Vectors
and

Matrices

Vector and matrix algebra form the mathematical foundation for kinematics and dynamics.
Geometry of motion is at the heart of both the kinematics and the dynamics of mechani-
cal systems. Vector analysis is the time-honored tool for describing geometry. In its geo-
metric form, however, vector algebra is not well suited to computer implementation.

In this chapter, a systematic matrix formulation of vector algebra, referred to as
algebraic vector representation, is presented for use throughout the text. This form of
vector representation, in contrast to the more traditional geometric form of vector repre-
sentation, is easier to use for either formula manipulation or computer implementation.
Elementary properties of vector and matrix algebra are stated in this chapter without proof.

2.1 GEOMETRIC VECTOR

When we write a vector in the form 4, it is understood from the arrow notation that we
are referring to the vector in its geometric sense: it begins at a point A and ends at a
point B. The magnitude of vector d is denoted by a. A unit vector in the direction of d is
shown as i,.

Vectors lying in the same plane are called coplanar vectors. Collinear vectors
have the same direction and the same line of action. Equal vectors have the same magni-
tude and direction. A zero or null vector has zero magnitude and therefore no specified
direction.

Multiplication of a vector d by a scalar « is defined as a vector in the same direc-
tion as @ that has a magnitude aa. The negative of a vector is obtained by multiplying
the vector by —1; it changes the direction of the vector.
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>
The vector sum of two vectors d and b is written as

¢ =a+b @2.1)
The product of a sum of two scalars @ + B8 and a vector d is expanded as
(@ + B)d = ad + Bd (2.2)

A vector d can be resolved into its Cartesian components Ay Ay and a, along
the x, y, and z axes of a Cartesian system. Here the unit vectors i), i, and u(z) are
directed along the coordinate axes x, y, and z. " In vector notation, the resolution of the
vector into its components is expressed as

d = ayily + agii) T agile 2.3)
If the angles between the vector d and the positive x, y, and z axes are denoted by 6,,),
6,), and 6, the components of vector & are given as
ag = a cos O,
agy = a cos 6, 2.4)
ag = a cos b,
The quantities cos 6, cos 6,), and cos 6, are the direction cosines of vector a.

The scalar (or dot) product of two vectors d and b is defined as the product of the

magnitudes of the two vectors and the cosine of the angle between them; i.e.,

-

d*b=abcosb (2.5)
= awby t+ awby t apby (2.6)
=b-a 2.7

where the angle 0 between the vectors is measured in the plane of intersection of the
vectors. If the two vectors are nonzero, i.e., if a # 0 and b # 0, then their scalar
product is zero only if cos 6 = 0. Two nonzero vectors are thus said to be orthogonal
(perpendicular) if their scalar product is zero. For any vector 4,

i-da=a’ (2.8)

The vector (or cross) product of two vectors d and b is defined as the vector
E=axhb (2.9)
= ab sin 6 U (2.10)

(@be — apbyiig + (@uby — awbelii T (@wby) = awbwie

(2.11)
where ii is a unit vector that is orthogonal to the plane of intersection of the two vectors
d and b, taken in the positive right-hand coordinate direction, and 6 is the angle between
vectors a and b. Since reversal of the order of the vectors d and b in Eq. 2.9 would yield
an opposite direction for the unit vector, it is clear that

bxa=—-axbh (2.12)

While not obvious on geometrrcal grounds the followrng identities are valid:
(a+b)~ G-+ b- (2.13)
@+b)x5=éx5+5x5 , (2.14)

"In most textbooks the three unit vectors along the x, y, and z axes are denoted by i, j, and k. In this
text, since i and j are used to denote indices of bodies, to avoid any confusion, unit vectors are denoted by iy,
ﬁ(}‘l’ and d(,),
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From the definition of scalar product, vector product, and unit coordinate vectors,
the following identities are valid:

ey * Hgyy = dgy il = Gl =0 2.15)
ey * gy = gy il = Ul = 1 '
and )
gy X Hgy =ty X dly = g Xl =0
gy X Hgy) = lg (2.16)

Uy X U = Uy
U X Uy = Uy

2.2 MATRIX AND ALGEBRAIC VECTORS

Compact matrix notation often allows one to concentrate on the form of a system of
equations and what it means, rather than on the minute details of its construction. Matrix
manipulation also allows for the organized development and simplification of systems
of equations.

