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Basic Concepts
and Numerical Methods

in Kinematics

Kinematics, which is the study of the motion of rigid bodies, is useful in two important
ways. First, it is frequently necessary to generate, transmit, or control motion by the use
of cams, gears, and linkages. An analysis of the displacement, velocity and acceleration
of the system is necessary to determine the design geometry of the mechanical parts.
Furthermore, as a result of the generated motion, forces are frequently developed that
must be accounted for in the design of parts. Second, it is often necessary to determine
the motion of a system of rigid bodies that results from applied forces. In both types of
problems, one must first have command of the principles of rigid-body kinematics.

Kinematics analysis requires, in general, solution of nonlinear algebraic equa-
tions. For small problems with only a few variables and a few equations, it might be
possible to write and solve these equations by hand. However, for large problems with
many variables and even for accurate analysis of smaller problems, hand calculation, if
not impossible, is tedious and unlikely to succeed. Therefore, numerical methods and
computer programs are the obvious choice for fast and accurate solution of kinematic
equations.

This chapter presents some of the definitions used in kinematics. The general
forms of the kinematic equations are presented. Although systematic methods of deriv-
ing these equations are not discussed until Chaps. 4, 5, 6, and 7, numerical methods for
solving such equations are discussed in this chapter. Several efficient methods for solv-
ing linear algebraic equations and nonlinear algebraic equations are reviewed. Al-
gorithms and listings of computer programs for some of these methods are also presented.

3.1 DEFINITIONS

A rigid body is defined as a system of particles for which distances between particles
remain unchanged. If a particle on such a body is located by a position vector fixed to
35
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the body, the vector never changes its position relative to the body, even when the body
is in motion. In reality, all solid materials change shape to some extent when forces are
applied to them. Nevertheless, if movement associated with the changes in shape is
small compared with the overall movement of the body, then the concept of rigidity is
acceptable. For example, displacements due to clastic vibration of the connecting rod of
an engine may be of no consequence in the description of engine dynamics as a whole,
so the rigid-body assumption is clearly in order. On the other hand, if the problem is one
of describing stress in the connecting rod due to vibration, then the deformation of the
connecting rod becomes of prime importance and cannot be neglected.

In this text, essentially all analysis is based on the assumption of rigidity. A mecha-
nism is a set of rigid elements that are arranged to produce a specified motion. This defi-
nition of a mechanism includes classical linkages, as well as interconnected bodies that
make up a vehicle, a vending machine, aircraft landing gear, an engine, and many other
mechanical systems. While one can study the kinematics of a deformable body by defin-
ing the position of every point in the body in its deformed state, this introduces consid-
erable complexity that is not needed in many applications. This text is concerned with
rigid (nondeforming) bodies. The term bodies, therefore, will be used instead of rigid
bodies.

Kinematics is the study of motion, quite apart from the forces that produce the
motion. More particularly, kinematics is the study of position, velocity, and acceleration
in a system of bodies that make up a mechanism.

Kinematic synthesis is the process of finding the geometry of a mechanism that
will yield a desired set of motion characteristics. Kinematic analysis, on the other hand,
is the process of predicting position, velocity, and acceleration once a mechanism is
specified. The processes of kinematic synthesis and kinematic analysis are normally in-
tertwined. In order to do a synthesis, the engineer needs to be able to do an analysis to
evaluate designs under consideration. Thus, kinematic analysis may be viewed as a tool
that is needed to support the kinematic synthesis process.

The individual bodies that collectively form a mechanism are said to be links. The
combination of two links in contact constitutes a kinematic pair, or joint. An assemblage
of interconnected links is called a kinematic chain. A mechanism is formed when at
Jeast one of the links of the kinematic chain is held fixed and any of its other links can
move. The fixed link(s) is (are) called the ground or frame.

If all the links of a mechanism move in a plane or in parallel planes, the mecha-
nism is called a planar mechanism. If some links undergo motion in three-dimensional
space, the mechanism is called a spatial mechanism.

A mechanism that is formed from a collection of links or bodies that are kinemati-
cally connected to one another but for which it is not possible to move to successive
links across kinematic joints and return to the starting link is called an open-loop ot
open-chain mechanism. An open-loop mechanism may contain links with single joints.
An example of this kind of mechanism is the double pendulum shown in Fig. 3.1(a). A
closed-loop mechanism is formed from a closed chain, wherein each link is connected to
at least two other links of the mechanism and it is possible tostraverse a closed loop.
Figure 3.1(b) shows a four-bar linkage, which is a closed-loop mechanism. Kinematic
analysis considers systems containing only closed loops.
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Figure 3.1 (a) Open-loop mechanism —
double pendulum, (b) Closed-loop mecha-
(a) (b) nism — four-bar linkage.

A closed-loop mechanism may contain one or more loops (or closed paths) in its
kinematic structure. If the number of loops in a closed-loop mechanism is I, then the
mechanism is called a single-loop mechanism. If the closed-loop mechanism contains
more than one loop, then the mechanism is called a multiloop mechanism. Figure 3.2(a)
is an example of a single-loop mechanism, and Fig. 3.2(b) shows a multiloop mechanism.

3.1.1 Classification of Kinematic Pairs

Mechanisms and kinematic pairs can be classified in a number of different ways. One
method is purely descriptive; e.g., gear pairs, cams, sliding pairs, and so on. Such a di-
vision is convenient, and some of these pairs will be studied in Chaps. 4 and 7 under such
headings. However, a broader view of the grouping of kinematic pairs is presented here.

Kinematic pairs may be classified generally into two groups.'” Joints with surface
contact are referred to as lower pairs, and those with point or line contact are referred to
as higher pairs. Figure 3.3 gives a number of examples of kinematic pairs. The pairs (a),
(b), (e), and (f) in Fig. 3.3 are examples of lower-pair joints, and pairs (c) and (d) are
examples of higher-pair joints.

The constraint formulation for most lower-pair joints is generally simpler to derive
than that for higher-pair joints.

Relative motion between two bodies of a kinematic pair may be planar or spatial.
For example, pairs (a), (b), (c), and (d) in Fig. 3.3 display relative motion between bod-
ies in a manner that can be considered either for planar or spatial kinematic analysis. In
contrast, pairs () and (f) can be studied only in a spatial kinematic sense.

Figure 3.2 (a) Single-loop mechanism,
(a) (b) (b) Multiloop mechanism.
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(a) (b} {c)

Figure 3.3 Examples of kinematic pairs: (a) revolute joint, (b) translational joint, (c) gear set,
(d) cam follower, (e) screw joint, (f) spherical (ball) joint.

3.1.2 Vector of Coordinates

Any set of parameters that uniquely specifies the position (configuration) of all bodies of
a mechanism is called a set of coordinates. For systems in motion, these parameters
vary with time. The term coordinates can refer to any of the commonly used coordinate
systems, but it can also refer to any of an infinite variety of other sets of parameters that
serve to specify the configuration of a system. Vectors of coordinates are designated in
this text by column vectors q = [q;, G2, - - - ,q,17, where n is the total number of coordi-
nates used in describing the system. Examples of commonly used coordinates are
Lagrangian and Cartesian coordinates. In this text, Cartesian coordinates are used
almost exclusively. The general distinction between the Lagrangian and Cartesian coor-
dinate systems is that the former allows definition of the position of a body relative to a
moving coordinate system, whereas the latter normally requires that the position of each
body in space be defined relative to a fixed global coordinate system. Thus the Cartesian
coordinate system requires that a large number of coordinates be defined to specify the
position of each body of the system.

In order to specify the configuration of a planar system, a body-fixed &n coordi-
nate system is embedded in each body of the system, as shown in Fig. 3.4(a). Body i (i
is an identifying number assigned to each body) can be located by specifying the global
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{a) (b)

Figure 3.4 Global and body-fixed coordinate systems: (a) planar motion, (b) spatial
motion.

translational coordinates r; = [x,y]’ of the origin of the body-fixed &, reference sys-
tem and the angle ¢, of rotation of this system relative to the global xy axes The column
vector q; = [x,y, ¢]! is the vector of coordinates for body i in a plane.’

For spatial systems, six coordinates are required to define the configuration of
each body; e.g., body i shown in Fig. 3.4(b). The three components of the vector 7; —
i.e., the global translational coordinates r; = [x,y, z]"—Ilocate the origin of the b0dy~
fixed &, reference system relative to the global xyz axes, and the three rotational
coordinates ¢,;, ¢,;, and ¢,; specify the angular orientation of the body. Therefore,
column vector q; = [x,y,z, d,, b,, ¢s]! is the vector of coordinates for body i in three-
dimensional space.

The concept of angular orientation of a body in three-dimensional space is dis-
cussed in detail in Chap. 6. It will be shown that instead of three rotational coordinates,
four rotational coordinates with one equation relating these four coordinates can be used
to avoid singularity problems. In this case, the coordinates for body i become q; =
[x,¥,2, € €}, €5, e5].. The advantage of presenting the angular orientation of a body
with four coordinates instead of three is also discussed in Chap. 6.

If a mechanism with b bodies is considered, the number of coordinates required is

= 3 X b if the system is planar, and n = 6 X b (or 7 X b) if the system is spatlal
The overall vector of coordinates for the system is denoted by q = iq,q,....q1.
Since bodies making up a mechanism are interconnected by joints, all of the coordinates
are not independent — there are equations of constraint relating the coordinates.

