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7.  FORCE ANALYSIS 
 

This chapter discusses some of the methodologies used to perform force analysis on 
mechanisms. The chapter begins with a review of some fundamentals of force analysis using 
vectors. Then a review of graphical and analytical methods of force analysis on stationary 
mechanisms, known as static force analysis, is provided. Finally, force analysis of mechanisms in 
motion, known as dynamic force analysis, will be discussed. 
 

Fundamentals 
 
Force Vector 

A force that acts on a point of a link carries 

the index of the point.  For example   FP . P

  FP

 
Moment About A Point  

In planar systems, the moment of a force 
about an arbitrary point is a moment vector 
along an axis perpendicular to the plane (z-

axis). For example, the moment of the force FC  

about O is a moment in the positive z-direction 
(CCW) with a magnitude 

MO = hFC  

where h is the distance from O to the axis of 
the force, also called the moment arm. In the 

second example, the moment of FB  about O is 

a moment in the negative z-direction (CW) 
with a magnitude 

MO = hFB  

C 
  FC

O 

h 

O 
M o 

⇒

 

M o 
O 

B

  FB

O 
 h 

⇒

The direction of a moment can be determined using our right-hand—the thumb would 
indicate the direction of the moment when the other four fingers are curled about the point in the 
direction of the force. 

The moment of a force about a point can also be determined 
using the vector-product operation.  For example, the moment of 
the force FC  about O is determined as 

MO = RCO × FC  

A short review of the vector-product operation is provided at the 
end of this introductory section. 

C 
  FC

O 

RCO

 

Force Couples and Torques 
Two parallel forces, equal in magnitude 

and opposite in direction, acting on two 
different points of a link form a couple. The 
moment of a couple, called a torque, is a vector 
in the z-direction and its magnitude is  

T = hF  

T 

C 
  FC

A   FA

 h 
⇒

 
where h is the distance between the two axes and F = FA = FC  is the magnitude of either force. 

The positive or negative direction of the torque can be determined based on the right-hand method. 
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Common Forces and Torques 

Forces and torques (moments) that act on a link can be the result of gravity, springs, dampers, 
actuators, friction, etc.  These forces and torques can also be the result of reaction forces or 
reaction torques from other links. These forces and torques can be categorized as applied, 
reaction, and friction. 
Applied forces and torques  

These are either known constants (gravity for example), or functions of positions (springs), or 
functions of positions and velocities (dampers). 
Reaction forces and torques  

These are functions of applied forces/torques in static problems, and functions of the applied 
forces/torques and accelerations in dynamics problems. 
Friction forces and torques  

These may appear in machines as viscous (wet) or Coulomb (dry).  Viscous friction depends 
on velocities; therefore it can be categorized as an applied force/torque.  Coulomb friction 
depends on reaction forces and possibly velocities; therefore it can be categorized as a reaction 
force/torque. 
Applied Forces and Torques 
Gravity 

The weight of a body is applied as a force in the 
direction of gravity at the mass center. G

 m g 

 
Point-to-point spring 

The formula to determine the force of a linear spring 
is 

F = k(L − L0 )  

where k is the stiffness, L is the deformed length, and L0
 

is the undeformed length of the spring.  The deformed 
length, L, must be computed based on the instantaneous 
positions (coordinates) of the two attachment points. If 
the computed force is negative, the spring is in 
compression.  If the force is positive, the spring is in 
tension—the pair of forces must be applied to the two 
links accordingly as shown. 

 
A

B

 

A

B
F < 0 

F > 0 

 L 

 

Point-to-point damper 
The formula to compute the force of a linear damper 

is 

 F = c L  

where c  is the damping coefficient, and  L  is the time 

rate of change in the damper’s length.  L  must be 
computed based on the velocities of the attachment 
points.  As shown in the diagram, the relative velocity 

  VBA = VB − VA  is first determined and then projected 

along the axis of the damper to obtain   ′VBA .  The 

magnitude of this vector is the magnitude of  L .  If   ′VBA  

and   R BA  are in the same direction,  L  is positive (the 

 
A

B

 
 

A

B
VA

VB

′VBA

VA

VB

VBA

RBA
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damper is increasing its length), otherwise  L  must be 
given a negative sign (the damper is shortening). 

The computed damper force is applied as a pair of 
forces to the attachment points, in the opposite directions, 
depending on the sign of F as shown. 

 

A

B
F < 0 

F > 0 

 
Rotational spring (or damper) 

A rotational (also called torsional) spring is attached 
between two links about the axis of a pin joint.  Two axes 
originating from the center of the pin joint, one on each 
link, are defined and the angle between them is measured. 

The torque for a rotational spring is computed as 

T = k(θ −θ 0 )  

where k is the stiffness, θ  is the deformed angle, and θ 0  
is the undeformed angle of the spring. 

(j)
(i) θ

 

M 

(i)

M 

(j)

 
A pair of torques, one on each link, is applied in opposite directions. 

The formula to compute the torque of a rotational damper is 

 T = cθ  

where c  is the damping coefficient, and  θ  is the time rate of change in the damper’s angle.   θ  

can be computed based on the angular velocities of the two bodies as 
  θ =ω j −ω i .  Whether  θ  is 

positive (increasing angle) or negative (decreasing angle), the pair of torques that are applied to 
the two bodies must oppose the motion. 
Reaction Forces Torques 

Two links connected by a kinematic joint apply reaction forces (and/or torques) on one 
another. 
Pin joint 

Two links connected by a pin joint apply reaction 
forces on each other.  The reaction forces are equal in 
magnitude and opposite in direction.  The magnitude and 
directions that are shown on the free-body-diagrams are 
arbitrary—they must be determined through an analysis. 

The reaction force on each link can be represented in 

term of its x and y components, such as 
  
Fji( x )  and 

  
Fji( y ) .  