A matrix with m rows and n columns is said to be of dimension m X n and is
denoted by a boldface capital letter; it is written in the form

ap dp 4y
Gy Gy "y,
A = [ai]] =
Ay Quy  * 7 Gy |mxa)

where a typical element a; is located at the intersection of the ith row and jth column.
The transpose of a matrix is formed by interchanging rows and columns and is desig-
nated by the superscript 7. Thus, if a; is the ij element of matrix A, a; is the ij element
of its transpose A'.

A matrix with only one column is called a column matrix and is denoted by a
boldface lower-case letter; e.g., a. A matrix with only one row is called a row matrix
and is denoted as a’; i.e., as the transpose of a column matrix. An m X n matrix can be
considered to be constructed of n column matrices a;, where j = 1,...,n, or m row
matrices a’; where i = 1,...,m.

The vector a in Eq. 2.3 is uniquely defined by its Cartesian components and can
be written in matrix notation as follows:

A
— —_— T
a = |ay | = law ay, a0l 2.17)

4
This is the algebraic (or component) representation of a vector.
2.2.1 Matrix Operations

In this section, the terminology of matrix algebra is briefly reviewed. Several useful
identities are stated that are used extensively throughout this text.
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A square matrix has an equal number of rows and columns. A diagonal matrix is
a square matrix with a; = 0 for i # j and at least one nonzero diagonal term. Ann X n
diagonal matrix is denoted by

A = diagla,,, dy, . . .y Gy

If square matrices B, i = 1,...,k, are arranged along the diagonal of a matrix D
to give
B,
B, 0
D=
0 B,

then the matrix is called a quasi-diagonal matrix and is denoted by
D = diag[B,,B,,...,B,]

even though D is not a true diagonal matrix. An n X n unit or identity matrix, denoted
normally as I, is a diagonal matrix with a; = 1, i = 1,...,n. A null matrix or zero
matrix, designated as 0, has a; = 0 for all i and j.

If two matrices A and B are of the same dimension, they are defined to be equal
matrices if a; = by for all i and j. The sum of two equidimensional matrices A and B is
a matrix with the same dimension, defined as

C=A+B (2.18)
where ¢; = a; + b; for all i and j. The difference between two matrices A and B of the
same dimension is defined as the matrix

C=A—-B (2.19)
where ¢; = a; — by for all i and j. For matrices having the same dimension, the follow-
ing identities are valid:

A+B)+C=A+B+C)=A+B+C (2.20)
A+B=B+A (2.21)

Multiplication of a matrix by a scalar is defined as
oA =C (2.22)

where ¢; = aay.
Let A be an m X p matrix and let Bbe ap X n matrix, written in the form

a;
a;
A=| - B = [b,,b,,...,b,]
a,
where the a/, i = 1,...,m, are row vectors with p elements andtheb,i =1,...,n,

are column vectors with p elements. Then the matrix product of A and B is defined as
the m X n matrix

C=AB (2.23)
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where
atb, ajb, --- apb,
azb, agbz o agbn
c=| - - (2.24)
a:T::bl aLb2 e a?;-lbn
or ¢; = a'b;. The scalar product a" for two vectors a = [a,,d,,...,a,]" and
b = [b,,b,,...,b]" is defined as
alb = ab, + ah, + - + ab, (2.25)

It is important to note that the product of two matrices is-defined only if the number of
columns in the first matrix equals the number of rows in the second matrix. It is clear
from the definition that, in general,

AB # BA (2.26)

In fact, the products AB and BA are defined only if both A and B are square and of
equal dimension.
The following identities are valid, assuming that the matrices have proper dimensions:

(A + B)C = AC + BC (2.27)

(AB)C = A(BC) = ABC (2.28)

(A+B)=A"+B" (2.29)

(AB)" = B'A" (2.30)

If a; = a; for all i and j, the matrix A is called symmetric; i.e., A = Al If

a; = —a; for all i and j, the matrix A is called skew-symmetric; i.c., A = —A”. Note

that in this case, a; = 0, for all i.

