of §. Hence, the constraint equations are

(P42 = xi = (x; + & cos ¢; = n; sin ¢;) _
P =| P, P 0 (4.30)
yi — ()’j + gj sin ¢; + m; cos d’,)

In this formulation 8 is treated as an artificial coordinate and is added to the vector of
coordinates, and both of the constraint equations of Eq. 4.30 are employed to describe
the point-follower joint. This formulation does not provide any stopping condition when
the pin reaches either end of the slot.

4.2.7 Simplified Constraints

The constraint equations describing certain kinematic conditions between two bodies can
be simplified, in general, or replaced by other simple equations if one of the bodies is a
nonmoving body; e.g., if one body is the chassis or ground. As an example, consider
" the quick-return mechanism shown in Fig. 4.25. Slider 3 is constrained to the ground
with a translational joint and can move parallel to the y axis. Similarly, slider 4 is con-
strained to the ground with a translational joint and can move parallel to the x axis. The
constraint equations of Eq. 4.12 can be used to formulate the kinematics of these two
sliders. However, other equations can be used instead of Eq. 4.12. For example, slider 3
cannot move in the x direction or rotate; therefore, two equations of the form x; =
constant and ¢, = constant can be used. Similarly, since slider 4 cannot move in the
y direction or rotate, y, = constant and ¢, = constant can describe the translational con-
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Figure 4.25 A quick-return mechanism.

N

straints for the slider. Therefore, in order to constrain translation of the origin or angular
motion of a rigid body, one or more of the following equations may be used:

d=x—¢=0 4.31)
b=y —-¢,=0 (4.32)
b=¢, —c;=0 (4.33)

where ¢,, ¢,, and ¢, are constant quantities. Figure 4.26 illustrates graphically the three
constraints of Egs. 4.31 through 4.33.
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Figure 4.26 The body can move with (a) constant x;, (b) constant y;, and (c) constant &;.
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To constrain the motion of point P; on body i in the x or y direction, the following
equations, which incorporate the results of Eq. 4.3, can be employed:

d=xl—-c
=x, + £ cos d; — i sin ¢, — ¢, =0 (4.34)
O =y] - cs
=y, + & sin ¢, + m; cos ¢, — cs
where ¢, and ¢5 are constants.

Il
o

(4.35)

4.2.8 Driving Links

In kinematically driven systems, the motion of one or more links (bodies) is usually defined.
For example, in the quick-return mechanism of Fig. 4.27(a) or the slider-crank mecha-
nism of Fig. 4.27(b), the driving link i rotates with known constant angular velocity w.
If kinematic analysis is to be performed using the appended driving constraints method
of Sec. 3.2.2, then the motion of the driving link must be specified in the form of a
driving constraint equation. For either of the mechanisms of Fig. 4.27, one moving con-
straint of the form
P =, — d,(1) = 0 (4.36)

can be employed, where d,(z) = ¢° + wt and ¢! is the angle ¢, at ¢ = 0. If the driving
link rotates with a constant angular acceleration «, then Eq. 4.36 can be used with
d(t) = tar* + % + ¢°, where ¢° is the angular velocity at 1 = 0.

Equation 4.36 is not the only type of driving equation. Depending on the mecha-
nism and the motion of its driving link(s), other forms of driving equation may be required.
Some simple driving constraints are:

P4 = x, — dyt) = 0 (4.37)
PN =y — dyt) = 0 (4.38)
DU = 5" — g4 (1) = 0 (4.39)
P4 =3P — 4 (1) = 0 (4.40)
Driving
link
Driving
link

(a) (b)

Figure 4.27 Driving link of (a) a quick-return mechanism and (b) a slider-crank
mechanism.
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D

~——\ 0 [ —>

(a) {b)

Figure 4.28 (a) The motion of the slider is controlled in the x direction, and (b) the
motion of point P is controlled in the y direction.

For example, if the motion of the slider shown in Fig. 4.28(a) is controlled as a function
of time, then Eq. 4.37 can be used as the driving constraint. For the mechanism of
Fig. 4.28(b), the motion of point P in the y direction is controlled as a function of time;
therefore, Eq. 4.40 can be employed as the driving constraint.