Lagrangian coordinates, unlike Cartesian coordinates, do not necessarily assign
the same number of coordinates to each body of the system. Some of the coordinates
may be measured relative to a global coordinate system while others are measured rela-
tive to moving coordinate systems. An example of a set of Lagrangian coordinates is
shown in Fig. 3.5. The variables ¢,, ¢,, and d define the configuration of the slider-
crank mechanism at every instant. The vector of coordinates for the system can thus be

*For notational simplification, the body index is moved outside the bracket; e.g., q; = [x,y, 17 is used
instead of q; = [x;,y;, ;1"
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Figure 3.5 Slider-crank mechanism with
Lagrangian coordinates.

|

|

I

- d

|
defined as q = [¢,, ¢,, d]". It must also be noted that these coordinates are not indepen-
dent. If the lengths of links 1 and 2 are given as /, and /,, once ¢, is specified, ¢, and d
may be defined by simple trigonometry.

When a system is in motion, some or all of the coordinates describing the configu-
ration of the system vary with time. In this text # denotes time and is considered to be an
independent variable. In kinematics and dynamics, the motion of a body or a mechanism
is analyzed for an interval of time from £° (initial time) to ¢ (final time). In most prob-
lems, it is convenient to let t* = 0.

3.1.3 Degrees of Freedom

The minimum number of coordinates required to fully describe the configuration of a
system is called the number of degrees of freedom (DOF) of the system. Consider the
triple pendulum shown in Fig. 3.6. Here, no fewer than three angles, ¢, ¢,, and ¢5, can
uniquely determine the configuration of the system. Therefore, the triple pendulum has
3 degrees of freedom. Similarly, for the four-bar mechanism shown in Fig. 3.7, three
variables, ¢,, ¢,, and ¢, define the configuration of the system. However, the angles
are not independent. There exist two algebraic constraint equations,
I, cos ¢, + L, cos p, — lycos ¢y —dy =0
I,sing, + Lsind, — Lsinp; —d, =0
which define loop closure of the mechanism. The two equations can be solved for ¢, and
¢, as a function of ¢,. Therefore, ¢, is the only variable needed to define the configura-
tion of the system, and so there is only 1 degree of freedom for the four-bar mechanism.

3.1

1 ¢3

Figure 3.6
Triple pendulum. Figure 3.7 Four-bar mechanism.
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In a mechanical system, if & is the number of degrees of freedom of the system, then
k independent coordinates are required to completely describe the system. These k quan-
tities need not all have the dimensions of length. Depending on the problem at hand, it
may be convenient to choose some coordinates with dimensions of length and some that
are dimensionless, such as angles or direction cosines. Any set of coordinates that are
independent and are equal in number to the number of degrees of freedom of the system
is called a set of independent coordinates. Any remaining coordinates, which may be deter-
mined as a function of the independent coordinates, are called dependent coordinates.

3.1.4 Constraint Equations

A kinematic pair imposes certain conditions on the relative motion between the two bod-
ies it comprises. When these conditions are expressed in analytical form, they are called
equations of constraint. Since in a kinematic pair the motion of one body fully or par-
tially defines the motion of the other, it becomes clear that the number of degrees of
freedom of a kinematic pair is less than the total number of degrees of freedom of two
free rigid bodies. Therefore, a constraint is any condition that reduces the number of de-
grees of freedom in a system.

A constraint equation describing a condition on the vector of coordmates of a system

can be expressed as follows: 1% 7/ 9o 1L

b=d@=-0— _" _ G 2
In some constraint equations, the variable time may appear exphcltly’ o0
O =d(q,1) =0 =7 g0 0T (3.3)
For example, Eq. 3.1 describes two constraint equations for the four-bar mechanism of
Fig. 3.7, which has a vector of coordinates q = [, ¢,, ¢,)". These equations are of the
form stated by Eq. 3.2.

Algebraic equality constraints in terms of the coordinates, and perhaps time, are
said to be holonomic constraints. In general, if constraint equations contain inequalities
or relations between velocity components that are not integrable in closed form, they are
said to be nonholonomic constraints. In this text, for brevity, the term constraint will
refer to a holonomic constraint, unless specified otherwise.

3.1.5 Redundant Constraints

A brief study of a mechanism is essential prior to actual kinematic or dynamic analysis.
Knowledge of the number of degrees of freedom of the mechanism can be useful when
constraint equations are being formulated. Often, the pictorial description of a mecha-
nism can be misleading. Several joints may restrict the same degree of freedom and may
therefore be equivalent or redundant.

As an example, consider the double parallel-crank mechanism shown in Fig. 3.8(a).
This system has 1 degree of freedom. If this system is modeled for kinematic analysis as
four moving bodies and six revolute joints, the set of constraint equations will contain
redundant equations. The reason for redundancy becomes clear when one of the coupler
links is removed to obtain the mechanism shown in Fig. 3.8(b). The two mechanisms
are kinematically equivalent.
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(a) (b)

Figure 3.8 (a) A double parallel-crank mechanism, and (b) its kinematically equiva-
lent system.

For a system having m independent constraint equations and n coordinates, the
number of degrees of freedom is determined as follows:
k=n-m ' (3.4)
In planar motion, a moving body can have three coordinates, and a revolute joint intro-
duces two constraint equations. For the mechanism of Fig. 3.8(b), there are three
moving bodies (n = 3 X 3 = 9) and four revolute joints (m = 4 X 2 = 8). Therefore,
k = 9 — 8 = 1 DOF. However, for the mechanism of Fig 3.8(a), n = 4 X 3 = 12 and
m =4 X 3 = 12, which yields k = 12 — 12 = 0 DOF, which is obviously incorrect.
Therefore, Eq. 3.4 yields a correct answer only when the m constraint equations are
independent.

Example 3.1

Five coordinates q = [I,, ¢y, L5, b, [;])" are used to describe the configuration of
bodies in a mechanism. Determine the number of degrees of freedom of the system
if the coordinates are dependent according to the following six constraint equations:

®, =6¢cosp, —[,=0
d,=6sinp, — ;=0
d, =1, cosp, —2cos ¢, =0
D, =1 sind, —2sin¢p, — 1, +3=0
B, =2cosp, + (6 —[)cos¢p, — [, =0
®, =2sing, + (6 —1)sinp, —3=0
Solution An investigation of the six equations reveals that ®, = ®, + & and

®, = ®, + d,." Therefore, two of the equations are redundant, and hence, m =
6 —2 =4, Sincen =5,thenk =5 —4 =1DOFR

3.2 KINEMATIC ANALYSIS

Kinematics is the study of the position, velocity, and acceleration of mechanisms. In kine-
matic analysis, only constraint equations are considered. The first and second time deriva-
tives of the constraint equations yield the kinematic velocity and acceleration equations.

"It will be shown in the forthcoming sections how redundant equations can be found by such techniques
as Gaussian elimination or L-U factorization.
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For position analysis, at any given instant, the value of k coordinates must be
known (where k is equal to the number of degrees of freedom). Hence, the constraint
equations can be solved for the other m = n — k coordinates. Similarly, for velocity
and acceleration analysis, the value of & velocities and k accelerations must be known in
order to solve the kinematic velocity and acceleration equations for the other, unknown
velocities and accelerations.

The process of kinematic analysis is presented in two slightly different forms in
the next two sections. Each method has a computational advantage and disadvantage in
relation to the other.

3.2.1 Coordinate Partitioning Method

The fundamentals of kinematic analysis with the coordinate partitioning method can be
best understood by following the process in a simple example.

Example 3.2

The four-bar mechanism of Fig. 3.7 is considered for kinematic analysis and is
shown again in Fig. 3.9. All of the lengths are known, and it is given that the
crank is rotating counterclockwise (CCW) with a constant angular velocity of
24 rad/s from the initial orientation of ¢{ = 2.36 rad. The constraint equations of
Eq. 3.1 are written as follows:

\ 0.2cos ¢, + 04 cosh, —03cosdh; —035=0

1
0.2sin¢, + 0.4sinp, — 03 sin, — 0.1 =0 M

For position analysis the substitution ¢, = 2.36 is made in Eq. 1 to get
0.4 cos ¢, — 0.3 cos ¢p; = 0.49 @

0.4 sin ¢, — 0.3 sin ¢, = —0.04
These equations are solved to find ¢, = 0.57 rad and ¢; = 2.11 rad. For velocity
Qnalysm the first time derivative of Eq. 1 is written as
—0.2 sin ¢, ¢’1 0.4 sin ¢2¢2 + 0.3 sin ¢3¢>3 =0 3)
0200s¢>¢1 +04c0s¢2¢2—03005¢3¢3—0
For ¢, = 2.36, ¢, = 0.57, ¢, = 2.11, and known angular velocity of the crank,
i.e., ¢; = 6.28 rad/s, Eq. 3 becomes
—0.226, + 0.26¢, = 0.89

0.34, + 0.16, = 0.89 “)

The solution of Eq. 4 yields ¢, = 0.76 rad/s and ¢, = 4.09 rad/s. Similarly, for
acceleration analysis, the time derivatives of Eq. 3 is

—0231nd>d>1—~0200s¢>¢),—04s1nq§2¢>2—04c0s¢2¢2
0.3 sin ¢5¢p; + 0.3 cos 4)3(1)3—0
(5)
02005(1)(;51—02s1n¢d>1+04cos<f>2<152—04s1nqbqu2
0.3 cos ¢, + 0.3 sin d>3¢>3 =
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Since ¢, ¢y, ¢35 <2>1, (2)2, (2>3 are known and <'j.>I = 0 (indicating constant angular
velocity), Eq. 5 becomes

~0.22, + 0.26¢, = —2.86
0.34d, + 0.16¢; = 1.39

This yields ¢, = 6.62 rad/s* and ¢, = —5.39 rad/s’.