Consider an m X p matrix A. If linear combinations of the rows of the matrix are

nonzero; i.e., if

Ala # 0 (2.31)
for all @ = [}, oy, ..., ) # 0, then the rows of A are said to be linearly indepen-
dent. Otherwise, if

Ala =0 (2.32)
for at least one & # 0, then the rows of A are said to be linearly dependent and at least
one of them can be written as a linear combination of the others.

The row rank (column rank) of a matrix A is defined as the largest number of lin-
early independent rows (columns) in the matrix. The row and the column ranks of any
matrix are equal. Each of them can thus be called the rank of the matrix. A square matrix
with linearly independent rows (columns) is said to have full rank. When a square matrix
does not have full rank, it is called singular. For a nonsingular matrix there is an inverse,
denoted by A™', such that

AA'=ATA=1 (2.33)

The following identities are valid: '
(A" = (A (2.34)
(AB)"' = B'A™ (2.35)
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A special nonsingular matrix that arises often in kinematics is called an orthogonal

matrix, with the property that'

A=A (2.36)
Therefore, for an orthogonal matrix,

A'A =1 (2.37)
Since constructing the inverse of a nonsingular matrix is generally time-consuming, it is
important to know when a matrix is orthogonal. In this special case, the inverse is trivi-
ally constructed by using Eq. 2.36.

2.2.2 Algebraic Vector Operations

The algebraic representation of vectors provides a powerful tool for vector algebra. A
reader who is not familiar with this notation and arithmetic may not realize at first
its ease of use and flexibility. However, after learning how to operate with algebraic
vectors, the reader will find that the traditional geometrical vector operation is rigid and
limited for formula manipulation.

An algebraic vector is defined as a column matrix. When an algebraic vector rep-
resents a geometric vector in three-dimensional space, the algebraic vector has three
components and is called a 3-vector. However, algebraic vectors with more than three
components will also be defined and employed in this text.

A 3-vector a was shown in Eq. 2.17 in terms of its xyz components. The compo-
nents of a vector can be specified in terms of the other coordinate systems besides the
xyz coordinate system, such as the x'y’z’ or én{ system. In order not to restrict the fol-
lowing notation to the xyz components of a vector, we show the components of vectors a
and b as
-]
a,

a=|a, (2.38)

| % |

b=1|0b, (2.39)
b,

and thus the vector sum of Eq. 2.1 becomes, in algebraic notation,
c=a+b (2.40)
It is also true that & = b if the components of the vectors are equal; i.e., if a = b. Mul-
tiplication of a vector d by a scalar « occurs component by component, so the vector ad
is described by the column vector aa. A null or zero vector, denoted by 0, has all of its
components equal to zero.
The scalar product of two vectors may be expressed in algebraic form as
a’b =b’a=ab, + ab, +aby (2.41)

"The correct terminology would have been orthonormal instead of orthogonal.
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Note that two vectors a and b are orthogonal if
a’b=20 (2.42)
A skew-symmetric matrix associated with a vector a is defined as

a= a; 0 —a (2.43)

Note that the tilde placed over a vector indicates that the components of the vector are
used to generate a skew-symmetric matrix. Now the vector product @ X b in Eq. 2.9
can be written in component form as

aby — azb,
c=ab = | ab, — ab;s (2.44)
a,b, — axb

For later use, it is helpful to develop some standard properties of the tilde opera-
tion. First note that

a=|-a 0 q (2.45)
a, —a, 0
Also, for a scalar «,
ad = (ca) (2.46)
For any vectors a and b, a direct calculation shows that
ab = —ba (2.47)
Direct calculation may also be done to show that
aa =0 (2.48)
Hence, by Eq. 2.45,
a’a’ = —a'a = 07 (2.49)
It can also be verified by direct calculation that
ab = ba” — a’bl (2.50)
where I is a 3 X 3 identity matrix. Also,
(ab) = ba’ — ab” (2.51)
= ab — ba (2.52)
ab + ab” = ba + ba’ (2.53)
It can also be verified by direct calculation that
(a+tb)=a+h (2.54)

Table 2.1 should assist the reader in becoming familiar with the algebraic notation.