For notational simplicity, we will use a single index to 

show each component; for example,   F1  and   F2 .  If the 

assigned direction to a component is determined to be 
correct through an analysis, the solution for that component 
will come out with a positive sign.  Otherwise the solution 
will end up with a negative sign indicating that the assumed 
direction for the component must be reversed. 
Sliding joint 

Two links connected by a sliding joint apply reaction 

forces and torques on each other.  The reaction forces,   Fij  

and   Fji , are equal in magnitude, opposite in direction, and 

act perpendicular to the axis of the joint.  Although these 
are distributed forces that act along the surfaces of contact, 

 
A

(j)
(i)

 

(j)
(i)   Fji   Fij

 

(j)
(i)

  F1

  F2

  F1

  F2

 
 

(i)

(j)
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in our analyses we place them as concentrated forces at the 

center of the block.  The reaction torques,  Tij  and  Tji , are 

equal in magnitude and opposite in direction.  
In our free-body diagrams, each reaction force or 

torque is denoted with a single index for convenience.  For 

example,   F1  and   T2 .  The correct direction for these 

components will be determined through an analysis. 
Pin-sliding joint 

Two links connected by a pin-sliding joint apply 
reaction forces on each other.  On the free-body diagrams 
of the links, the reaction forces are shown equal in 
magnitude, opposite in direction, acting perpendicular to 
the axis of the joint. 

(i)

(j)

  F1

  F1  T2

  T2

 
 

(j)

(i)

 

(j)

(i)

  F1

  F1

 
 
Scalar and Vector Products  

In static and dynamic analysis, we often encounter vector operations such as scalar product or 
vector product.  In this section a short review on how to evaluate such products is presented. 
Scalar (dot) product 

The scalar product of two vectors, such as F and V, can be determined either analytically or 
graphically.  
Analytical: 

The analytical scalar product can be computed in two ways depending on how the vectors are 
defined: 
(a) The magnitudes of the vectors are known as F and V, and the angle between the two vectors is  

known as θ .  The scalar product is computed as 

   F • V = FV cosθ  
The angle can be measured from F to V or vice 
versa. 

(b) The vectors are known in component form: 

   
F =

Fx

Fy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  V =

Vx

Vy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

The scalar product is computed as 

  F • V = FxVx + FyVy  

θ 
V 

F

 

F

 x 

 y 

 Fx

 Fy

 Vx

 Vy
V 

 
Graphical: 

In order to determine the scalar product of two vectors graphically, one of the vectors must 
be projected onto the axis of the other vector.  For example, F is projected onto the axis of V to 
obtain  ′F .  The magnitudes of  ′F  and V are measured and denoted as  ′F  and V.  Then the 
scalar product is computed as:       F • V = ′F V  

If  ′F  and V are in the same direction, the product is 
considered positive, otherwise the product must be 
considered negative. 
 
 

V 

F

 ′F
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Vector (cross) product 
The vector product of two vectors can be determined either analytically or graphically. 

Analytical: 
The vector product can be computed in two ways depending on how the vectors are defined: 

(a) The magnitudes vectors R and F are R and F, and he angle between the two vectors is θ .  
The magnitude of the vector product is computed as:    R ×F = RF sinθ  
The angle must be measured from R to F, CCW. 

(b) The vectors are known in component form: 

   
R =

Rx

Ry

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  F =

Fx

Fy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

The vector product is computed as:  
   R ×F = R • F = Rx Fy − Ry Fx  

θ 
R

F

 

Graphical: 
In order to determine the vector product of vectors R and F graphically, vector F is projected 

onto an axis perpendicular to R to obtain  ′F .  We measure the magnitudes of R and  ′F ; i.e., R 
and  ′F : 

(a) For   0 ≤θ ≤180 :    R ×F = R ⋅ ′F                   (b) For   180 ≤θ ≤ 360 :    R ×F = −R ⋅ ′F  

    

θ 
R

F

R

F

 ′F
  90o

⇒

     

θ R
F

R

F

 ′F

  270o

⇒

    
Whether the vector product operation is carried out analytically or graphically, the resultant 

vector is perpendicular to the plane of the original two vectors.  In planar problems, the resultant 
vector will be along the z-axis.  Its direction depends on the angle between the two original 
vectors, measured from the first vector CCW towards the second vector.  
Example 

Two vectors are given as A and B with the magnitudes A = 2.0 and B = 3.0, and angles 

θA = 30o  and θB = 135o . In component form these vectors can be described as 

A =
2.0 cos 30

2.0sin 30

⎧
⎨
⎩

⎫
⎬
⎭

=
1.73

1.0

⎧
⎨
⎩

⎫
⎬
⎭

, B =
3.0 cos135

3.0sin135

⎧
⎨
⎩

⎫
⎬
⎭

=
−2.12

2.12

⎧
⎨
⎩

⎫
⎬
⎭

 

Scalar product 

The angle between these two vectors is θAB = 105o . The scalar product can be computed as 

A • B = (2.0)(3.0)cos105 = −1.55      (a) 

Using the component form of the vectors we have  
A • B = (1.73)(−2.12) + (1.0)(2.12) = −1.55      (b) 

We can project B onto the axis of A and measure the magnitude of the projected vector to be 
′B = 0.77 . Since this projected vector is in the opposite direction of A, we have  

A • B = −(0.77)(2) = −1.55      (c) 

Vector product 
We compute the magnitude of the cross product of the two vectors as 
A × B = (2.0)(3.0)sin105 = 5.79      (d) 

Since the answer is positive, the resultant vector is in the positive z direction (coming out of the 
plane).  We can also use the components to get 

A × B = (1.73)(−2.12) + (1.0)(−2.12) = 5.79      (e) 

Projecting B onto an axis perpendicular to A and measuring the magnitude of the projected vector 
provides ′B = 2.89 , which yields 

A × B = (2.89)(2) = 5.79  
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Static Force Analysis 

 
Static Equilibrium Equations 

A body is said to be in static equilibrium if under a set of applied forces and torques its 
translational (linear) and rotational accelerations are zeros (a body could be stationary or in 
motion with a constant linear velocity).   