4.3 POSITION, VELOCITY, AND ACCELERATION ANALYSIS

The kinematic constraint equations ® derived in the preceding sections for planar kine-
matic pairs are, in general, nonlinear in terms of the coordinates q. If the number of
coordinates describing the configuration of a mechanical system is n and the number
of degrees of freedom of the system is k, then m = n — k kinematic constraints can be
defined as

O =d(q) =10 (4.41)
In addition, k driving constraint equations must be defined as
O = d(q,1) =0 (4.42)

Equations 4.41 and 4.42 represent a set of n nonlinear algebraic equations which can be
solved for n unknowns q at any given time ¢ = t.

The procedure suggested here for solving Eqs. 4.41 and 4.42 is the appended driv-
ing constraint method of Sec. 3.2.2. These equations are identical in form to Eq. 3.12.
The main difference between the formulation in this chapter and that in Chap. 3 is the
dimension, i.e., the number of coordinates and, therefore, the number of constraint
equations.

Example 4.5
A four-bar linkage was formulated for kinematic analysis in Example 3.2, using
three coordinates, two kinematic constraint equations, and one driving constraint
equation. Determine the number of coordinates and constraints if this mechanism
is being analyzed using Cartesian coordinates.
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Solution Since there are four bodies in the system — three moving links and one
stationary link — the dimension of q is 4 X 3 = 12. In the accompanying illustra-
tion, body-fixed coordinates are attached to each link. Body 1 is assumed to be the
frame, and bodies 2, 3, and 4 are the crank, the coupler, and the follower, respec-
tively. According to Eq. 4.7, each revolute joint is represented by two algebraic
equations, and therefore there are 4 X 2 = 8 algebraic equations representing all
four revolute joints. In addition, since body 1 does not move with respect to the
xy coordinate system, three simple constraints in the form of Egs. 4.31 through
4.33 are needed. Therefore, the total number of kinematic constraints is m = 8 +
3 = 11. For the rotation of the crank, one driving constraint makes the total num-
ber of equations equal to 12.

The first and second time derivatives of Egs. 4.41 and 4.42 yield velocity and
acceleration equations that are identical in form to Eqs. 3.13 and 3.15. For position analy-
sis using the Newton-Raphson algorithm, velocity analysis, and acceleration analysis,
the Jacobian matrix of the kinematic constraints, ®,, is needed. Also, for acceleration
analysis, the right side of the kinematic acceleration equations, vector y as given in
Eq. 3.17, is needed. For each of the kinematic pairs discussed in the preceding sections
closed-form expressions can be derived for the entries of the Jacobian matrix and the
right-side vector of the acceleration equations. From these expressions plus the constraint
equations, all of the necessary terms for kinematic analysis can be assembled systemati-
cally. In Sec. 4.3.1, these expressions are derived in detail for some of the kinematic
pairs. The method can be applied similarly to other constraint equations.

Derivation of the velocity and acceleration equations requires the time derivatives
of the constraint equations. In turn, these require the derivatives of the coordinates of
the points describing the kinematic joint. The xy coordinates of a point P attached to
body i can be found from Eq. 4.1, where it is assumed that the position of the point on
the body and the coordinates of the body are known. The velocity of the point in the xy
coordinate system can be found by taking the time derivative of Eq. 4.1,

PP =+ AsT
= I + B;s'T, (4.43)

B, = [—sin ¢ —cos d)] (4.44)

! cos ¢ —sin ¢

where
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Similarly, the time derivative of Eq. 4.43 yields the acceleration of point P:
i’ =r",+ As"”
=1+ Bis'Td — s (4.45)
Knowing the velocity of body i, i.c., §; = [i”, ¢]}, we can use Eq. 4.43 to find the ve-

locity of P,; and similarly, knowing the velocity and the acceleration of body i; ie., q;
and {,, we can find the acceleration of P, by using Eq. 4.45.