Example 2.1
Test the validity of Eq. 2.47 with two vectors a = [~2,1, —3]"and b =
[l; _29 4]T
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Solution The product ab is computed as follows:

0 31 1 -2
ab=]-3 0 2 -2 1= 5
-1 -2 0 4 3

The product ba is computed similarly:

0 —4 =2 -2 2
ba=|4 0-1 1l=1-5
2 1 0 -3 -3
It can be seen that ab = —ba.

Example 2.1a
For vectors a and b, verify Eq. 2.51.

Solution The product ab was found to be [—2,5, 3]". Therefore,
0-3 5

ab=1| 3 0 2
~5-2 0
The right-hand side of Eq. 2.51 is computed as follows:
1 -2
pa’ —ab’ = | -2 |[-2,1,-3] — 1|[1,-2,4]
4 -3
(2 1 -3 ~2 4 -3
= 4 -2 6]|- 1 -2 4
-8 4 -12 -3 6 —12
[ 0-3 s
= 3 02
-5-2 0

which verifies the validity of Eq. 2.51.
Example 2.2

Show that

AXBX)+DEx@xa+ex@xh=0
Solution Using algebraic vector notation, we write the left-hand side of this
expression as

abc + béa + éab

Employing Eq. 2.50 for ab, bé, and €, the above terms become

(ba” — a’bI)c + (cb” — b’eDa + (ac’ — c’al)b
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TABLE 2.1 Vector Terms in Geometric and Algebraic Forms

Geometric Algebraic

a a

i+b a+b

od aa

ib a’b

axb ab

i (b xd a’be

bxd-a (be)a (= —c'ba)
ax(bxod abe

(a X Z) X é abc

or

ba’c — a’be + cb’a — b'ca + ac’b — c’ab
Observe that ba’c = a’cb, since a’c is a scalar and can be placed to the left or to
the right of vector b. Since a’c = c’a, then ba’c = c’ab. Similarly, it can be
shown that ch’a = a’be, ac’b = b’ca, and the identity is proved to be zero.

Consider three vectors a = [a,,dy, a5)', b = [b,, by, b5]", and ¢ = [c,, ¢,, ¢;5]". For
these vectors, the following representations in matix form will be used in this text:

a b ¢

A=[ab,c]l=}a b, ¢ (2.55)
a; by ¢
a, d, das

AT = [a,b, c"=\|b b, b (2.56)
¢ G G

The algebraic representation of vectors allows one to define vectors with more than
three components; i.e., vectors with higher dimension than 3. A vector with n compo-
nents is called an n-vector. For example, the vector a = [a,, a,, a,]" is a 3-vector, and

d = [a},a5,a3, by, by, by, ¢p, 05,051 = [a', b, '] (2.57)
is a 9-vector. Note that the right side of Eq. 2.57 is a column vector. In this text, for
clarification purposes in particular cases, the dimension of a vector is shown as a super-
script; e.g., vector d for Eq. 2.57 can be shown as d®.

A matrix can be represented in terms of its subvectors and submatrices. For example,
the 3 X 4 matrix C can be represented as

C = [a,A] (2.58)
where a is a 3-vector and A is a 3 X 3 matrix. Vector a represents the elements of the
first column of C, and the matrix A represents the elements in columns 2, 3, and 4 of C.