Planar static equilibrium equations for a single body that is acted 
upon by forces and torques are expressed as 

   
Fi∑ = 0 ⇒

Fi( x )∑ = 0

Fi( y )∑ = 0

⎧
⎨
⎪

⎩⎪
        (se.1)   (Force equation) 

  Tj∑ + Mi∑ = 0                          (se.2)  (Moment equation) 
A

B

C

  FA   FB

  FC

T 

 
Equation (se.1) represents the sum of all the forces acting on the link, and Eq. (se.2) represents 

the sum of all the torques, Tj , and the moments, Mi , caused by all the forces acting on the body 

with respect to any reference point.  
Example 

Assume three forces and a torque act on a body.  Two of 

the forces,   FA  and   FB , are known as shown. Determine   FC  
and the applied torques T in order for the body to stay in 
static equilibrium. Consider FA = 1.5 , θFA

= 325o , FB = 1.9 , 

and θFB
= 40o . 

A B

C

  FA

  FB

 

Sum of forces 
Equation (se.1) can be solved either graphically or analytically. 

Graphical 
Equation (se.1) states that the sum of forces that act on the body must 

form a closed loop; i.e.,   FA + FB + FC = 0 .  We construct this vector sum 

graphically in order to determine   FC . Direct measurement from the figure 

yields FC = 2.7  and θFC
= 187o . 

  FA   FB

  FC

 

Analytical 
Equation (se.1) is projected onto the x- and y-axes to obtain two algebraic equations: 

  

Fi cosθFi
i=1

n

∑ = 0 ⇒ FA cosθFA
+ FB cosθFB

+ FC cosθFC
= 0

Fi sinθFi
i=1

n

∑ = 0 ⇒ FA sinθFA
+ FB sinθFB

+ FC sinθFC
= 0

 

To solve for   FC , we write the equations as  

  

FC cosθFC
= −FA cosθFA

− FB cosθFB

FC sinθFC
= −FA sinθFA

− FB sinθFB

 

We square both sides and add the equations to get 

  
FC = (−FA cosθFA

− FB cosθFB
)2 + (−FA sinθFA

− FB sinθFB
)2( )1/2

 

Then sine and cosine of θFC
 can be computed as 
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cosθFC

= −(FA cosθFA
+ FB cosθFB

) / FC  ,     sinθFC
= −(FA sinθFA

+ FB sinθFB
) / FC  

These expressions provide the value of  θC  in its correct quadrant. 

Numerically, the two known vectors are expressed in component form as 

   
FA =

1.23
−0.86

⎧
⎨
⎩

⎫
⎬
⎭

, FB =
1.46
1.22
⎧
⎨
⎩

⎫
⎬
⎭

 

Then vector FC  can be computed as 

   
FC = −FA −FB = −

1.23
−0.86

⎧
⎨
⎩

⎫
⎬
⎭
−

1.46
1.22
⎧
⎨
⎩

⎫
⎬
⎭

=
−2.68
−0.36

⎧
⎨
⎩

⎫
⎬
⎭

 

The magnitude of this vector is   FC = (−2.68)2 + (−0.36)2 = 2.7 . The vector can also be 
expressed as 

   
FC = 2.7

−2.68 / 2.7
−0.36 / 2.7

⎧
⎨
⎩

⎫
⎬
⎭

= 2.7
−0.99
−0.13

⎧
⎨
⎩

⎫
⎬
⎭

 

For the angle of this vector we have cosθFC
= −0.99  and sinθFC

= −0.13 . These values yield 

θFC
= 187o . 

Note: If you use Matlab to compute the angle, take advantage of the function atan2. In this 
problem the function can be used as theta_F_C = atan2(-0.13, -0.99). The 
function provides the angle in its correct quadrant. 

Sum of moments 
For equation (se.2), the sum of the torque and the moments of all three forces about any 

arbitrary point must be equal to zero. We take the sum of moments about A; i.e., 

   T + R BA × FB + RCA × FC = 0  

Note that the moment arm for   FA  is a zero vector. This 

equation is re-written as 

   T = −R BA ×FB − RCA ×FC = −R BA • FB − RCA • FC  

We can also write the moment equation with 
respect to point B, C or any other point in the same 
way. For example, if we pick an arbitrary point, such as 
O, the moment equation becomes: 

   T + R AO × FA + R BO × FB + RCO × FC = 0  

This equation yields the unknown torque as: 

  T = −R AO ×FA − R BO ×FB − RCO ×FC  

A B

C

  FA

  FB

  FC

T 

RBA

  RCA

 
 

A B

C

  FA

  FB

  FC

T 
O 

  RCO

  RBO

  R AO

 
Any of the above moment equations can be solved 
either graphically or analytically. In this example we 
take the moment equation about O. 
Graphical: 

We first need to determine the angle between every 
R vector and its corresponding F vector.  For the 
purpose of clarity, each pair of R and F vectors is 
shown separately with the corresponding angle.  The 
angles are measured (from R to F CCW) and the 
moment equation is evaluated as 

  T + RAO FA sinθ A + RBO FB sinθB + RCO FC sinθC = 0  

  FA
  R AO

θA

  FB

  RBO

θB

 

  FC

  RCO

θC

 

From the figure we measure the following magnitudes: RAO = 1.1 , RBO = 1.8  and 
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RCO = 1.5 .  The angles between each force vector and its corresponding position vector are 

measured to be: θA = 128o , θB = 58o  and θC = 143o . With these values the applied torque is 

determined to be T = − (1.1)(1.5)sin128 + (1.8)(1.9)sin 58 + (1.5)(2.7)sin143( ) = −6.64 . 