4.3.1 Systematic Generation of Some Basic Elements

Systematic generation of the Jacobian matrix and the right side of the acceleration equa-
tions for some of the standard kinematic joints can best be illustrated by deriving these
elements for a revolute joint.
Consider the revolute-joint constraint equations of Sec. 4.2.1. These equations in
compact form are written as
O =1, + Ast -1, — AsT =0

and in expanded form they are

P10 = x, + £F cos ¢, — P sin P, — x; — &f cos ¢; + n] sin ;=0

,2nd) — P P P _
P =y + £F sin ¢; + m7 cos b, — y; — &; s1nd>j—nfcos¢>j~—0

The partial derivative of these equations with respect to g, i.c., (I)f{' 2 provides two rows
to the overall system Jacobian. Since ®? is a function of only q; and q;, ®{' may
have nonzero elements only in the columns associated with q; and q;. These possible

nonzero entries are
aq)(r, Ist)
O==—=10

ox;
aq)(r, Ist)
e =0.0
aq)(r, 1st) -
©=" - rnpintons
= —=y{ +
aq)(r,lsl)
= =~1.0
®==
a(b(r,lst)
= 0.0
9y
a(b(r,lst) )
@ =00 &l sino; + m] cos ¢;
J
= yf -y (4.46)
aq)(r,an)
=0.0

0x;
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aq)(r 2nd)

@E‘:
(o) =

dy;
aq)(r, 2nd)
9,

Il

F) (I)(r, 2nd)
0x;

o (I)(r, 2nd)

It

= —
)=

ay;
aq)(r, 2nd)
0o,

I

i

1.0
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&7 cos ¢; — i sin &,
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-1.0

—ff cos ¢; + 7);) sin ¢;
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xj-l-xj

Chap. 4

where four of the entries are identically zero. The position of these nonzero entries’ in
the rows of the Jacobian matrix corresponding to ®"? and columns corresponding to q;
and q; is shown in Fig. 4.29.

"N/
9" ™/5 ..

Vi

@ 0
®

i

y
@ @ @ Figure 4.29 Nonzero entities of the Jaco-

© o

@C

bian matrix for a revolute joint between
bodies i and j.

The entries of the Jacobian matrix can also be found by taking the time derivative
of the constraint equations. The time derivative of the constraint equations for a revolute

joint is

or

X — (gf) sin ¢; + ""If Cos ¢1)¢l

Ji + (&7 cos ¢, — ! sin )b —

O

0

ONO.
® © o

0o @
ONO

— %, + (& sin ¢; + n} cos d)j)d)j =90
Vi~ (ff cos ¢; — 7); sin d’j)d)j =0

X

i

Vi

¢ | _ |0
il lo

¥

&,

This velocity equation is in the same form shown by the first equation of Eq. 3.13.
To obtain the right side of the acceleration equation for a revolute joint, either
Eq. 3.17 can be used with the Jacobian matrix of Eq. 4.46, or the velocity equations can

'In this text, the term nonzero entry must be interpreted as an entry with a possible nonzero value.
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be differentiated with respect to time to obtain the acceleration equations:
% = (€] sin ¢+ m] cos ¢)b, = (7 cos b = ] sin p)b7 —

+ (¢7 sin ¢; + m] cos ), + (£] cos ¢, — m sin d)p; =0
i + (&7 cos ¢; — m; sin ¢,)¢, — (¢7 sin ¢ + m; cos d’,)d’:z - ¥

— (£ cos ¢; — m] sin &))b; + (£] sin ¢, + m] cos $); =0
or

i

0809
oRoNoXol| kB

N i 4
xj

Vi
L,

where

2 — (ff cos ¢; — nf’ sin d’:)d’? - (ff cos ¢; — m; sin qu)(:b]?
4 (& sin ¢, + 7 cos b2 — (£ sin ¢, + n! cos ¢)b’

_ [<xf - 0§ — (& - xj)éf]
OF = di = (5] = »)é;
= s{p7 — 5d] (4.47)
From Egs. 4.46 and 4.47, it can be observed that the entries of the Jacobian matrix and
the vector of the right side of the acceleration equations for a revolute joint can be gen-
- erated systematically, in a computer program.

Tables 4.2 and 4.3 summarize the elements of the Jacobian matrix and the vector
y, respectively, for some of the constraint equations of the basic joints. Similar ele-

ments can be derived for other kinematic pairs. Verification of these elements is left as
an exercise for the reader.

4.4 KINEMATIC MODELING

In general, there are many ways to kinematically model a particular mechanism, any one
of which may be more advantageous in some circumstances. In kinematic analysis, the
problem size, i.e., the number of coordinates and number of constraint equations, is an
important factor to consider. A small number of coordinates yields a smaller problem to
solve. In this section, several simple examples are considered to illustrate methods of
kinematic modeling. The same techniques may be used to analyze larger problems.