The process of position, velocity, and acceleration analysis can be repeated for
different positions of the crank. If ¢, is varied from its initial value through a com-
plete revolution of the crank, then at every step the position, velocity, and accelera-
tion analysis yield the results shown in the following table:

(6)

It

¢ 2 o8 ‘2’2 d’s b, b
2.36 0.57 2.11 0.76 4.09 6.62 —-5.39
2.52 0.59 2.21 0.94 3.93 7.21 . =117
2.67 0.62 2.31 1.13 3.73 7.91 —8.97
2.83 0.65 2.40 1.33 o348 8.66 -10.74
8.49 0.55 2.01 0.60 4.20 6.21 —3.61
8.64 0.57 2.11 0.76 4.09 6.62 -5.39

$, = 6.28 and ¢, = 0.

The result of the position analysis for one complete revolution of the crank is
shown in Fig. 3.9.

In the preceding example, the angle ¢,, which has a known value at every instant,
is called the independent coordinate or the driving coordinate. The remaining coordi-
nates, such as ¢, and ¢, are called the dependent coordinates or the driven coordinates.
The number of independent coordinates is equal to the number of degrees of freedom of
the system; therefore the number of dependent coordinates is equal to the number of in-
dependent constraint equations in the system.

Kinematic analysis with coordinate partitioning considers the partitioned form of
the coordinate vector q = [u’,v']", where u and v are the dependent and independent
coordinates, respectively. The m constraint equations

d==®q) =0 (3.9

may be expressed as
® = du,v)=0 (3.6)
Constraint equations as presented by Eq. 3.6 are, in general, nonlinear. For position analy-
sis, iterative numerical methods may be used to solve the set of nonlinear algebraic equa-
tions. One such method is discussed in Section 3.4. The k independent coordinates v
are specified at each instant of time ¢. Then, Eq. 3.6 becomes a set of m equations in
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Figure 3.9 The result of the position analysis for the four-bar mechanism of Figure 3.7.

m unknowns, which may be solved for the m dependent coordinates u. If the constraints
of Eq. 3.5 are independent, then the existence of a solution to u for a given v is asserted
by the implicit function theorem” of calculus.
Differentiation of Eq. 3.5 yields velocity equations

* @,q =0 3.7
‘where q = [, G- .., q,]" is the vector of velocities. The matrix ®, = [ad®/aq],
which contains partial derivatives of the constraint equations with respect to the coordi-
nates, is called the constraint Jacobian matrix. Let v = [V}, V,, . .. ,v,]" represent the
independent velocities with known values, and let w = [it,, #,, . . . ,it,]" represent the
m dependent velocities. Equation 3.7 may be rewritten in partitioned form as

D0 = -y (3.8)

‘LImplicit Function Theorem:® Consider a point q = [uil,vil]T at time ' for which the constraint
equations are satisfied; i.e., for which
dW,v) =0 (a)
If the partitioning of q into u and v has been selected so that the matrix ®, = [3®/du] at (u', v') is nonsingu-
lar, then in some neighborhood of v' Eq. a has a unique solution u = W(v); i.e., ®(W(v),v) = 0. Further-
more, if ®(u, v) is j times continuously differentiable in its arguments, so is W(v).
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where ®, and @, are two submatrices of ®, that contain the columns of ®, associated
with u and v, respectively. The term on the right side of Eq. 3.8 is denoted by
v=-®yv (3.9)
Since the constraint equations of Eq. 3.5 are assumed to be independent, then ®, is an
m X m nonsingular matrix, and so Eq. 3.8 may be solved directly for u, once V is given.

Differentiating the velocity equations of Eq. 3.7 yields the acceleration equations

D4 + (P0G =10 (3.10)
where § = gy, Gas - - - .G, 1" is the vector of accelerations. Let ¥ = [#y, Vp - - . » Vil TeEp-
resent the independent accelerations, and i = [i, 6y, . .. ,3i,)” represent the dependent
accelerations. Equation 3.10 can be written in partitioned form as

®i = PV — (P04 (3.1D)

Since @, is nonsingular, Eq. 3.11 can be solved for ii, once Vv is given. Note that the
velocity and acceleration equations of Egs. 3.8 and 3.11 are sets of linear algebraic
equations in ¢ and {, respectively, whereas the constraint equations of Eq. 3.6 are non-
linear algebraic equations.

The general procedure for kinematic analysis, using the coordinate partitioning
method, may be summarized in the following algorithm: '

ALGORITHM K-

(a) Set a time step counter i to i = 0 and initialize t' = ¢° (initial time).
(b) Partition q into dependent and independent sets u and v.

(¢) Specify independent coordinates v’ and solve Eq. 3.6 iteratively for u'.
(d) Specify independent velocities v’ and solve Eq. 3.8 for u'".

(e) Specify independent accelerations v and solve Eq. 3.11 for W',

(f) If the final time has been reached, then terminate; otherwise increment t'toa
new time ¢!, leti — i + 1, and go to (¢).

The simple form of the constraint equations of Example 3.2 may give the impres-
sion that the constraint equations can always be explicitly partitioned into terms contain-
ing the independent coordinates and terms containing the dependent coordinates. In
general, this partitioning is not possible for highly nonlinear equations. However,
regardless of the order of nonlinearity of the constraint equations, the velocity and accel-
eration equations can be partitioned according to Egs. 3.8 and 3.11, since they are linear
in terms of ¢ and {, respectively.

Example 3.3

Derive the velocity and acceleration equations for the constraint equations
2 cos ¢, + 3 cos(d, — ¢) — 2 cos(¢p, + ) —4cosp, —5=0 0
2 sin ¢, + 3 sin(p, — ;) — 2 sin(ey + ¢b,) — 4 sin by — 1=0
Then express these equations in partitioned form if ¢, and ¢, are assumed to be
the independent coordinates. :

Solution The vector of coordinates is q = [¢y, ¢, $s, b, thus v = [dy, é,l"
and u = [¢,, $,]". Since the constraint equations are nonlinear, they cannot be
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partitioned explicitly in terms of u and v, and therefore they are left as they are in
Eq. 1.

The kinematic velocity equations can be found either by direct differentia-
tion of Eq. 1 or by using Eq. 3.7, as follows:

—2 sin ¢, — 3 sin(p; — ¢,) 3 sin(p, — ¢,)
5{2 cos ¢, + 3 cos(¢p, — ¢,) —3 cos(¢p, — ¢)

] e
2 sin(¢p; + ) 2 sin(d; + by) T 4sing, ||| _ |0 5
dcos(y + b)) ~2costy + b —dcosdn || [0

[ bs

where the 2 X 4 matrix at the left of Eq. 2 is the Jacobian matrix. Partitioning of
Eq. 2 yields the velocity equations in the form of Eq. 3.8:
3 sin(d; — &) 2 sin(¢; + ¢,) + 4 sin ¢, ‘Pz
=3 cos(¢, — ¢y) =2 cos(c; + ) — 4 cos ¢y | | by .
[~2sin gy~ 3sintd — b)) 25sin(d; + b ] m 3

2cos ¢y + cos(, — b)) —2cos(y + b)) | | b

The kinematic acceleration equations can be found either by direct differen-
tiation of Eq. 2 or by using Eq. 3.10, as follows:

~2 sin ¢, — 3 sin(p; — ¢,) 3 sin(¢p, — &y
2 cos ¢, + 3 cos(dp; — b)) =3 cos(¢p, — ¢,) (15

2 sin(; + ¢bs) 2 sin(¢; + ¢,) + 4 sin ¢, ‘1’2
—2 cos(¢; + ¢,) —2 cos(¢s + ¢4) — 4 cos P, ‘]?3
R

—2 sin (bl(;b% = 3sin(d;, — ¢y) (b — (152)2 +

2 cos(hs + o) (b + $)° + dcos ddi] _[0]
2 sindy + b0 (s + o + dsinddl | o] P

Partitioning of Eq. 4 yields the acceleration equations, in the form of Eq. 3.11:

|: 3 sin(; — ) 2 sin(; + ¢,) + 4 sin ¢4] |:¢2] =

|:'“2 COs d)ld)% — 3 cos(¢, — ) (¢1 - _‘i’z)z +

—3 cos(¢p, — ¢,) —2 cos(¢; + ¢bs) — 4 cos | [ Dy

[-2singy — 3sin(d — 6 2sinds + ¢ ] [,
2 cos ¢, + cos(¢, — o) —2 cos(; + ¢,) | | s
[_2 Cos d)l(b% -3 COS(¢1 - ¢2) ((151 - '(;'[)2)2 +
—2 sin d’l‘ﬁ -3 Sin(d)l - ¢2) ((151 - d)z)z +
2 coslps + 6 (s + ) + dcos bibi]
2 sin(dy + b (s + b + dsindd? | O
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3.2.2 Method of Appended Driving Constraints

This method, unlike the coordinate partitioning method, does not partition the coordi-
nates into independent and dependent sets. Additional constraint equations, called the
driving constraints, equal in number to the number of degrees of freedom of the system,
are appended to the original kinematic constraints. The driving constraints are equations
representing each independent coordinate as a function of time. This method is best illus-
trated by an example.