Analytical: 
An x-y frame is positioned at O.  The x and y components of all the vectors are determined 

and denoted as 

   

FA =
FAx

FAy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  FB =

FBx

FBy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  FC =

FCx

FCy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

   

R AO =
RAOx

RAOy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  R BO =

RBOx

RBOy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  RCO =

RCOx

RCOy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

The moment equation for this body is written as 

A B

C

  FA

  FB

  FC

T 
O

  RCO

  RBO

  R AO

 x 

 y 

 

  
T − RAOy

FAx
+ RAOx

FAy
− RBOy

FBx
+ RBOx

FBy
− RCOy

FCx
+ RCOx

FCy
= 0  

The angle of position vectors are measured to be θRAO
= 208o , θRBO

= 344o  and θRCO
= 43o . 

Therefore the position vectors can be expressed in component form as 

   
R AO =

−0.97
−0.52

⎧
⎨
⎩

⎫
⎬
⎭

,  R BO =
1.73
−0.50

⎧
⎨
⎩

⎫
⎬
⎭

,  RCO =
1.10
1.02
⎧
⎨
⎩

⎫
⎬
⎭

 

The applied torque can now be computed as 

  

T = (−0.52)(1.23)− (−0.97)(−0.86) + (−0.50)(1.46)− (1.73)(1.22)
                                                       + (1.02)(−2.68)− (1.10)(−0.36) = −6.66

 

Special Cases  
If only two or three forces act on a body (and nothing else), and the body is in static 

equilibrium, the forces are balanced in such a way that they exhibit certain characteristics.  We 
should take advantage of such cases when solving for unknown forces. 
Two-force member 

If only two forces act on a body that is in static 
equilibrium, the two forces are along the axis of the link, 
equal in magnitude, and opposite in direction. 

 
Three-force member 

If only three forces act on a body that is in static 
equilibrium, their axes intersect at a single point.  This 
knowledge can help us simplify the solution process in 
some problems.  For example, if the axes of two of the 
forces are known, the intersection of those two axes can 
assist us in determining the axis of the third force. 

A special case of the three-force member is when 
three forces meet at a pin joint that is connected between 
three links.  When the system is in static equilibrium, the 
sum of the three forces must be equal to zero. 

A B F F 

 

A B

C

  FA   FB

  FC

 

B 
F1

F2

F3

F1

F2

F3
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Static Equilibrium Analysis of Mechanisms 

 
A one degree-of-freedom planar mechanism may contain N moving links.  If the mechanism 

is in static equilibrium, then 3 equilibrium equations can be written for each link, which results 
into 3N equations.  In these equations, there are normally 3N - 1 unknown reaction force/torque 
components and 1 unknown applied force or torque.  In a static force analysis, the main objective 
is to solve the equilibrium equations for the unknown applied force/torque.  Depending on the 
method of solution, the reaction forces/torques may also be found in the process.  In these notes, 
two methods for solving the static equilibrium equations are presented: the free-body-diagram 
(FBD) method, and the power-formula (PF) method. 
Free-Body Diagram Method 

In this method the static equilibrium equations are constructed based on the free-body 
diagrams (FBD) of each link. In each FBD, all of the reaction and applied forces/torques that act 
on that link are considered.  For a mechanism of N moving links, the 3N equilibrium equations 
form a set of linear algebraic equations in 3N unknowns.  Although the equations are linear, due 
to their large number, a solution by hand may not be practical or may not be the best choice.  In 
such cases, a numerical solution through the use of a computer program is recommended.  
However, if certain simplifications are made and the number of equations is reduced, then 
solving the reduced set of equations by hand, either analytically or graphically, may be practical. 

  
Example 1 

This slider-crank mechanism is in static 
equilibrium in the shown configuration.  A known 
force F acts on the slider block in the direction 
shown.  An unknown torque acts on the crank.  Our 
objective is to determine the magnitude and the 
direction of this torque in order to keep the system 
in static equilibrium. 

A

B

O2

T 

F

 
We construct the free body diagrams for each link.  The reaction forces at the pin joints are 

unknown.  Each reaction force is described in term of its x and y components, where the direction 
of each component is assigned arbitrarily.  For notational simplification, simple numbered indices 
are used for all the components.  For each link we construct three equilibrium equations. 
Link 2: Link 3: Link 4: 

A

O2

  F1

  F2

  F3
  F4

T 
 a 

 b 

 

 
A

B

  F5

  F6

  F3

  F4
 c 

 d 

 

 

  F7

B  F5

  F6

F

  T8
 

  

F1 + F3 = 0
F2 + F4 = 0

 

  −aF3 + bF4 + T = 0    

(Sum of moments about O2 ) 

  

−F3 + F5 = 0
−F4 + F6 = 0

 

  cF5 + dF6 = 0    

(Sum of moments about A) 

  

−F5 + F = 0
−F6 + F7 = 0

 

  T8 = 0     

(Sum of moments about B) 

The moment arms are measured directly from the figure. Note that   F7  and   T8  are the 

reaction force and torque due to the sliding joint. 
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These 9 equations can be put into 
matrix form.  The unknowns and their 
coefficients are kept on the left-hand side 
and the only known quantity, the known 
applied force F is moved to the right-
hand side. 

This set of 9 equations in 9 
unknowns can be solved by any preferred 
numerical method.  If the arbitrarily 
assigned direction to a force component 
or a torque is not correct, the obtained 
solution will be a negative quantity. 

  

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 −a b 0 0 0 0 1
0 0 −1 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 c d 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F1

F2

F3

F4

F5

F6

F7

T8

T

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

0
0
0
0
0
0
−F
0
0

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

Numerical values for the link lengths are L2 = 2.0  

and L3 = 4.0 .  From the figures we extract the following 

measurements: a = 1.8 , b = 1.0 , c = 2.0 , d = 3.6 . 
Assume the applied force is given to be F = 10  units in 
the negative direction. These values are substituted in the 
equilibrium equation. The solution to the unknowns is 
determined to be as shown in array form. The applied 
torque on the crank is T = 23.55  units. As a byproduct of 
this process, all the reaction forces/torques are also found. 
Simplified FBD method 

The connecting rod of this mechanism is a two-force 
member. The reaction forces at A and B must be equal but 
in opposite directions.   These reaction forces are named    

F1

F2

F3

F4

F5

F6

F7

T8

T

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

−10
5.56
10

−5.56
10

−5.56
−5.56

0
23.55

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

  F3  and given arbitrary directions. 