4.4.1 Slider-Crank Mechanism

The slider-crank is one of the most widely used mechanisms in practice. This mecha-
nism finds its greatest application in the internal-combustion engine. The mechanism is
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TABLE 4.3 Vector y for Some of the Basic Constraint Equations

Y
U R of bl elmwet
3 = yad? = OF = 3]
~20(f — ¥ G~ i) + OF — D0 =
oon oo TR0 2O D6 T

=2 — &)+ (3 — )
Qb + 0 = x) 6D = %) OF =y O — e

IG5~ )60 = x) + OF = ) OF = e}
—2AG = x) G~ )+ OF =y — iy
+ 206 = x) G — ¥) — (5 — v G — i1
=206 = %) G — 3) — (F — y) G — i)y}

(OF = ) Of = 3D = OF = 30 6f = 2D i — 20
ey F I = x)Of = yD) = OF =) &f - xf 0]p?
— 206" — 2D G — %) + F — )G — Iy

"Note that é),- = d)]

made of four links or bodies, as illustrated in Fig. 4.30(a). The bodies are numbered
from 1 to 4, as shown in Fig. 4.30(b). Body 1 is the fixed link (ground, chassis, or en-
gine block), body 2 is the crank, body 3 is the connecting rod, and body 4 is the slider.
Bodies 1 and 2, 2 and 3, and 3 and 4 are connected by revolute joints A, B, and O,
respectively. Bodies 1 and 4 are connected by a translational joint 7. The number of
degrees of freedom for this mechanism is k =4 X3 — (3 X2 +1X2+3) =
since there are 4 X 3 = 12 coordinates in the system, 3 revolute joints eliminate 6 DOF,
1 translational joint eliminates 2 DOF, and ground constraints on body 1 eliminate
3 DOF.

Body-fixed coordinates ¢v are attached to each body, including the ground, as
shown in Fig. 4.30(c). Positioning of these coordinate systems is quite arbitrary for
kinematic analysis. However, it is good practice to locate the origin of the coordinate
system at the center of gravity of the body. Furthermore, aligning at least one of the co-
ordinate axes with the link axis or parallel to some line of certain geometric or kinematic
importance may simplify the task of collecting data for the kinematic pairs in the system.

For the three revolute joints, the following data are obtained from Fig. 4.30(c):

£4=0.0, n% = 0.0, £4 = -200.0, n4h =00
£ = 300.0, 75 = 0.0, £ = —100.0, 75 =0.0 (a)
£9 =100.0 7y = 0.0, £=0.0, 7y = 0.0

For the translational joint, two points on body 4 and one point on body 1 are chosen.
The location of these points is arbitrary, as long as they are on the same line of transla-
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Figure 4.30 Kinematic modeling of a slider-crank mechanism.
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tion. These points are A, C, and O. The distance AC is taken here as 100 mm. The data
that define the translational joint constraints are as follows:

&4 =0.0, 14 = 0.0, £$ = 100.0, s = 0.0,
&Y =0.0, 7% =0.0
Additional constraints are needed to ensure that body 1 is the nonmoving body. A
global xy coordinate system is added to the configuration, as shown in Fig. 4.30(d). For
convenience, the xy coordinate system is positioned to coincide with the &m, coordi-
nates. Therefore, the conditions
x, = 0.0, y, = 0.0, é, = 0.0 (©)

(b)

must be satisfied.
The driving constraint on ¢, is written, using Eq. 4.36, as

¢, — 576+ 12t =0 (d)

where 5.76 rad is equal to 360° — 30°. Since the crank rotates clockwise, a negative
sign is selected for w.

The data defined by Egs. a through c¢ are sufficient to describe the connectivity be-
tween different bodies in the system. If a computer program is available to generate all
of the kinematic constraint equations, such as the program of Chap. 5, then the con-
straint equations are set up and analyzed automatically. Such a program requires an ini-
tial estimate of the coordinates of the system, which is used to start the Newton-Raphson
iteration for position analysis. These estimates are found from Fig. 4.30(d) to be,

x, = 0.0, y, = 0.0, ¢, = 0.0
x, = —86.6, y, =500, ¢, =576
Xy = —380.5,  y, =400, ¢, =02 ©
X, = —663.1,  y,= 0.0, by = 0.0

These estimates need not be accurate. The Newton-Raphson algorithm starts the itera-
tions using T{ne estimated values and finds the exact values for the coordinates at ¢ = 0.
The estimatgs can be made by rough measurements from the actual system, or from an
illustration by means of a ruler and protractor.