Example 3.4

The four-bar mechanism of Example 3.2 is considered here again. The kinematic
constraints are
®, = 0.2cos ¢, + 0.4 cos p, — 0.3 cos ¢ —0.35=0 1
®,=02sin¢, +0.4sin¢p, —03sinp; —0.1 =0 M
Since the crank angle ¢, is the independent variable, a driving constraint can be
written in terms of ¢,. The initial value at ¢ = 0 for ¢, is ¢\ = 2.36 rad, and the
constant angular velocity of the crank is 27 rad/s. Therefore ¢, = 2.36 + 6.28¢
can be used to represent ¢, as a function of time. This driving equation can be
rewritten as
&Y =, —2.36 — 6.28t = 0 )
At any instant of time, i.e., known ¢, Egs. 1 and 2 represent three equations in
three unknowns ¢,, ¢,, and ¢s. If these equations are solved for ¢ = 0, it is found
that ¢, = 2.36, ¢, = 0.57, and ¢, = 2.11.
For velocity analysis, the first time derivatives of Egs. 1 and 2 are found and

written as
~02sind, —0.4sind, 03sing, || 0
0.2cos ¢, 0.4cos ¢, —0.3 cos ¢, b, | = 0 3)
1 0 0 b3 6.28

For known values of ¢, ¢,, and ¢;, Eq. 3 yields (i), = 6.28, (iﬁz = 0.76, and
b, = 4.09.
For acceleration analysis, the time derivative of Eq. 3 is found to be

~02sing, —04sing, 03sing; || o,
0.2cos ¢, 0.4cosp, —0.3cos ¢y b, | =
1 0 0 N

0.2 cos dyp? + 0.4 cos hyb? — 0.3 cos b3
0.2 sin ;> + 0.4 sin dyp2 — 0.3 sin a3 )
0

Since ¢y, s, ¢3, ¢y, P, and ¢; are known, Eq. 4 yields ¢, = 0, ¢, = 6.62, and
¢, = 5.39.

This process can be repeated at different instants of time. If ¢ is incremented
by At = 0.025 s, the same table as shown in Example 3.2 is obtained.
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The method of appended driving constraints can now be stated in its most general
form. If there are m kinematic constraints, then & driving constraints must be appended
to the kinematic constraints to obtain n = m + k equations:

D=0 =0
P = d(q,1) = 0
where superscript (d) denotes the driving constraints. Equation 3.12 represents n equa-
tions in n unknowns ¢ which can be solved at any specified time ¢.

The velocity equations are obtained by taking the time derivative of Eq. 3.12:

Dq=0
Pq + @ =0

P, |. 0
[@(g)]q - [_q)(d)] 3.14)
q ]

which represents n algebraic equations, linear in terms of .
Similarly, the time derivative of Eq. 3.13 yields the acceleration equations:

(3.12)

(3.13)

or

D + (@0~ 0
" Doy - . (3.15)
Vg + (@q),g + 2fIJ(,q + DY =90
or .
@,]. - (@)
LD?’]“ ) [—(@“’q) G - 20 — 0 (19
q q qf t

which represents n algebraic equations linear in terms of §. The term —(®,q),q in
Eq. 3.16 is referred to as the right side of the kinematic acceleration equations, and is
represented as

= —(P@)q (3.17)

In the above formulations, the driving constraints are assumed to have the general
form ®(q, ) = 0. However, as shown in Example 3.4, the driving constraint can have a
very simple form, such as v; — ¢(t) = 0, where v, is the jth independent variable and
c(t) is a known function of time. If there are k independent variables in the system and
the k driving constraints have the form

PP=v—clt)=0 (3.18)

then Egs. 3.12 through 3.16 can be simplified. In this case the Jacobian matrix becomes

(Dq = (Dq
o0| = | i (3.19)

where 1 is a permuted nonsquare identity matrix ( permuted means the columns are re-
ordered). The 1s of I are in the columns associated with the independent variables v.
Therefore, Eq. 3.19 can be expressed as

D, _ o, D,
H-[5
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Example 3.5

Four coordinates q = [xl,xz,x3,x4]r are subject to the kinematic constraints
X34 200, —xx, = 0
3xx, — X5+ X, —x; =0
The coordinates x, and x, are expressed in terms of ¢ as follows:
x,—02t=0
x, + 0.5t — 0.03:> =0
The system Jacobian is

2%, — X4 2x4 2x, —X,
<Izq B 3x, 3, — 2%, x3— 1 x5
| 0 1 0 0
0 0 0 1
In terms of @, and ®, the Jacobian is permuted as follows:
2X, — X4 2x, 2x5 —X,
|:(I)u fl)v] . 3x, x,— 1 3x,— 2x, x5
0 1| 0 0 1 0
0 0 0 1

The general procedure for kinematic analysis using the method of appended driv-
ing constraints may be summarized in the following algorithm:

ALGORITHM K-it

(a) Set a time step counter i to i = 0 and initialize ' = 1% (initial time).
(b) Append k driving equations to the constraint equations.

(¢) Solve Eq. 3.12 iteratively to obtain ¢'.

(d) Solve Eq. 3.14 to obtain q'.

(e) Solve Eq. 3.16 to obtain §'.

(f) If final time is reached, then terminate; otherwise increment ¢’ to ¢!, let
i > i + 1, and go to (c).

Kinematic analysis with the method of appended driving constraints usually re-
quires the solution of a larger set of equations than with the coordinate partitioning
method. However, this is not a major drawback since the programming effort for com-
puter implementation of algorithm K-II is much less than of algorithm K-I. A computer
program for kinematic analysis of mechanical systems based on this method is described
in Chap. 5.

3.3 LINEAR ALGEBRAIC EQUATIONS

It was shown in Secs. 3.21 and 3.22 that the kinematic velocity and acceleration analy-
sis of mechanical systems requires the solution of a set of linear algebraic equations. Al-
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though position analysis involves the solution of a set of nonlinear algebraic equations,
it will be seen that most numerical methods solve these by iteratively solving a set of
linear equations. Therefore, for almost every step of kinematic analysis— position, ve-
locity, or acceleration— sets of linear algebraic equations must be solved.

Consider a system of » linear algebraic equations with real constant coefficients,

all'xl + a12x2 + - + alnxn = Cl
AyX, T apx, + * 0+ ayx, = ¢ 3.2

a, X, + Xy + o ta,x, = Cy

wnn
which can be written in matrix form as

Ax = ¢ (3.22)
There are many methods for solving this set of equations. Cramer’s rule offers one of the
best-known methods, but also the most inefficient. Among the more efficient methods
are the Gaussian elimination, Gauss-Jordan reduction, and L-U factorization methods.

3.3.1 Gaussian Methods

The Gaussian elimination method for solving linear equations is based on the elementary
idea of eliminating variables one at a time. This method consists of two major
steps: (1) a forward elimination, which converts the matrix A into an upper-triangular
matrix, and (2) a back substitution, which solves for the unknown x. There are a variety
of Gaussian elimination algorithms that are similar in principle, but slightly different in
approach. The method presented here converts the matrix A to an upper-triangular ma-
trix with 1s on the diagonal. The process is best illustrated by an example that can be
followed easily.

Example 3.6

Solve the set of equations

3 1 -1])|x 2
-1 2 1 x| =
2 =3 1]] x -1

to find x,, x,, and x;.
Solution

FORWARD ELIMINATION

1. Multiply the first equation by 3, to put a 1 in the a,, position, as follows:

15 =3~ %
-1 2 t|]x|=] 6
2 -3 1|]x -1

and add the first equation to the second and then add —2 times the first
equation to the third, to put zeros in the first column below the diagonal:
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1 i 2
1 3 =3~ 3
7 2 — 20

0 3 3 X | = 3
1 s _1
0 -3 3 X3 3

2. Multiply the second equation by 3, to put a 1 in the a,, position, as shown:

1
1 % 3 X %
2 —
0 1 7 | = 27_0
11 5
0 -3 3 X3 _%
and add ¥ times the second equation to the third, to put a zero below the
diagonal:
- — o - -,
I 3 “% X 3
2 —
01 i|lx|=]%
19 57
00 - X3 7

|
l
|
|
|
L

3. Multiply the third equation by 7, to put a 1 in the as; position:

1
1
i
]
1
}

1 % _% X %
01 #llxl=|%
0 0 1 X5 3

[
l
|
1
|
|

BACK SUBSTITUTION

1. The third equation yields x; = 3.
2. The second equation then yields x, + #(3) = 2, so x, = 2.
3. The first equation yields x, + 3(2) —3(3) =%, sox; = 1.

Note that the forward-elimination step requires division by a; at the jth step. The
preceding operation is valid only if a; # 0.

The Gauss-Jordan reduction method combines the forward-elimination and back-
substitution steps of the Gaussian elimination method into one step. Matrix A is con-
verted to a diagonal unit matrix, using elementary arithmetic. This method may also be
illustrated with a simple example.

Example 3.7

Solve the set of linear algebraic equations

2 -1 1}]x -3
1 3=2||lx|=]| 3
-1 1 2||=x

using the Gauss-Jordan reduction method.
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1. Multiply the first equation by 4, to put a | in the a,, position, as shown:

P-4
1 3 -2
-1 1 2

X
X2

X3

N W ok

and add —1 times the first equation to the second and then add the first
equation to the third to put zeros below the diagonal:

X
X2

X3

X
X2

X3

-1 4]
0 13
0 b 3
2. Multiply the second equation by 2
1=y ]
0 1 -3
0 3 3
and add } times the second equati
second equation to the third, to put zer
1o 4
0 1 -3
00 %
3. Multiply the third equation by 5,
1 0 3
0 1 -3
1

on to the

X
X2

X3

to put a 1
X
X2

X3

and add —3 times the third equat
equation to the second, to put zer

0 0

10 0]

Xy

X2

010
0 0 1

X3

toputalin

-

[STER I ) (C-RY TN

—

NI NS NW

g
=R e e

_1_1
2
1

the a,, position, as shown:

first and then add —3 times the
os above and below the a,, position:

in the as; position:

ion to the first and then add 3 times the third
os above the a;;

position:

Since the coefficient matrix has been converted to the identity matrix it is clear

that x; =

3.3.2 Pivoting

—1,x, = 2, and x;

1 is the solution.