The FBD of links 2 and 4 can now be constructed.  
For link 4 we write the sum of forces along the x-axis as 

  
−F3( x ) + F = 0 .  Since the applied force F is known, 

  
F3( x )  

can be computed. Then based on the angle of   F3 , the 

magnitude of   F3  can be determined. 

For link 2 we write the moment equation about O2  as 

  −eF3 + T = 0 .  This equation yields the unknown applied 

torque T. 
Using numerical values for this example, we have 

  
F3( x ) = F = 10 .   F3  makes a 27o  angle with the x-axis, 

therefore we have 
  
F3 = F3( x ) / cos27 = 11.22 . Direct 

measurement from the figure provides a value for the 
moment arm as e = 2.0 , which yields   T = eF3 = 23.57 . 

A

B

  F3

  F3

 
B F

  F4

  F3

  M5
 

A

O2

  F1

  F2

  F3

T 
 e 

 
Example 2 

This example is the same slider-crank mechanism from Example 1, where we are asked to 
include gravitational forces on the links. The mass center for each link is positioned at the 
geometric center.  The free body diagrams for the three links are constructed. 
Link 2: Link 3: Link 4: 
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A

O2

  F1

  F2

  F3
  F4

T 
 a 

 b 

  G2

  W2

 

 
A

B

  F5

  F6

  F3

  F4
 c 

 d 

  G3

  W3

 

 

  F7

B  F5

  F6

F  G4

  T8
  W4  

  

F1 + F3 = 0
F2 + F4 −W2 = 0

−aF3 + bF4 −
b
2

W2 + T = 0

 

(Sum of moments about O2 ) 
  

−F3 + F5 = 0
−F4 + F6 −W3 = 0

cF5 + dF6 +
d
2

W3 = 0

 

(Sum of moments about A) 

  

−F5 + F = 0
−F6 + F7 −W4 = 0

T8 = 0
 

 
(Sum of moments about B) 

These 9 equations are expressed 
in matrix form and solved for the 9 
unknowns.  We note that the left-
hand side of this matrix equation is 
identical to that in Example 1. The 
difference is in the right-hand sides. 

 

  

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 −a b 0 0 0 0 1
0 0 −1 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 c d 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F1

F2

F3

F4

F5

F6

F7

T8

T

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

0
W2

bW2 / 2
0

W3

−dW3 / 2
−F
W4

0

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

Simplified FBD method! 
Since three forces act on the connecting rod, this link is no 

longer a two-force member. We cannot assume that the 
reaction forces at A and B are equal, in opposite directions, and 
along the axis of the link.  Therefore, the simplified method is 
not applicable to this problem.  This is the case for most 
examples when we include gravitational forces. 

A

B

  G3

  W3

F 

F 

 X 

 X 
 

Coulomb Friction 
Coulomb friction can be included between two contacting surfaces in a static force analysis.  

Given the static coefficient of friction,   μ
(s) , the friction force can be described as the product of 

the coefficient of friction and the reaction force normal to the contacting surfaces.  The friction 
force must act in the opposite direction of the tendency of any motion.  Since the assumption is 
that the system is stationary, the tendency of motion must be considered for two cases.  The 
process provides a range of values for the applied load while the system remains in equilibrium.   
Example 3 

We repeat Example 1 with the assumption that dry friction exists between the slider block 
and the ground.  We solve this problem with the FBD method.  We may write the complete set of 
equilibrium equations or take advantage of a 2-force member in the system. Here we construct 
the complete set of equations.  Since the FBD for the crank and the connecting rod are the same 
as before, we only show the FBD for the slider block. 

First we assume that the block is about to move to the left.  Therefore, the friction force must 
be directed to the right. Then we assume that the slider block is about to move to the right.  
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Therefore the friction force must be directed to the left: 

  

−F5 + F + μ (s) F7 = 0
−F6 + F7 = 0

T8 + eμ (s) F7 = 0

  (The block tends to move to the left) 

  F7

B  F5
  F6 F

  T8
  μ

(s) F7

 e 

 

  

−F5 + F − μ (s) F7 = 0
−F6 + F7 = 0

T8 − eμ (s) F7 = 0

  (The block tends to move to the right) 

  F7

B  F5   F6 F

  μ
(s) F7

 e 
  T8

 
We construct two complete sets of 

equations for these two cases.  The two 
sets are presented together as shown. 
We solve each set of equations twice: 
once with the positive sign in front of 

  μ
(s)  and once with the negative sign.  

Each solution yields a value for the 
unknown torque, 

 
Tleft  and 

 
Tright .  As 

long as the applied torque stays in the 

range of 
 
Tleft  to 

 
Tright , the system 

remains in static equilibrium.   

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 −a b 0 0 0 0 1
0 0 −1 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 c d 0 0 0
0 0 0 0 −1 0 ±μ (s) 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 ±eμ (s) 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F1

F2

F3

F4

F5

F6

F7

T8

T

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

0
0
0
0
0
0
−F
0
0

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

Assuming   μ
(s) = 0.25 , e = 0.5 , and using the numerical values from Example 1, we solve 

the system of 9 equations in 9 unknowns twice.  For the plus sign in front of the terms containing 

  μ
(s) , the solution yields T = 20.68 , where the minus sign in front of those two terms yield 

T = 27.35 . Therefore, as long as the applied torque is in the range 20.68 ≤ T ≤ 27.35 , the 
mechanism remains in static equilibrium. 
Example 4 

In this example, a known force acts at point P an 
unknown torque acts on the crank.  It is assumed that 
dry friction exists at the sliding joint. 