Since there are 12 coordinates in this problem, the computer program must gener-
ate 12 kinematic constraint equations. These equations can be obtained by substituting
the data of Eqgs. a to d in the constraint equations derived in the previous sections. Equa-
tion ¢ yields three constraints:

b, =x =00
d,=y, =00 N
@, =, = 0.0

Substitution of Eq. a into the revolute-joint constraints of Eq. 4.9 yields six constraint
equations for the three revolute joints:

®,=x, — x;+200cos p; =0

b=y, — y; + 200 sin ¢p; =0

®, = x, + 300 cos ¢; — x, + 100 cos p, = 0

®, =y, + 300 sin ¢; — y, + 100 sin ¢, = 0



110 Planar Kinematics Chap. 4

'

®, = x, + 100 cos ¢, —x, =0

®, =y, + 100 sin ¢, — » =0
Two constraint equations for the translational joint are obtained by substituting the data
of Eq. b into Eq. 4.12 and using Eq. 4.3:

®,, = (—100 cos ¢,) (y, — 100 sin ¢; — ¥a)
— (x, — 100 cos ¢, — x,) (—100 sin ¢) =0

fli

b,=¢,— ¢, =0
Equation d is the driving constraint:
b,=¢,— 576+ 1.2t =0
The nonzero entries of the Jacobian matrix for these 12 constraints are found from

Table 4.2. The positions of these entries are shown in Fig. 4.31. There are 36 nonzero
entries in the 12 X 12 matrix. The nonzero entries are:

0060006 60 6 6 ®-
D0 o 0 6

@@E:)@@

—200 sin ¢,

= 200 cos ¢,

, @ = —100 sin ¢,
@ = —300 sin ¢,
@), @) = 100 cos ¢,
= 300 cos ¢,
= 100 sin &,
= —100 cos ¢,
= 10,000(cos ¢, cos ¢, + sin ¢, sin ¢b,)

-®
-®

100[sin ¢, (y, — 100 sin ¢, — y,) + cos ¢, (x, — 100 cos ¢; — x,)]

@@@

Note that some of the entries at any given instant of time, depending on the value of the
coordinates, may become zero. This example illustrates that about 83 percent of the en-
tries of this Jacobian matrix are exactly zero. Therefore, the matrix is said to be sparse.

4.4.2 Quick-Return Mechanism

Figure 4.32(a) shows a commonly used quick-return mechanism’ that produces a slow
cutting stroke of a tool (attached to slider D) and a rapid return stroke. The driving crank
OA turns at the constant rate of 3 rad/s. Several ways to model this mechanism are pre-
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Figure 4.32 Kinematic modeling of a quick-return mechanism.
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sented in this section. Each model has some advantage and some disadvantage in rela-
tion to the others.

Model 1. A maximum number of six bodies is used in the first model, as
shown in Fig. 4.32(b). This model requires five revolute joints and two translational
joints. There are 18 coordinates, 10 revolute-joint constraint equations, 4 translational-
joint constraint equations, 3 ground constraints, and | driving constraint. Bodies are
numbered as shown in Fig. 4.32(b), and the following data are deduced from this figure
for the revolute and translational joints:

g=s0,  mi=0, =0 mi =0

g-2,  al=o  f=-c0,  mi=0|

‘ff =0, 'Y)lc =Y, fg = —250, 7)5 =0 joints

fls) = —60, 7’? =Y, §€ =0, 7’? =0

& =0, n} = 300, £ = —50, n3 =0

£ =0, my =0, & =10, ny =0

& =0, n; =0 ranslational
. ) ransiationa

163 =0, 7’? =Y §§ = —10, 7)5 =0 joints

& =0, n1 = 500

To constrain body 1 to the ground, three conditions must be satisfied:
x, =0, y; = —300, ¢, =0
and the driving constraint may be written as
$; —052—-3r=0
where it is assumed that the initial angle ¢$ = 30°.