Example 2.3
If C = [a,A] and D = [b, B] are two 3 X 4 matrices, express CD” and C'D in
terms of a, A, b, and B.
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Solution The product CD’ yields a 3 X 3 matrix:

b’ -
CD' = [a,A][ ] = ab” + AB’

BT
and the product C'D yields a 4 X 4 matrix:

a’ a’b a'B
T = . =
cb [A" [b,B] =141, 78

2.3 VECTOR AND MATRIX DIFFERENTIATION

In the kinematics and dynamics of mechanical systems, vectors representing the posi-
tions of points on bodies, or equations describing the geometry or the dynamics of the
motion, are often functions of time or some other variables. In analyzing these equations,
time derivatives or partial derivatives with respect to some variables of the vectors and
equations are needed. In this section, these derivatives are defined and the notation used
in the text is explained.

2.3.1 Time Derivatives

In analyzing velocities and accelerations, time derivatives of vectors that locate points
or bodies or equations that describe the geometry of motion must often be calculated.
Consider a vector a = a(t) = [a,(2), a,(1), a,(t)]", where ¢ is a scalar parameter that
may play the role of time or some other variable. The fime derivative of a vector a is
denoted by

ar!
Thus, for vectors that are written in terms of their components in a fixed Cartesian coor-
dinate system, the derivative of a vector is obtained by differentiating its components.
The derivative of the sum of two vectors gives

%(a(r) Fb) =a+b (2.60)

d d d d T
Zta(t) = [— (f)’gtaz(t),a;aa(t)] =a (2.59)

which is completely analogous to the ordinary differentiation rule that the derivative of a
sum is the sum of the derivatives. The following vector forms of the product rule of dif-
ferentiation can also be verified:

%(aa) = a4 + aa (2.61)
d, -7 '

(@) = &b + a’b (2.62)
d L e

-d—t(ab) = ab + ab - (2.63)

where a(t) is a scalar function of time. Note also that

a=a (2.64)
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Many uses may be made of these derivative formulas. For example, if the length of a
vector a(?) is fixed, i.e., if a(t)"a(t) = c, then
ala=0 (2.65)
If a is a position vector that locates a given point, then a is the velocity of that point.
Hence Eq. 2.65 indicates that the velocity is orthogonal to the position vector when the
position vector has a constant magnitude.
The second time derivative of a vector a = a(?) is denoted as

d
dz(@ (:)) = @)= (2.66)

Thus, for vectors that are written in terms of their components in a fixed Cartesian coor-
dinate system, the second time derivative may be calculated in terms of the second time
derivatives of the components of the vector.

Just as in the differentiation of a vector function, the derivative of a matrix whose
components depend on a variable ¢ may be defined. Consider a matrix A(t) = [a;(1)].
The derivative of A(z) is defined as

d d _
EA(t) = [Jta,-j(t)] =A 2.67)
With this definition, it can be verified that
%(A(t) +B()=A+B (2.68)
%(A(r)B(z)) = AB + AB (2.69)
i(a(t)A(t)) = GA + oA (2.70)
—(A(t)a(t)) Aa + Aa .71

Example 2.4
If a is a nonzero time-dependent 3-vector, A = [a,a] is a 3 X 4 matrix, and
C = AA’, what is the condition on a for which C will be a null matrix?

Solution Matrix C is found to be

T
= [a, a][ ] = aa’ — A4
The time derivative of C is
C=aa" +ad’ — 43 — aad = aa’ + aa’ — aa’ + a’al — aa’ + a'al
where Eq. 2.50 is employed. Since a’a = a'a, after simplification it is found
that C = 2a’al. Therefore, C = 0 if a has a constant magnitude; i.c., a'a = 0.

2.3.2 Partial Derivatives

In dealing with systems of nonlinear differential and algebraic equations in many vari-
ables, it is essential that a matrix calculus notation be employed. To introduce the nota-
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tion used here, let ¢ be a k-vector of real variables and ® be a scalar differentiable
function of q. Using j as column index, the following notation is defined:

) @
.= 9P _ [3_] (2.72)
G, | (1xi

Equation 2.72 indicates that the partial derivative of a scalar function with respect to a
variable vector is a row vector.