In the forward-elimination step of the Gaussian methods, the algorithm fails if at the jth
step a; is zero. Also, when the pivot element a; becomes too small, numerical error
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may occur. Therefore, the order in which the equations are treated during the forward-
elimination step significantly affects the accuracy of the algorithm. To circumvent this
difficulty, the order in which the equations are used is determined by the algorithm; i.e.,
the order may not necessarily be the original order 1, 2,. .., n. The algorithm reorders
the equations depending on the actual system being solved. This process is called pivot-
ing. Two types of pivoting, partial pivoting and full pivoting, are discussed bere.

In partial pivoting, during the jth forward-elimination step of the Gaussian al-
gorithm, the equation with the largest coefficient (in absolute value) of x; on or below
the diagonal is chosen for pivoting. During the elimination step, the rows of the matrix
and also the elements of vector ¢ are interchanged. The following example illustrates
this procedure.

Example 3.8

Perform Gaussian elimination with partial (row) pivoting on the following set of

equations:
4 -3 5 2}]|x -1.5
-3 1 1-6||x]|_ 9
5-5 10 Of|x| | 25
2 -3 9 -=-71|=x, 13.5
Solution

FORWARD ELIMINATION WITH PARTIAL PIVOTING

1. The largest coefficient in column 1 of the matrix is 5. Therefore interchange
the third and first equations, to obtain

5-5 10 0][x 2.5
( -3 1 1-6]|x|_ 9
4-3 5 2||x| |[-15
2-3 9-T71|x, 13.5
Then perform forward elimination, as in Example 3.6, to obtain
1-1 2 0]|[x 0.5
0~-2 7-6]|x,] | 105
0 1 =3 2||x| |-35
0-1 5-7||x, 12.5

2. The largest coefficient in column 2 on or below the diagonal is —2; no inter-
change is necessary. Forward elimination yields

1 -1 2 0][x 0.5
0 1-35 3||x|_ |-525
0 0 05-1|]x 1.75

0 0 15-4]]|x 7.25
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3. The largest coefficient in column 3 on or below the diagonal is 1.5. Inter-
change the fourth and third equations to obtain

1-1 2  0|[x 0.5
0 1 -35 3||x =5.25
0 0 15 -4||x 7.25
( 0 0 05 -1]]x, 1.75
Then perform forward elimination to obtain
1 -1 2 0 X 0.5
0 1-35 3 X | —525
0 0 1 -266||x| | 483
0 0 O 0.33 || x4 —0.66
4. Multiply the fourth equation by ﬁ to obtain
1 -1 2 0 X 0.5
1 35 3 X, -5.25
1 =2.66 || x, 4.83
1 X4 -2

Back substitution now yields x = [0.5, —1, —0.5, —2]".

The preceding pivoting method is referred to as partial pivoting with row inter-
change, since the rows of the matrix are interchanged. The method can be modified for

partial pivoting with column interchange.

Full or complete pivoting is the selection of the largest of all the coefficients (in
absolute value) on the diagonal and to its right and below as the basis for the next stage
of elimination, which operates on the corresponding variable. In full pivoting, both row
interchange and column interchange are required. Note that when two columns of the
coefficient matrix are interchanged, their corresponding variables in the vector x are

interchanged.
Example 3.9

Apply the Gaussian elimination method with full pivoting to the following set of

equations:
2 -1 1 X 0
-1 0 21(|x}|= 5
1 4 -=2|]x =5
Solution

1. The largest coefficient in the matrix is 4. Interchanging columns 2 and 1, we

get
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— A — —
T2 1|[x
0—-1 2 x | =
i 4 1 ——2_ Lx3_
Interchanging rows 3 and 1 yields
(4 12|
( 0—-1 2 x | =
L—l 2 1_ | ¥ |
The elimination step gives
1 025 05 x|
0 —1 2 x| =
0 225 0.5 Lx3

changing rows 3 and 2, we have

—1.25
5
L—1.25

. The largest coefficient in the 2 X 2 lower right submatrix is 2.25. Inter-

1025 —05|[x]| [-125]
( 0 225 05 x | =1 —-125

0 —1 2 | % | 5 ]
The elimination step gives

1 025 05 |[x| [-125

0 1 0.22 x, | =] —0.55

O 0 2.22 X5 4.44

. Multiplying the last equation by 2122, we get
1 025 —05 |[x] [-125]
01 0.22 x, | =1 -0.55
LO 0 1 Lx3 2

Back substitution now yields x; = 2, x, = —1, and x, = 0.

In most computer programs, partial or full pivoting is carried out simply by inter-

changing the row (column) indices of the two rows (columns) to be interchanged. Two
integer arrays hold the indices for column and row numbers of the matrix.

3.3.3 L-U Factorization

The L-U factorization method is a compact form of the Gaussian ‘elimination method of
operating on a matrix A. After the operation is completed, the set of linear equations
Ax = c is efficiently solved for any given ¢ vector.
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For any nonsingular matrix A, it can be proved that there exists an upper trian-
gular matrix U with nonzero diagonal elements and a lower triangular matrix L with unit
diagonal elements, such that

N A=LU (3.23)
The process of factoring A into the product LU is called L-U factorization. Once the
L-U factorization is obtained, by whatever method, the equation

Ax = LUx = ¢ (3.24)
is solved by transforming Eq. 3.24 into
Ly = ¢ (3.25)
and
Ux =y (3.26)

Equation 3.25 is first solved for y and Eq. 3.26 is then solved for x. Since Eqs. 3.25
and 3.26 are both triangular systems of equations, the solutions are easily obtained by
forward and backward substitution.

Crout’s method calculates the elements of L and U recursively, without overwrit-
ing previous results.” To illustrate how Crout’s method generates the elements of L
and U, consider a matrix A of rank 4, requiring no row or column interchanges, i.e., no
pivoting. The matrix A can be written as

I 0 0 Offuy up uy uy ay dp a3 a4y
Iy 1. 0 O0f}f0 Uy U Uy | _ |G dxn 4y dy (3.27)
Ly Iy 1 0110 0 uy uy a3 dxp Ay dy
Iy lyp Iy L0 0 O Uyy aq Ay Qg3 Ay

Uy Up Uy Uy

B = o Hat (3.28)
Ly lyp uz uy

ly ln ly uy

Elements of B are to be calculated one by one, in the order indicated as follows:

QRO
oJofo)C .
@D O @ |
ofoRcRe

where @ indicates the kth element to be calculated. The elements of L and U are cal-
culated simply by equating a; successively, according to the order shown in Eq. 3.29,
with the product of the jth row of L and the kth column of U. The Crout process for the
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n X n matrix A is performed in n — 1 iterations. After i — 1 iterations matrix A finds

the form
Uy Up " Uy .
Ly uy * - . Uy, i — 1 rows
S Y (3.30)
lnl ln2 ' [ :|
U ——

i — 1 columns

where the conversion process of the first i — 1 rows and i — 1 columns has been com-
pleted. The (n — i + 1) X (n — i + 1) matrix in the lower right corner is denoted by
D,. The elements of D; are not the same as the clements of the original matrix A. In the
ith step, the Crout process converts matrix D; to a new form:

d. r’
D‘ = n i
' [Si H;, 1]

where matrix D,,, is one row and one column smaller than matrix D;. Crout’s process
can be stated as follows:

T

Crout’s process—> [L;ii I;l ' ] (3.31H)
i i+1

i

ALGORITHM LU-I

(a) Initially set an iteration counter i = 1. In the first step, matrix D, = A.
(b) Refer to the conversion formula of Eq. 3.31 and let

u; = dy (3.32)
u =r (3.33)
1
I, = —s; (3.34)
Uy
Dy = Hyyy — Luf (3.35)

(¢) Incrementitoi + 1.Ifi = n, L-U factorization is completed. Otherwise go to b).

Note that calculation of element @ of the auxiliary matrix B, which is an element of
either L or U, involves only the element of A (or D;) in the same position and some ele-
ments of B that have already been calculated. As element is obtained, it is recorded
in the B matrix. In fact it may be recorded in the corresponding position in the A matrix,
if there is no need to keep matrix A. This calculated result need never be written over,
since it is already one of the elements of L or U.

Example 3.10

Apply L-U factorization to matrix A, and then solve the set of algebraic equations
Ax = c for the unknown x:

2 1 3 =2 1
-1 0 -2 —1 3
A=l o1 2 3 ““l o

4 2 0-1 -1
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Solution Following the LU-I algorithm, we have:

i =1 D, = Aresults in

d, =2 rl=[1 3 -2]

-1 0 -2 -1
s;=| o H=|1 2 3
4 2 0 -1

Then,
Uy =2 ul=[1 3 -2]

-0.5
L= o

2

0 -2 —1 ~0.5 0.5 —0.5 —2
pD,=|1 2 3{-| o [t 3-21=|1 2 3

2 0 -1 2 0 -6 3

After the first iteration, matrix A becomes,

2 1 3 -2
-0.5 0.5 -05 -2
0 1 2 3
2 0 -6 3

0.5 -0.5 -2
i =2 D,=11 2 3
0 -6 3
results in
d22 = 0 5 r; = [_05 _2]
|1 o = 2 3
27 1o 3716 3
Then,

59
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After the second iteration, matrix A becomes,
2 1 3 =2
-0.5 0.5 -0.5 -2
0o 2 3 7
2 0 -6 3

results in,
dy =3 r; = [7]
s; = [—6] H, = [3]
Then,
up =3 u; = [7]
L =[-2] D, = [3] - [-2][7] = [17]
Hence, matrix A becomes
2 1 3 -2
—-0.5 0.5 -0.5 —2
0 2 3 7
2 0 -2 17

i =4 Since i = 4 = n, the L-U factorization is completed. The L and U
matrices are:

1 0 00 21 3 =2
051 00 0 05 —05 -2
L=1"% 2 10 U=1o 0 3 7
2 0-2 1 00 0 17

1 0 0 0w 1 1
-05 1 0 ¥, 3 3.5
0 2 1 0|y 0 -7
2 0-2 1|y —1 -17
Then, solving Ux =y gives
2 1 3 —2][x] 1 -2
0 05 -05-2||x 3.5 3
= —— X =
00 3 711 x =7 )
00 0 17}}x 217 -1
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3.3.4 L-U Factorization with Pivoting

In the preceding subsection, the situation in which u; = 0, where Eq. 3.34 requires di-
vision by zero, is not discussed. In this case, partial or full pivoting must be applied.
Since pivoting may change the order of the rows or columns of the matrix, this inter-
change information must be recorded in two additional permutation vectors.