Model 2. In the second model, the two sliders, which were modeled as bodies
4 and 6 in model 1, are combined with the revolute joints at A and D. A total of four
bodies, three revolute joints, and two revolute-translational joints are used in this model.
The system has 12 coordinates, 6 revolute-joint constraints, 2 revolute-translational joint
constraints, 3 ground constraints, and 1 driving constraint. This model is shown in
Fig. 4.32(c), for which the following data can be obtained:

‘fg = 250, 'r)§ =0, ff = 60, 7)? =0 revolute
7 =0, i =0, £ =-25, m5=0 ¢ joints
& =0, n® =300, & = -50, n$=0
|
&4 = 50, s =0
&5 = —10, n5 =0, & =15, Ny =0 revolute-
D D ¢ translational
&, = —60, ny =0 joints
& =0, nf =500, &7 =10, nf = 500

Note that points E, F, G, and H are chosen on their corresponding lines of translation.
The ground and driving constraints are modeled as in model 1.
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One advantage of this model is that it has fewer coordinates than the first model.
However, a disadvantage arises if an additional body is to be attached to the slider D.
Since in this model the slider D is not modeled as a body, no other bodies may be at-
tached to it.

Model 3. In model 3 the slider D is chosen as a body that slides relative to the
frame with a translational joint. The link BD is modeled as a massless revolute-revolute
joint. This model has a total of four bodies, two revolute joints, one translational joint,
one revolute-revolute joint, and one revolute-translational joint. The data for this model
can be derived from Fig. 4.32(d), as follows:

(1: = 0’ "710 = O’ gg = _250’ ng = 0 revolute
¢ =0, n{ =300, &9 = -50, ny =0] joints
D _ D _ E _ _ E __
+ =0 m =0, £ = ~10, ne =0 translational
& =0, n% = 500 joint
B _ B _ D _ D _
&5 = 250, n; =0, & =0, M = 01 evolute-revolute
d =120 joint
£5 = 50, n3 =0 revolute-
f=-10, mi=0  &=15 nf = 0f s atona
The ground and driving constraints are modeled as in model 1.
&5 = 50, ns =
£ = —10, 5 =0, & =15, my =0 |  revolute
ranslationa
£ = —-60, ny =0 joints
£ =0, 7t = 500, &N =10, nt =500
§ =50, ny =0
§ = —10, s =0, &= 15, n=0 revolute-
D D translational
b= —60, ni = joints

This model has the advantage of a smaller number of coordinates than model 1,
and since the slider at D is modeled as a body, it does not have the disadvantage of
model 2. In none of these three models is the crank OA modeled by a massless revolute-
revolute joint between points O and A. Since OA is the driving link, it must have its own
coordinates for implementing the driving constraint.
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PROBLEMS

4.1 Point C on body i has global coordinates r¢ = [3.3,2.3]". (See Fig. P.4.1.) Attach a coordi-
nate system to this body with its origin at C. Determine the vector of coordinates if
a = 50°. Also determine s'f and r’ if d = 1.2.

AN

(/)

X

Figure P.4.1

4.2 Ifr, = [5,2]", ¢, = 30°, and r¥ = [6, 1.57", find the local coordinates of Q. (See Fig. P.4.2)

Figure P.4.2

4.3 Point P; has local and global coordinates

1.3 ~1.7
o [—2.2} i [ 0.5]

Find the translational coordinates of body i if ¢; = 32°. On graph paper, show the orienta-
tion of the local coordinate system with respect to the global coordinate system and locate
point P.

4.4 The coordinates of body i are r; = [3.2,2.8]" and ¢; = 80°. Points A and B have local coor-
dinates s’ = [—1.1, —0.4]" and s'? = [1.9,2.3]". Point C has global coordinates r{ =
[5.3,4.0]". Find the following:

(a) The global coordinates of A
(b) The global components s
(¢) The local coordinates of C

4.5 If Cartesian coordinates are used in constraint formulation, determine the following for each
of the mechanisms shown in Fig. P.4.5:

(@) Number of bodies and coordinates

(b) Number of constraint equations

(c) Number of degrees of freedom

(d) Number of dependent and independent coordinates
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—_—T—

(a) {b)
Figure P.4.5

4.6 Determine the Jacobian matrix and write the velocity and acceleration equations for the con-
straint equations

d =x,+16cos¢, —03sin¢p, —x;, +0.75sin¢, =0
®,=y,+1.6sin¢, + 0.3cos ¢, —y, — 0.75cos ¢, =0
4.7 Determine the minimum number of bodies and the types of joints required to model the
mechanism shown in Fig. P.4.7. How many coordinates are involved?