Example 2.5
Vector q designates four variables as q = [xl,xz,x3,x4]T. Find the partial deriva-
tive of a scalar function ® with respect to q where ® = —x, + 33,20

Solution Since a®/ax, = —1, ad/ox, = 3xj, 9®/dx; = 0, and I®/dx, =
6x,x2; then, using Eq. 2.72, @, is written as follows:

o, =[-1 3xis 0 6xx,]

If ®(q) = [P(q), Py(q), - - - ,®,,(q)]" is an m-vector of differentiable functions of
q, using i as row index and j as column index, the following notation is defined:

oP b,

== [—'] (2.73)
aq aq/ (mxk)

Equation 2.73 indicates that the partial derivative of m functions of a k-vector of vari-

ables with respect to that vector is defined as an m X k matrix.

Example 2.6

Vector ¢ containing six variables is given as q = [X15 Y15 X2, Y25 X35 y5]". Determine
the partial derivative of two functions @ = [®,, D,])" with respect to q where

¢’,=x1+3y1——x2+2x3—y3
D, = xy, + ¥, + 2ys

Solution The partial derivative of ® with respect to q is a 2 X 6 matrix:
1 3 -1 0 2 -1
P, =
y, x, 0 1 0 2
Note that the first and the second rows of this matrix contain the partial derivatives
of ®@, and ®, with respect to q respectively.

The partial derivative of the scalar product of two n-vector functions a(q) and
b(q), by careful manipulation, is found to be a row vector:

9
L) - ot @74

where the dimension of the resultant row vector is the same as the dimension of vector (.
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Example 2.7

Vectors a and b are functions of a single variable «. Determine the partial deriva-
tive of a’b with respect to « if

20 -3
a= -1 b = o
o -«

Solution The derivatives of a and b with respect to « are

2 0
a, =10 b, = |
1 -1
Using Eq. 2.74, it is found that
3 2 0
— @) =[-3,a,—a]| 0| + [2a,—1,¢] 1| =-2a-7
oo ) 1

This result can be obtained directly, in order to verify Eq. 2.74, by determining
the scalar product a’b:

-3
alb=[2a-1,0]| a|=-a"—7Ta

—

Then the partial derivative of a’b with respect to e is found to be —2a — 7.
Example 2.8

Vector ¢ contains two variables « and §3; i.e., q = [a, B]T. Vectors a and b are
functions of q, as follows:

a—B -o' + B
a=|a+p b = ot 2
B8—-1 —a - B

Determine the partial derivative of a’b with respect to q.

Solution The derivatives of a and b with respect to q are:
1 -1 —2w 1

a, =1 28 b, = 1 0
0 1 -1 —28
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Using Eq. 2.74, it is found that

1 -1
@) = [~ + Bat2,—a—p1|1 28
aq

0 1

—2a 1
+ o — B+ BB — 1] 1 0

~1 -28

= [~ +Bt+ta+2,6—B+2B+48— a— F]
+[-20%+2aB +a+ B - B+ l,a—B— 28+ 28]
=[—3a2+2a[)’+,82+2a+3,a2+2a,8-—3,82+4,8]

The partial derivative of the vector product of two n-vector functions a(q) and
b(q) is found to be

9 3 .
a(ab) = ab, — ba, (2.75)
The resultant matrix of Eq. 2.75 is an n X m matrix, where m is the dimension of q.

Example 2.7a
Evaluate Eq. 2.75 for vectors a and b.

Solution The derivatives of a and b with respect to « are already available;

therefore
3 0 —a -1 0 0 a « 2 —2a + 1
a(ﬁb) =|la 0 -2a I1|—-| —a« 0 3 0]l =| -3+ 4a
1 2« 0 -1 -a -3 0 1 4o
Example 2.9

Vectors a, b, and ¢ are functions of vector q. Find d, where d = abc.