Example 3.11

Apply L-U factorization with full pivoting to matrix A, and then solve the set of
equations Ax = ¢:

1 2 -1 -3 0
4 1 -1 1 4
A: —
2 -3 0 -1 ““ln
-1 0 5 2 |

Solution Two index vectors record the permutation of columns and rows during
pivoting. These vectors are initialized to [1, 2, 3, 4] and [1, 2, 3, 4]". The pivot
element (the largest element in absolute value) is moved to position d;; at each
step. The initial matrix is

1 2 3 4
1 2 -1 -3
4 1 -1 1
-3 0 -1
—1 0 5 2

BN =
[\

i =1 The largest clement (in absolute value) is moved to d;:

1 2 3 4 37 2 1 4
4 [-1 o 5 2 4 5 0 -1 2
2 4 1 -1 1| - 2 |-1 1 4 1
3 2 -3 0 -1 3 0 -3 2 -1
1 1 2 -1 -3 1 |-1 2 1 -3

Crout’s algorithm then yields

—_— W N B

u-!—~ <o u-!-— W W

N W o= O N
|wl~: L

s N @l —
|
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i =2 The largest element (in absolute value) in the 3 X 3 submatrix to the
lower right is moved to d,,, to obtain

31 2 4

4 5-1 0 2
2 [-4 2 1 %
3 0 2-3 -1
1 |- ¢ —1
5 5

Crout’s algorithm then yields

3 1 2 4

4 5 -1 0 2
21-3 2 1 g
3 0 ¥ i(-¢g -3
1= 21 u _sl
5 W |0 19 |

i = 3 The largest element (in absolute value) in the 2 X 2 matrix to the lower
right is in d;;, so no interchange is needed. Crout’s algorithm then yields

31 2 4

4 5-1 0 2
2 |-+ 2 1 3
3 0 L _e& _3
1

il
]
o
3
ay
3

i =4 Sincei = n, the L-U factorization is completed.
Now, to solve Ax = ¢, first solve Ly = c¢:

1 ¥ 1
_é 1 | _ 4
05 1 ¥ 11
“31 % _% 1 Ya 0

The elements of vector ¢ are interchanged according to the elements of the row

index. Forward substitution yields y = [1, &, % 2" Then, solve Ux = y:

5 -1 0 21| x; 1
‘152 1 % X | = %
-5 —-B||x 3

_% X4 2??7é

The elements of vector x are interchanged according to the column index vector.
A back substitution yields x = [2, =2, 1, —1]".
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3.3.5 Subroutines for Linear Algebraic Equations

Two FORTRAN subroutines for solving sets of linear algebraic equations, based on L-U
factorization with partial pivoting, are presented in this section. The subroutines listed
here are not unique. Other coding may be more compact, more general, or more effi-
cient, but the subroutines show exactly what must be done. An overall understanding of
these subroutines and their use makes it easier to understand other subroutines that
follow in this text.

An explanation of the subroutines and a description of the variables appearing in the
argument list of the subroutines are given here. To eliminate any redundancy of com-
ments, these descriptions are not repeated in the FORTRAN listing of the subroutines.

Subroutine LU.  This subroutine performs L-U factorization with partial pivot-
ing on square matrices. The argument parameters in this subroutine are as follows:

A The given N X N matrix. On return A contains L. and U matrices.
ICOL Integer N-vector containing the column indices.

N Number of rows (columns) of matrix A.

EPS Test value for deviation from zero due to round-off error.

The subroutine employs Crout’s method with column pivoting on matrix A. Therefore,
the columns of the matrix are generally interchanged at each elimination step to bring
the largest element (in absolute value) to the pivot position. The interchange information
is recorded in an integer permutation vector ICOL. The Kth column of the interchange
matrix corresponds to the ICOL(K)th column in the original matrix A. Initially, the sub-
routine sets ICOL(K) = K, K = 1, ...,N. During each pivot search, when the largest
element (in absolute value) is found, it will be compared with a parameter EPS. This
parameter, which must be assigned by the user, is used by the subroutine as the smallest
(in magnitude) nonzero number in the computation. If the selected pivot element is
smaller (in absolute value) than EPS, then the pivot element is considered to be zero;
i.e., the matrix, within the specified error level, is singular. Therefore, the routine ter-
minates the L-U factorization with an error message. For most practical problems on
standard computers, a default value of 0.0001 is adequate for EPS. When L-U factoriza-
tion is successfully completed, the matrix A will contain matrices L. and U. A FOR-
TRAN program for such a subroutine is as follows:

SUBROUTINE LU (A, ICOL,N,EPS)
DIMENSION A(N,N), ICOL(N)
DO 10 K=1,N
10 ICOL(K)=K
NM1=N-1
DO 50 I=1,NM1
PIV=ABS(A(I,I))
IPIV=I
IP1=I+1
DO 20 K=IP1,N
TEMP=ABS(A(I,K))
IF (TEMP.LE.PIV) GO TO 20
PIV=TEMP
IPIV=K
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20 CONTINUE
IF (PIV.LT.EPS) GO TO 60
IF (IPIV.EQ.I) GO TO 40
II=ICOL(I)
1COL(I1)=ICOL(IPIV)
ICOL(IPIV)=I1
DO 30 J=1,N
TEMP=A(J, 1)
AT, 1)=A(J,IPIV)
30 A(J,IPIV)=TEMP
40 DO 50 J=IP1,N
AT, 1)=A(J,1)/A(1,1)
DO 50 K=IP1,N
A1, K)=A(J,K)-A(T,1)*A(I,K)
50 CONTINUE
RETURN
60 WRITE(1,200)
STOP
200 FORMAT(SX,’***THE MATRIX IS SINGULAR***’)
END

Subroutine LINEAR. This subroutine solves a set of linear equations in the
form Ax = ¢ by calling subroutine LU to factorize matrix A into L and U matrices. The
argument parameters in this subroutine are as follows:

A The given N X N matrix, either as the original A matrix (ILU = 1), or
in the form of LU (ILU = 0). In either case, on return, A contains the
L and U matrices.

C An N-vector containing the right side of the known quantities ¢, which
upon return will contain the solution vector x.

w An N-vector for work space.

ICOL Integer N-vector, which upon return will contain the column indices.
N Number of rows (columns) of matrix A.

ILU An index that must be set to O or 1 by the calling program. If EQ. 0,

L and U matrices are already available in A. If EQ. 1, L and U
matrices are not available; i.e., this subroutine must call subroutine
LU.

EPS Test value for deviation from zero due to round-off error.

If L-U factorization must be employed on a matrix, then ILU must be set to 1 by
the calling program. In this case, this subroutine will call subroutine LU to determine
the L and U matrices and also the ICOL vector. However, if the L. and U matrices and
ICOL vector are already available, then ILU can be set to 0 by the calling program. This
subroutine performs the steps of Egs. 3.25 and 3.26 and stores the solution vector in the
vector C. The dimensions of matrix A and vectors C, W, and ICOL must be set properly
by the calling program. A FORTRAN program for such a subroutine is as follows:

SUBROUTINE LINEAR (A,C,W,ICOL,N,ILU,EPS)
DIMENSION A(N,N),C(N) ,W(N), ICOL(N) *
IF (ILU.GT.0) CALL LU (A,ICOL,N,EPS)
DO 10 J=1,N
10 W(J)=C(J)
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C..... Perform forward elimination step. LY=C
DO 30 J=2,N
SUM=W(J)
IM1=J-1
DO 20 K=1,M1
20 SUM=SIM-A(J ,K) *W(K)
30 W(J)=SM
C.....Perform back substitution step. UX=Y
WIN)=W(N) /A(N,N)
NP1=N+1
DO 50 J=2,N
I=NP1-J
SWME=W(T)
IP1=1+1
DO 40 K=IP1,N
40 SUM=SIM-A(I,K)*W(K)
50 W(I)=SWM/A(1,1)
C..... Permute the solution vector to its original form
DO 60 J=1,N
60 C(ICOL(J))=W(J)
RETURN
END

Example 3.12

Write a computer program, making use of subroutines LINEAR and LU, to solve
a set of linear algebraic equations.