4.8 Attach body-fixed coordinate systems to bodies 2 and 3 in Fig. P.4.8 with their origins at C,
and C,. Write constraint equations for this system in their simplest form.

AR Y
ene—
(2

|

Crank

Figure P.4.7 Figure P.4.8

4.9 Two vectors §, and §,, attached to bodies 1 and 2, respectively, have local components
s; = [1.2, —0.5]" and s} = [~0.3, 0.8]". Vector q is defined as q = [xy, y1, ¢, X2, Y2, d]".
(a) If ¢, = 30° and ¢, = 45°, evaluate the entries of the Jacobian matrix @, for ® = s’s,.
M) Ifx, =62, 9 =1, ¢, =30° x, =19, y, = 2.3, and ¢, = 45°, evaluate the en-

tries of the Jacobian matrix for ® = §d where d = [x, — X1, Y2 ~ .

4.10 Revolute joints A and B have local coordinates s'{ = [0, 1.5]", s’ = [-2.2,0]",
s’2 = [2.2,077, and s’ = [2,0]". (See Fig. P.4.10.) Coordinates of the moving bodies are
estimated as r, = [~2,2.5]", ¢, = —12°, r, = [0.5,3.6]", ¢, = —8°, 1, = [1.6,1.7], and
¢ = 56°. Are the constraint equations for revolute joints A and B violated or not?
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Figure P.4.10

4.11 For the translational joint shown in Fig. 4.5, use the vector product operation to derive the
first constraint of Eq. 4.12.

4.12 For the revolute-translational joint shown in Fig. 4.9, use the vector product operation to
derive the constraint of Eq. 4.16.

4.13 Since two bodies connected by a translational joint can translate relative to one another, it is
possible for vector d to become a zero vector at some instant. Does this cause any numerical
difficulty in kinematic analysis?

4.14 For the mechanism shown in Fig. P.4.14, link ABE is the crank. If only.revolute- and trans-
lational-joint constraints are available, determine the number of bodies and the number of
constraint equations needed to model this system. If, in addition, revolute-revolute and
revolute-translational joint constraints are available, show different ways that the number of
bodies and the number of constraints can be minimized.

7 v 3%;7575/

Figure P.4.14

4.15 Derive constraint equations for a rack and pinion where

(a) The rack moves on a translational joint with respect to the ground and the line of trans-
lation is not parallel to any of the coordinate axes.

(b) The rack and the pinion can translate and rotate with respect to the ground (general case).

4.16 If g/ = [u,v]] is tangent to a curve at a point P;, show that n; = [~», u]; is normal to the
curve at P;. Then, modify the cam-follower constraints of Eq. 4.29 by using the normal vec-
tors and vector product instead of the tangent vector and scalar product.

4.17 Most books on numerical methods provide algorithms and program listings for cubic spline
functions. Experiment with one of these algorithms and try to determine values of a function
and its first and second derivatives at randomly specified points. The program can later be
used to expand the capabilities of the kinematic and dynamic analysis programs listed in
Chaps. 5 and 10.

4.18 Derive constraint equations for each of the cam-follower pairs shown in Fig. P.4.18.

4.19 Simplify the general formulation of constraint equations for the cam-follower pairs shown in
Fig. P.4.19. For (a) and (b) the contacting surface of the cam is a sine function, and for (c),
(d), and (e) the cam has a circular outline.
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(a) (b) {c)

Figure P.4.18

a

(a) (b)

>

(c) (d) {e)
Figure P.4.19

4.20 Verify the entries of the Jacobian matrix and vector 7 listed in Tables 4.2 and 4.3.

4.21 Derive expressions for the entries of the Jacobian matrix and vector ¥ for the spur gear con-
straint of Eq. 4.18.

4.22 Derive expressions for the entries of the Jacobian matrix and vector v for the cam-follower
constraints of Eq. 4.27. Note that the Jacobian matrix must contain an additional column as-
sociated with the artificial coordinate 6;.

4.23 What is the size of the Jacobian matrix for a four-bar mechanism modeled by four bodies
and four revolute joints? Show the location of the nonzero entries in this matrix. What per-
centage of the elements of the matrix are nonzero elements?

4.24 Derive constraint equations to keep the translational speed of a body constant along a known
direction denoted by a unit vector #. Consider two cases:

(a) Vector i is fixed to the global coordinate system.
(b) Vector i is fixed to the body coordinate system.