To solve this problem, we construct FBD’s for 
the links.  Although it is not necessary, in order to 
simplify the process of projecting the reaction forces 
unto the x-y axes, the x-y axes are rotated in such a 
way that the x-axis is along the axis of link (4).   

A

O2 O4

P 

  FP

T 

x 

y 

 
Link 2: Link 3: Link 4: 

T 
O2

  F1  F2

  F3   F4

 a 

 b 

 

 
 

  F3

  F4

  F5

  T6   μ
(s) F5

 

O4

  F5

  F7

  F8

 c 

 d 

  μ
(s) F5

  
FP( x)

  
FP( y )

  T6
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F1 + F3 = 0
F2 + F4 = 0
−aF3 − bF4 −T = 0

 

  

−F3 ± μ (s) F5 = 0
−F4 − F6 = 0

T6 = 0
 

   

F7 ∓ μ
(s) F5 + FP( x ) = 0

F5 + F8 − FP( y ) = 0

−T6 − cF5 + dFP = 0

 

These equations can be expressed 
in matrix form and solved twice to 
find the range of values for the 
applied torque T. 

 

   

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 −a −b 0 0 0 0 −1
0 0 −1 0 ±μ (s) 0 0 0 0
0 0 0 −1 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 ∓μ (s) 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 −c −1 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F1

F2

F3

F4

F5

T6

F7

F8

T

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

0
0
0
0
0
0

−FP( x )

FP( y )

−dFP

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

Power Formula Method 
The power formula method constructs one equation in one unknown for a one degree-of-

freedom mechanism regardless of its number of links and joints.  Only applied forces and 
torques, including the unknown applied force or toque, appear in the equation.  This means that 
the reaction forces and torques have been eliminated from the power formula.   

In order to use the power formula, although the system is in static equilibrium, we first 
assume that the system is in motion.  We assign an arbitrary velocity (angular or linear) to one of 
the links; e.g., the rotation of the crank, and determine the velocities that are needed in the power 
formula.  These are the velocities of the points were the applied forces act on, and the angular 
velocity of the links that a torques are applied to.  

The equation for the power formula is: 

    FP iVP∑ + T ω∑ = 0           (spf.1) 

In this equation FP  is a typical applied force acting on a link 

at point P, VP  is the velocity (absolute) of point P, T is a 

typical applied torque acting on a link, and ω  is the angular 
velocity of that link. If the torque and the angular velocity 
are in the same direction, the product  Tω  is positive, 
otherwise the product is negative.   

As an example consider the six-bar mechanism shown. 
Three applied forces and three applied torques act on the 
system. We need to find the imaginary velocities of points 
A, B, and C, and the imaginary angular velocities of links 2, 
4, and 5. We can find these velocities by assigning an 
arbitrary value to the velocity of one of the degrees-of-
freedom, say to the angular velocity of link 2. We may apply 
any preferred method to solve for the other velocities.  The 
value of this arbitrarily assigned velocity or its direction will 
not change the result obtained from the power formula.  

B

A

C

(2) 
(3) 

(4) 

(5) 

(6) 

FA

FB

FC

T2

T4

T5

Note: This method is also referred to as the energy method or the virtual work method. Since we 
have not discussed the concepts of virtual work and virtual displacements, the method is 
presented using velocities although the system is in static equilibrium. 

Note: Since reaction forces and torques do not appear in the power formula, this method is not 
applicable when Coulomb friction is present. 
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Example 5 
We apply the power formula to the slider-crank 

mechanism of Example 1.  One external torque and 
one external force act on this system.  We need to 
determine the imaginary angular velocity of link 2 
and the velocity of the slider block. 

 We assume link 2 rotates with an angular 

velocity  ω2 = 1  rad/sec, CCW.  We construct the 

velocity polygon and determine the velocity of the 
slider block (point B). Considering the length of the 

crank as L2 = 2.0 , the polygon yields VB = 2.4 . 

A

B

O2

T 

F
(2) 

(3) 

(4) 

 

VBA
VB

VA

 

For this problem the power formula becomes     FiVB + Tω2 = 0 .  Since F and   VB  are along 

the same axis but in opposite directions, the formula simplifies to   −FVB + Tω2 = 0 , or 

  T = FVB /ω2 = (10)(2.4) / 1.0 = 24.0 . 

Example 6 
We apply the power formula to the problem of 

Example 2. We assume an imaginary  ω2 = 1  

rad/sec, CCW, and construct the velocity (as in the 
previous example).  The velocities of the points 
where the applied forces act, including the 
gravitational forces, are determined.  The PF is then 
expressed as: 

    
FiVB + W2 iVG2

+ W3iVG3
+ W4 iVG4

+ Tω2 = 0  

The dot product between a velocity vector and a 
force vector can be obtained either analytically or 
graphically (the angle between the two vectors can 
be measured directly from the figure).  The PF 
yields the value for the unknown applied torque. 