Solution In expressions such as abc where several functions appear in a nonlinear
form, it is helpful to find equivalent forms of the expression. Each equivalent expres-
sion should have a different vector appearing at its extreme right. For instance, d
can be presented in three forms: '

d = abe = —ach = —(bo)a

where Eq. 2.47 has been employed. Now, these identities easily yield the partial
derivative of d with respect to q:

d, = (ab)e, — E&b, — (bo)a,
This approach can be used to verify Eq. 2.75.
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2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

PROBLEMS

Let d = iy + 2il(y, — iy and b= iy — Uy T H(. Use the algebraic vector approach to
calculate the following:

@ a+hb

®a-b

(©) ad

@ axb

© @G-byxa

If & and b are arbitrary 3-vectors, verify the following identities by direct calculation:

(a) Eq. 2.50

(b) Eq. 2.51

(¢) Eq.2.52

(d) Eq. 2.53

If 4, b , ¢, and d are 3-vectors, use the algebraic vector approach to show that the following
identities are valid:

@ a-@xb =0

b) @XDb) - EXD+BXD - @xXD+EXxa): (bxd=0

Show that if A is a square matrix, the matrices B = $(A + A”) and C = 3(A — A") are
symmetric and skew-symmetric, respectively.

Show that any square matrix A can be uniquely expressed as A = B + C, where B and C
are symmetric and skew-symmetric, respectively.

cos ¢ —sin ¢
sin¢ cos ¢
Show that for arbitrary angles, ¢, ¥, 8, and o, the following matrices are orthogonal
¢ = cos and s = sin):

[ 0 s
@A=| 0 1 0
_~s¢> 0 co

Show that for an arbitrary angle ¢, the matrix A = [ ] is orthogonal.

_cw —sPchd  syPsh
(b) A= sy cpch —cish
0 s6 cé

—CL[I co — srchso —cPso — sPchdco sy sl
©) A=|spco+cPchso —sPso+ cfcldco —cish
s6 so s8 co ch

If e is a 3-vector and ¢, is a scalar, show that
A = (25 — DI + 2(ee’ + )
is a3 X 3 orthogonal matrix, knowing that ej + e'e = 1.

Vector a is a 3-vector and B is a 3 X 4 matrix defined as B = [a, 4]. What is the condition
for A = BB to be an orthogonal matrix?
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2.10
2.11
2.12

2.13
2.14

2.15

2.16

2.17
2.18

2.19

Vectors and Matrices

In Prob. 2.9, show that under no condition can matrix C = BB be orthogonal.

Let B = [a,4] and C = [a, —&]. Show that BC" = BC,
Vector ® contains two functions as follows:
® = [Zx —3xy +y* —xz +yzz——4xyz]
—x?+ xy* — 2y + Syz — xz?

If vector q is defined as q = [x,, zJ*, find:
(a) <?q
(b) @
Show that & = dq.
Use vectors a, b, and q from Example 2.8 and evaluate Eq. 2.75.
For two 3-vectors s and e, vector § is defined as § = @s. Show that
§ = S + Ows
For two 3-vectors s and @ show that
SSw = WSSw

Vectors a and b are defined as a = A,¢, and b = A,c,, where

; —sin ¢; : 1.2
A = |08 ® Tsind i=12 o= ¢, =
sin ¢p; cos ¢; -0.5

-0.3
0.8

Chap. 2

)

(a) Let ® = a’band q = (X1, V1, D1y X2 Y2r Pa]”. Evaluate ®, for ¢, = 30° and ¢, = 45°.

Xy T X
Y2 = N
y = 1.0, x, = —19,and y, = 2.3.

(b) Letd = [

Let a and b be two 3-vectors, B = [b, B], and C = B'a. Find C, and C,.

Let x be an n-vector of real variables and A be areal n X n matrix. Show that

)
a—(xTAx) = x'AT + x'A = x'(AT + A)
X
If the matrix A in Prob. 2.18 is symmetric, show that

d "
—(x"Ax) = 2x'A
ox

:| and ® = ad. Evaluate @, for ¢, = 30°, , = 45° x; = 6.2,