C* ¥ X% % EXAMPLE 3.12 RhKE K
DIMENSION B(120),1(10)
DATA EPS/0.0001/

Covvn. Read no. of rows (columns)
WRITE(1,200)
READ (1,* ) N

C..... Pointers for subarrays
Ni=1
N2=N1+N*N
N3=N2+N
NUSED=N3+N-1

C..ov Perform L-U factorization: ILU=1
1LU=1
CALL SOLVE (B(N1),B(N2),B(N3),I,N,ILU,EPS)
STOP

200 FORMAT(SX,’ENTER N’)

END

SUBROUTINE SOLVE (A,C,W,ICOL,N, ILU,EPS)
DIMENSION A(N,N),C(N),W(N),ICOL(N)
C..... Read the matrix A row by row
DO 10 J¥=1,N
WRITE(1,200) J
10 READ (1,* ) (A(J,X),K=1,N)
C..... Read the right-hand-side vector C
20 WRITE(1,210
READ (1,* ) (C(3),J=1,N)

C..... Solve AX = C
CALL LINEAR (A,C,W,ICOL,N,ILU,EPS)
C..ou Report the solution vector

WRITE(1,220) (C(1),J=1,N)
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C..... Check for another vector C
WRITE(1,230)
READ (1,* ) IC
IF (IC.EQ.0) RETURN
1LU=0
GOTO 20
200 FORMAT( 5X , *ENTER ROW’ ,15)
210 FORMAT(SX,’ENTER VECIOR C’)
220 FORMAT(SX,’THE SOLUTION 1S’,/,10F10.5)
230 FORMAT(5X,’IF ANOTHER VECTOR C IS GOING TO BE GIVEN’,/,
+ 7X,’THEN ENTER 1, OTHERWISE ENTER 0°)
END

Solution This program is written in a general form. It can accept up to 10 equa-
tions in 10 unknowns. If a set of more than 10 equations is to be solved, then the
dimensions of the B and I arrays must be changed to 12N and N, respectively,
where N is the number of equations.

Note how the B array is split into smaller subarrays. This technique will be
used frequently in all of the programs in this text. For a set of equations Ax = ¢,
the matrix A and vector ¢ are entered. After the solution is obtained, the user may
enter a different vector ¢ to obtain a new solution. This process may be repeated
as many times as needed.

3.4 NONLINEAR ALGEBRAIC EQUATIONS

One of the most frequently occurring problems in scientific work is to find the roots of
one or a set of nonlinear algebraic equations of the form

®(x) =0 (3.36)
i.e., zeros of the functions @(x). The functions ®(x) may be given explicitly or as tran-
scendental functions. Kinematic analysis of mechanical systems is one example for
which solution of constraint equations of the form of Eq. 3.36 is required. In this case,
the explicit form of the constraint equations is available.

Numerous methods are available to find the zeros of Eq. 3.36. However, depend-
ing on the application, some methods may have better convergence properties than oth-
ers, and some may be more efficient. In either case, the methods are, in general,
iterative. The most common and frequently used method is known as the Newton-Raph-
son method.

3.4.1 Newton-Raphson Method for One Equation in One Unknown

Consider the equation

o) =0 3.370
to be nonlinear in the unknown x. The Newton-Raphson iteration is stated as
. : 1 .
Xt = - d(x)) (3.38)

@, (x')
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where
d (x) = 40(x) at x =x (3.39)
dx

and the superscripts j and j + 1 are the iteration numbers. The Newton-Raphson al-
gorithm produces a sequence of values, as follows:

L 9"
T T .00
2 1 (I)(xl)

T,

where x° is the initial estimate of the solution of Eq. 3.37. The sequence of values, in
many problems, will approach a root of ®(x).

The geometry of Newton-Raphson iteration is shown in Fig. 3.10. The Newton-
Raphson method, when it works, is very efficient, but restrictions on the method are sel-
dom discussed. The sketches in Figs. 3.11 through 3.13 show how the method may
diverge or may converge to an unwanted solution. Since the Newton-Raphson method
will not always converge, it is essential to terminate the process after a finite number of
iterations.

3.4.2 Newton-Raphson Method for n Equations in n Unknowns

Consider n nonlinear algebraic equations in » unknowns,

Px) =0 (3.40)
where a solution vector X is to be found. The Newton-Raphson algorithm for n equations
is stated as

X' =x — & (XD (3.41)
O(x)
®(x)
X
i+t i X
X X
Solution
Figure 3.10 Graphic representation of Figure 3.11 Root at infection point.

Newton-Raphson method.
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®(x)

Obtained
solution

Desired
solution Figure 3.12 Multiple roots.
&(x)
|
J
/ I
TS/ T
A N L
/ P~
/ T
i
% L
x! x° . L.
Figure 3.13 Divergence near a local mini-
Solution mum or maximum.

where ®_'(x’) is the inverse of the Jacobian matrix evaluated at x = x'. Equation 3.41
can be identified as the n-dimensional version of Eq. 3.38. The term ®(x’) on the right
side of Eq. 3.41 is known as the vector of residuals, which corresponds to the violation
in the equations.
Equation 3.41 may be restated as a two-step operation:
®,(x) Ax' = —D(x)) (3.42)
¥*'=x + AXY (3.43)
where Eq. 3.42, which is a set of n linear equations, is solved for Ax’. Then, x’! is
evaluated from Eq. 3.43. Gaussian elimination or L-U factorization methods are fre-
quently employed to solve Eq. 3.42. The term Ax’ = x*' — x/, known as the Newton
difference, shows the amount of correction to the approximated solution in the jth itera-
tion. The computational procedure is stated as follows:

ALGORITHM NR-l
(a) Set the iteration counter j = 0.

(b) An initial estimate x° is made for the desired solution.
(¢) The functions ®(x’) are evaluated. If the magnitudes of all of the residuals ®,(x’),

i =1,...,n, are less than a specified tolerance &, i.e., if |®,;| < ¢,
i =1,...,n, then ¥’ is the desired solution; therefore terminate. Otherwise, go to
(@).

(d) Evaluate the Jacobian matrix ®,(x’) and solve Eqs. 3.42 and 3.43 for x'*".
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(e) Increment j; i.e., set j to j + 1. If j is greater than a specified allowed number of
iterations, then stop. Otherwise go to (c).

Algorithm NR-I is stated for the Newton-Raphson method in its simplest form.
There are numerous techniques that can be included in the algorithm to improve its con-
vergence. These techniques are not discussed in this text. Interested readers are referred
to textbooks-on numerical analysis.

Example 3.13

Figure 3.14 shows a disk that is pressed against a plane surface that passes through
point A. Apply the Newton-Raphson method to find ®, and d when ®, = 30°.

Solution Two constraint equations may be written, as follows:
D, =bcosp, tacosdp,—d=0
b,=bsind, tasing,—r =0

In order to analyze this system using the coordinate partitioning method of

Sec. 3.2.1, the dependent and independent coordinates are taken to be u = [D,, d),
and v = [®,]. Hence, Eq. 1 may be rewritten as

®, =2cos¢p,—d+ 10cosp, =0

)

2
®, =2sing, — 4+ 10sin¢; =0 @
The Jacobian matrix for this system is
o = —-2sin¢, —1 =10sin ¢,
9| 2cos¢p, O 10 cos ¢,
Where q = [¢2’ da (t)l]xs or
®, = —2sin¢, -1 3)
2 cos ¢, 0
and
—10 sin ¢,
d, = 4
Y [ 10 cos qS,] “)

For the Newton-Raphson algorithm, Au is evaluated by solving

—2sin¢g, —1|{{Ad,| | P 5
2cosd, Of|Aa| |-, )

a=2m
r=4m
b=10m

Figure 3.14 Roll with slip (Example 3.13).
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Since Eq. 5 is simple to solve, there is no need to apply a numerical technique. It
is found that
S
Ap, = —
¢2 2 cos ¢,
Ad = &, + &, tan ¢,

Iterative results using this formula are presented in the accompanying table, where
¢, = 30°. After three iterations, ¢, = 5.76 rad (330°) and d = 10.3924, and the
residuals are ®, = —0.0003 and ®, = 0.00007, which are small enough to termi-
nate the process. Note that, since A¢, is found in radians from Eq. 6, then either
¢, must be converted to radians (from degrees), or A¢, must be converted to de-
grees (from radians).

©)

Iteration

number ! d d, @, Ad, Ad
1 5.59 (326°) 10.0 0.19 -0.29 0.19 0.43
2 5.77 10.43 0.026 0.0206 —0.0118 ~0.03759
3 5.76 10.3924 ~0.0003 0.00007

*All angles should be in radians.

3.4.3 A Subroutine for Nonlinear Algebraic Equations

The Newton-Raphson algorithm of Section 3.4.2 is represented here in the form of a
subroutine that can be embedded in programs to solve sets of nonlinear algebraic equa-
tions. This subroutine makes use of subroutines LINEAR and LU to solve Egs. 3.42 and
3.43 iteratively. This subroutine is written in the simplest possible form, which can be
modified easily.

Subroutine NEWTON. The argument parameters in this subroutine are as
follows:

A,C, W,

ICOL, _

N, EPS Refer to subroutine LINEAR

NRMAX Maximum number of iterations allowed
FEPS Error tolerance on the Newton differences
X Vector of dependent coordinates (unknowns)

This subroutine allows a maximum of NRMAX Newton iterations for finding the
solution vector X to the set of nonlinear algebraic equations. If the solution is not found
in NRMAX iterations, the subroutine terminates the process with a CONVERGENCE
FAILED message. In each iteration, a call to a user-supplied subroutine FUNCT is
made. This subroutine must provide the Jacobian matrix ®, and the constraint violations
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® (refer to Eq. 3.41), for the particular problem at hand, in matrix A and array C, re-
spectively. Equation 3.42 is then solved by a call to subroutine LINEAR. The Newton
differences Ax are returned in array C, which is employed to correct the vector of un-
known X. Note that Eqs. 3.42 and 3.43 can be written as
®,(x') Ax' = D(x) (3.44)
and
Xt = x — Ax (3.45)
which are employed in this subroutine. Finally, if all of the Newton differences (in abso-
lute value) that are stored in C are less than the specified tolerance FEPS, the subroutine

successfully terminates the process by returning to the calling routines. A FORTRAN
program for such a subroutine is as follows;

/ @K o

SUBROUTINE NEWION, (A,C,W, ICOL,N,EPS ,NRMAX , FEPS ,X)
DIMENSION A(N,N)/C(N) ,W(N), ICOL(N),X(N)
DO 20 I=1,NRMAX/ /

CALL FUNCT (A,C,N)

\ CALL LINEAR (A,C,W,ICOL,N,1,EPS)
ICONVR=0
DO 10 J=1,N
IF (ABS(C(J)).GT.FEPS) ICONVR=1
10 X(3)=Xx(J)-Cc(J)
IF (ICONVR) 30,30,20
20 CONTINUE
WRITE(1,200)
STOP
30 RETURN
200 FORMAT(5X,’***CONVERGENCE FAILED***°’)
END

Example 3.14

Write a computer program, making use of subroutine NEWTON, to solve the
problem of Example 3.13.