A

B

O2

T 

F

  G2   G3

  G4

 gravity 

  W2   W3

  W4

 
B VB

O V 

   
VG2

A 

   
VG3

   
VG4

=
 

FVB

   

   
VG2

  W2

   

   
VG3

  W3

   
  W4

   
VG4

 
 

Dynamic Force Analysis 
 
Dynamic Equilibrium Equations 

The dynamic equilibrium equations for a single body in planar 
motion are the revised version of the static equilibrium equations, 
expressed as 

   
Fi∑ = mAG ⇒

Fi( x )∑ = mAG ( x )

Fi( y )∑ = mAG ( y )

⎧
⎨
⎪

⎩⎪
      (de.1) 

  
Tj∑ + Mi(G )∑ = IG α                               (de.2) 

A
B

C

  FA   FB

  FC

T 

G

  mAG

 IGα

 
The force equilibrium of Eq. (de.1) states that the sum of forces that act on a body must be equal 

to the mass of the body, m, times the acceleration of the mass center,   AG . This equation is 
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derived from Newton’s second Law of motion. The moment equilibrium of Eq. (de.2) states that 
the sum of all the applied toques and the moments of all forces that act on a body with respect to 

its mass center must be equal to the body’s moment of inertia,  IG , times the angular acceleration 

of the body, α . The moment of inertia is defined with respect to an axis passing through the 
mass center and perpendicular to the plane.  Equations (de.1) and (de.2) are also known as the 
translational and rotational equations of motion respectively.   
D’Alembert’s Principle 

The D’Alembert’s principle considers a rearranged form of 
the dynamic equilibrium equations as 

  Fi∑ − mAG = 0                              (de.3) 

  
Tj∑ + Mi(G )∑ − IG α = 0              (de.4) 

Although this rearrangement may appear trivial, it has profound 

implications.  One interpretation of this principle is that if   −mAG  

A
B

C

  FA   FB

  FC

T 

G

  −mAG

 − IGα

 
and  − IG α  are viewed as a force and a torque respectively, then the dynamic equilibrium 

equations become identical to the static equilibrium equations. The terms   −mAG  and  − IG α  are 

called inertial force and inertial torque. 
Revised Rotational Equation 

D’Alembert’s principle provides us a simple set of steps to revise Eq. (de.2) if the sum of 

moments is taken about a point that is not the mass center.  If we consider   −mAG  and  − IG α  as 

additional force and torque that act on the body, and consider point O as the reference point 
instead of the mass center, the rotational static equilibrium of Eq. (se.2) yields 

   
Tj∑ + Mi(O )∑ − IG α − mRGO × AG = 0  

or, 

   
Tj∑ + Mi(O )∑ = IG α + mRGO × AG         (de.5) 

This equation clearly shows that if the origin is not the 
mass center, then we must consider the moment caused by 
the inertia force in the moment equation. 

A B

C

  FA

  FB

  FC

T 

O

  RCO

  RBO

  R AO   RGO

  −mAG

 − IGα

 
 
 

Dynamic Equilibrium Analysis of Mechanisms 
 

The process of dynamic force analysis of mechanisms is only slightly different from that of 
the static force analysis, especially if we look at the dynamic equilibrium equations from the 
perspective of D’Alembert’s principle.  The main difference is that in a dynamic force analysis 
we need to include the linear and angular accelerations of each link in the process of solving the 
dynamic equilibrium equations.  

For the dynamic force analysis, as in the static force analysis, we consider the free-body 
diagram (FBD) method and the power formula (PF) method.   
Free-Body Diagram Method 

The dynamic force analysis requires incorporating the applied and reaction forces and 
torques, and the inertial force and torque, in the FBD of each link. Inclusion of the applied and 
reaction forces and torques in this process is identical to that of the static force analysis.  In order 
to include the inertial forces and torques in the process, we need to know the linear and angular 
accelerations for each link. 
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Example 7 
The mass and moment of inertia for the links of 

this slider-crank are given.  A known force F acts on 
the slider block, and an unknown torque T acts on 
the crank.  In the depicted configuration, the angular 
velocity and acceleration of the crank are given. The 
objective is to find the magnitude and the direction 
of the unknown torque. 

Based on the given angular velocity and 
acceleration of the crank, polygons are constructed 
and the angular velocity and acceleration of all the 
links are found (magnitudes and directions— ω2 ,  α2  

and  α3  are CCW, and  ω3  is CW).  Then, in a 

process similar to that of the static equilibrium (refer 
to Example 1), the FBD for each link is constructed. 

A

B

O2

T 

F

  G2   G3

  G4

 

   
VG4

O V 

   
VG2

   
VG3

AG4 O A 

AG2

A 

B
AG3

  
Link 2: Link 3: Link 4: 

  F1
  F2

  F3
  F4

T 

 a 

 b   G2AG2  b 

 a 
 α 2  

 

  F5
  F6

  F3

  F4

 c 

 d 

  G3

AG3

 d 

 c 
 α3  

  F7

  F5

  F6

F  G4

  T8

AG4

 

  
F1 + F3 = m2 AG2 ( x )  

  
F2 + F4 = m2 AG2 ( y )  

  
aF1 − bF2 − aF3 + bF4 + T = IG2

α2
 

  
−F3 + F5 = m3 AG3( x )  

  
−F4 + F6 = m3 AG3( y )  

  
cF3 + dF4 + cF5 + dF6 = IG3

α3  

  
−F5 + F = m4 AG4

 

  −F6 + F7 = 0  

  T8 = 0  

Note that 
  
AG2 ( x ) , 

  
AG2 ( y ) , 

  
AG3( x ) , 

  
AG3( y )  and 

  
AG4

 are negative, 

where  α2  and  α3  are positive.  

These equations are put into 
matrix form.  This set of 9 
equations in 9 unknowns can be 
solved by any preferred numerical 
method. 

  

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
a −b −a b 0 0 0 0 1
0 0 −1 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 c d c d 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F1

F2

F3

F4

F5

F6

F7

T8

T

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

m2 AG2 ( x )

m2 AG2 ( y )

IG2
α2

m3 AG3( x )

m3 AG3( y )

IG3
α3
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⎪
⎪

 

Coulomb Friction 
Coulomb friction can be included between two contacting surfaces in a dynamic force 

analysis.  Given the dynamic (kinetic) coefficient of friction,   μ
(k ) , the friction force can be 

described as the product of the coefficient of friction and the reaction force normal to the 
contacting surfaces.  The friction force must act in the opposite direction of the motion. The 
process is illustrated through a simple example. 
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Example 8 
We consider the slider-crank mechanism of Example 7 with the assumption that dry friction 

exists between the slider block and the ground. We construct the complete set of equations for 
this problem.  Since the FBD for the crank and the connecting rod are the same as in Example 7, 
we only show the FBD for the slider block. 

Since, according to the velocity polygon the block is 
moving to the left, the friction force must be directed to the 
right.  The equilibrium equations for the block are: 

  
−F5 + F + μ (k ) F7 = m4 AG4

 

  

−F6 + F7 = 0

T8 + eμ (k ) F7 = 0
 

  F7

B  F5

  F6

F

  μ
(k )F7

 e 

AG4

  T8

  

The complete set of equations 
can now be presented in 
matrix form. The solution to 
this set of equations yields all 
the unknowns. 

  

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
a −b −a b 0 0 0 0 1
0 0 −1 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 c d c d 0 0 0
0 0 0 0 −1 0 μ (k ) 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 eμ (k ) 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦
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⎥
⎥
⎥
⎥
⎥
⎥
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F7
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T
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⎪
⎪
⎪
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⎪
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⎪
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⎪

 

Power Formula Method 
The power formula (PF) for dynamic force analysis is a revised form of the formula from the 

static force analysis.  If we consider the inertial forces and torques as any other applied forces and 
torques, the revised formula can be expressed as 

   
FP iVP∑ + T ω∑ = miAGi

iVGi
∑ + IGi

α i ω i∑               (dpf.1) 

In this formula, the velocities and accelerations are actual and not imaginary. If the angular 
velocity and acceleration are in the same direction, the product αω  is positive, otherwise the 

product is negative. 
Example 9 

We apply the PF method to the slider-crank of Example 8. The formula for this system can be 
expressed as 

    
FiVB + Tω2 = m2AG2

iVG2
+ m3AG3

iVG3
+ m4AG4

iVG4
+ IG2

α2ω2 + IG3
α3ω3 + IG4

α4ω4  

In addition to the angular velocities and accelerations, from the velocity and acceleration 
polygons, the velocity and acceleration of the mass centers are determined. All the known 
quantities are substituted in the formula to find the unknown applied torque T. 

  VB   FB

AG2

   
VG2

AG3

   
VG3 AG4

   
VG4
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Shaking Force and Shaking Torque/Moment 
Dynamic forces that act on a mechanism cause the 

foundation (the ground) to shake.  The shaking force is 
defined as the sum of reaction forces the links of a 
mechanism apply on the ground link. For a four-bar 
mechanism, since there are only two links that are 

directly pinned to the ground at O2  and O4 , the sum of 

reaction forces acting on the ground at these two points 
is the shaking force denoted as 

Fs = −
F1 + F7

F2 + F8

⎧
⎨
⎩

⎫
⎬
⎭

 

where F1 , F2 , F7  and F8  could be positive or negative.  

When link 2 is the input link (the crank), a motor 

about the axis of O2  must rotate it. The motor applies a 

torque T on link 2 and an opposite torque on the ground. 
The torque that is applied by the motor to the ground is 
called the shaking torque (moment): 

Ts = −T  

A
B

O2

(2) 

(3) 

(4) 

O4  

T 

A
B

O2

(2) 

(3) 

(4) 

O4

O2 O4

  F7  F1

  F2

T 

  F1

  F2

  F7

  F8

  F8

 

The shaking force tends to move the ground (the frame) up and down, and left and right. The 
shaking torque tends to rock the frame about the vertical axis to the plane. 
 
A Matlab Program 

A Matlab program (fourbar_force.m) for static 
and dynamic force analysis of a four-bar mechanism is 
provided.  The four-bar is considered in its most 
general form as shown.  The program allows one 
known force and one known torque to be applied on 
each link.  The gravitational force may also be 
considered to act in the negative y-direction on the 
system. The program requires only one unknown 
torque, which could be considered on only one of the 
links.  

For the purpose of generality, the mass center of a 

link, Gi , is positioned from the reference point of the 

link by an angle γ i  and a length LGi
.  The force 

application point, Pi , is positioned by an angle βi  and 

a length LPi
.   Note that the reference point for link 2 

is O2 , for link 3 is A, and for link 4 is O4 . 

This program retrieves the data from a file named 
fourbar_force_data.m.  The user is required to 
provide the following data in this file: 

A 

B 

(2) 

(3) 

(4) 

O2 O4

G2

P2

L2

L1

L3

L4
P4

P3

G3

G4

 

θi

Gi  
γ i  

Pi  

βi  
Li

LPi

LGi

 

• Constant values for the link lengths ( L1 , L2 , L3 , L4 )  

• Angle of the crank (θ2 ) 

• Estimates for the angles of the coupler and the follower (θ3 , θ4 ) 

• Angular velocity and acceleration of the crank (ω2 , α2 ) 

• Constant values for the position of P points ( LP2O2
, LP3A

, LP4O4
, β2 , β3 , β4 ) 
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• Constant values for the position of G points ( LG2O2
, LG3A

, LG4O4
, γ 2 ,γ 3 , γ 4 ) 

• Known applied forces ( FP2
, FP3

, FP4
) 

• Known applied torques (T2 , T3 , T4 ) 

• Masses and moments of inertia ( m2 , m3 , m4 , I2 , I3 , I4 ) 

• Gravitational constant (g) (the value of g determines the system of units for the analysis) 
 
The program prompts the user for the following information: 

 
• Should the gravitational force be included?  

o Answer y for yes or n for no 
• The unknown torque is applied to which link? 

o Answer 2, 3 or 4 
• Static or dynamic force analysis? 

o Answer s for static or d for dynamic 
 

The program reports the results for the reaction forces 
at O2  and A on link 2, at B and O4  on link 4, and the 

unknown applied torque.  The reaction forces acting at A 
and B on link 3 could easily be determined by the user.  The 
program also reports the shaking force and the shaking 
torque. 

A
B

O2

(2) 

(3) 

(4) 

O4

  F5

  F1

  F2

  F3

  F4

  F7

  F8

  F6

A

B

 

 