Solution The main routine presented here for this example is written in a general
form. It can handle problems with up to 10 independent variables v and 10 depen-
dent variables u, without the need to increase the dimension of the arrays. The
program asks the user for the following information:

Number of independent variables

Number of dependent variables

Known values for the independent variables
Initial estimates for the dependent variables

The main routine calls subroutine NEWTON, which in turn calls subroutines
LINEAR (and LU) and FUNCT.

The constraint equations of Eq. 1 and the Jacobian matrix ®, of Eq. 3 are
formulated in subroutine FUNCT. In this subroutine, the array F, which has two
elements, contains the constraint violations, and the 2 X 2 array (matrix) A con-
tains the Jacobian entries.
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C***** EXAWLE 3'14 KKk EKX
OOMVDN /EXAMPL/ U(10),V(10)
DIMENSION B(120),1(10)
DATA EPS/0.0001/, FEPS/0.001/, NRMAX/25/
Coovns Initialize the variables
WRITE(1,200)
READ (1,* ) NV,N
IF (NV.EQ.0) GOTO 10
WRITE(1,210)
READ (1,* ) (V(J),J=1,NV)
10 WRITE(1,220)
READ (1,* ) (U(1),J=1,N)
C..... Pointers for the subarrays
Ni1=1
N2=N1+N*N
N3=N2+N
NUSED=N3+N-1
C.oovv Perform Newton-Raphson iteration
CALL NEWION (B(N1),B(N2),B(N3),I,N,EPS,NRMAX,FEPS ,U)
WRITE(1,230) (U(3),J=1,N)
STOP
200 FORMAT(SX, ’ENTER NO. OF INDEPENDENT VARIABLES V’,/,
+ 8X.’AND NO. OF DEPENDENT VARIABLES U’)
210 FORMAT(SX,’ENTER VALUES FOR THE INDEPENDENT VARIABLES’)
220 FORMAT(5X,’ENTER ESTIMATES FOR THE DEPENDENT VARIABLES’)

230 FORMAT(’THE SOLUTION TO DEPENDENT VARIABLES 1S:’,/,10F10.5)
END

SUBROUTINE FUNCT (A,F,N)
COMVON /EXAMPL/ U(10),V(10)
DIMENSION A(N,N),F(N)
c***** EXAWLE 3.13 X K kKX
C..... Constraint equations
F(1) = 2.0*C0S (U(1))-U(2)+10.0*C08(V(1))
F(2) = 2.0*SIN(U(1))-4.0 +10.0*SIN(V(1))

C.ovvs Jacobian matrix
A(1,1) =-2.0*SIN(U(1))
A(1,2) =-1.0
A(2,1) = 2.0*00s(U(1))
A(2,2) = 0.0
RETURN
END

PROBLEMS

3.1 For each of the planar mechanical systems shown in Fig. P.3.1, answer the following
questions:

(a) Is the system an open loop or a closed loop?

(b) If the system contains any closed loops, identify all of the closed loops.
(¢) Determine the number of degrees of freedom of the system.

(d) Identify all of the kinematic joints.

Note: For mechanisms (b) and (i) consider two cases: where the wheel(s) do(es) not slip, or
where the wheel(s) slip(s).

3.2 Determine which of the following constraint equations are nonholonomic:
(@) 2 cos ¢, + 3.6d, cos Py — 3.1=0
(b) x4—3cosq54—x6+2.551n¢(,=0
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{a)

(b) {c)

N

(d) (e) (f)

\

N

7

(g) . (h) (i)
Figure P.3.1

(© x, + 0.6t +0.1=0

(@ x5 + ysx, =0

© @ —x)+ -y —d*>0

) —eeq + e, — ese; + €05 =0

3.3 For the slider-crank mechanism shown in Fig. P.3.3, assume /; = 1.2 and [, = 2.6.

(a) Write the constraint equations in terms of the coordinates ¢, ¢,, and d. From these
equations, derive the velocity and acceleration equatlons

(b) If ¢, is the driving coordinate, then for ¢, = 0.8 rad, ¢; = 0.1 rad/s, and ¢7, = 0, find
the remaining coordinates, velocities, and acceleratlons

(c) If the slider is the driving link, then for d = 2.5, d = —0.2, and d = —0.06, find the
remaining coordinates, velocities, and accelerations.
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3.4

3.5

3.6

3.7

3.8
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Figure P.3.3

Points P and Q are defined on the coupler of a four-bar mechanism as shown in Fig. P.3.4.
Assume [, = 0.5, 1, = 1.2, 1; = 0.8, [, = 0.7, Is = 0.15, and [g = 0.2.

A

Figure P.3.4

(a) Derive the constraint, velocity, and acceleration equations (loop ABCD).

(b) Write expressions for x”, y”, x%, and y2 in terms of the coordinates.

(¢) From (b), derive expressions for the velocity and acceleration of P and Q.

(d) For ¢, = 7/4, (2)1 = —0.17, and éi). = 0, solve the equations obtained in (a) to find
the remaining coordinates, velocities, and accelerations.

(e) Use the results of (d) and substitute in the expressions of (b) and (c) to obtain the coor-
dinates, velocities, and accelerations of P and Q.

Select some of the mechanical systems of Prob. 3.1 having only closed loops, define a
proper set of coordinates, and then derive the constraint, velocity, and acceleration equations.

Assume that y is the independent coordinate in the constraint equations
X+xy+yz—2+3=0
y2—322+xz+2y—1=0
Apply two different approaches to find the velocity and acceleration equations for the coor-
dinate partitioning method:
(a) Take the first and the second time derivatives of the constraints.
(b) Employ Eqs. 3.8 and 3.11 directly.

Write the constraint, velocity, and acceleration equations for Prob. 3.6 in the form of the
appended driving constraint method. Assume that the independent variable is defined as y =
¢,y = ¢, and § = c;. Express these equations in the form of Egs. 3.12, 3.14, and 3.16.

A driver constraint equation for the slider-crank mechanism in Prob. 3.3 is stated as
¢, —08—-01=0
Write the constraint, velocity, and acceleration equations in the form of the appended driv-

ing constraint formulation. Solve these equations for 1 = 0 and compare the result with that
obtained in Prob. 3.3(b).
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3.9 Solve the system of equations

2-1 0 1]||w 2
-2 2 0-3)|x} |8
4 1 3-1|y| It
0-1-2 5]|]|:= 2
by the following methods:
(a) Gaussian elimination
(b) Gauss-Jordan reduction
(¢) L-U factorization
3.10 Solve the system of equations
3 1 -1 2ffw 0
-6 -2 4 3itx| _ 4
0 3 2-2||y| 1
1 1-5 6|]|:z —-10

by the Gaussian elimination method
(a) Without pivoting
(b) With row pivoting when necessary
(¢) With column pivoting when necessary

3.11 Solve the system of equations in Prob. 3.9 by L-U factorization and
(a) No pivoting
(b) Partial pivoting with row interchange
(¢) Partial pivoting with column interchange
(d) Full pivoting

3.12 For the system shown in Fig. P.3.12, assume no slipping between the wheel and the contact-
ing surface. f OA = 1.5, AB =2,BC = 1,r = 1.2, and OE = 0.2, write the constraint
equations for this system in terms of ¢, ¢, ¢,, and d. Note that two equations can be writ-
ten for the loop closure and one equation can be written for the no-slip condition. Further-
more, it is known that the system was initially assembled for d = 3 and ¢, = 120°. For the

crank angle ¢, = 60°, apply the Newton-Raphson algorithm to solve the constraint equa-
tions for the unknown coordinates. Show the result of each iteration in a table.

Figure P.3.12
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3.13 For the quick-return mechanism shown in Fig. P.3.13, derive the constraint, velocity, and
acceleration equations. Solve these equations by writing a computer program using subrou-
tines NEWTON and LINEAR. Assume OB = 0.7, CD = 2.1, OE = 0.9, and the configu-
ration is for ¢, = /6, ¢, = —0.2, and ¢, = 0.

Figure P.3.13
3.14 For the mechanism of Prob. 3.13 assume a driver constraint as
b - % +02 =0

Start from ¢ = 0 and increment ¢ gradually to simulate the motion of the system for a com-
plete cycle.

3.15 Modify the computer program of Prob. 3.13 to solve Prob. 3.12. Assume that the crank
rotates with a constant angular velocity of 0.2 rad/s.

3.16 The four-bar mechanism shown in Fig. P.3.16 is used to advance a film strip inside a movie
projector. "’

Figure P.3.16

(a) Write the constraint equations for the four-bar linkage ABCD.
(b) Write expressions for the coordinates of point P in terms of ¢y, ¢y, and ¢s.

(¢) Develop a computer program to solve the constraint equations for a complete revolution
of the crank and compute the coordinates of P.

(d) Plot the path of P and show where point P becomes engaged and disengaged with the
film strip.




