Lecture Outline 7: Constrained Optimization I: First Order Conditions

This lecture note is based on Chapter 18 of *Mathematics for Economists* by Simon and Blume.

1. Equality Constraints

 - Two variables and one equality constraint: let’s consider a utility maximization problem with a budget \(\max U(x_1, x_2) \) s.t. \(p_1 x_1 + p_2 x_2 = I \)
 * What conditions must hold where the level curve of \(f \) is tangent to the constraint set?
 * Lagrangian function and Lagrange multiplier: reducing a constrained optimization problem to an unconstrained one.
 * Constraint qualification: \((x_1^*, x_2^*) \) can not be a critical point of the constraint function.
 * Example: \(\max f(x, y) = x \) s.t. \(h(x, y) = x^3 + y^2 = 0 \)
 * Example: \(\max f(x, y) = x^3 + y^3 \) s.t. \(g(x, y) = x - y = 0 \)

 - \(m \) equality constraints
 * Nondegenerate constraint qualification (NDCQ): Jacobian derivative \(Dh(x^*) \) has rank \(m \).
 (Q: Can you show that this implies that \(m \leq n \)?)
 * Second-order conditions: Definiteness of bordered matrices (details later)
 * A "Cookbook" procedure using the theorem of Lagrange
 * Set up the Lagrangean function
 * Find the set of all critical points
 * Evaluate the function at each critical point in the set
 * In practice the above procedure USUALLY yield the solutions

 - When and Why would the Lagrangean Method fail?
 * If an optimum exists but the constraint qualification is not met at the optimum
 * An optimum may not exist

 Exercise 1 Find the maximum and minimum distance from the origin to the ellipse \(x^2 + xy + y^2 = 3 \). (Hint: Use \(x^2 + y^2 \) as your objective function.)

2. Inequality Constraints

 - The sign of the lagrange multiplier matters!
 - Solution can be interior
 - Complementary Slackness Condition: \(\lambda \cdot [g(x, y) - b] = 0 \)
 - NDCQ only involves binding constraints
 - Assume all constraints are binding, what do you get? Relax each constraint in turn, what do you get?

 Exercise 2 Find the maximizer of \(f(x, y) = 2y^2 - x \), subject to the constraints \(x^2 + y^2 \leq 1 \), \(x \geq 0 \), \(y \geq 0 \).

3. Mixed Constraints: please read it by yourself

4. Constrained Minimization Problems

 - In stead of \(g(x) \leq b \), formulate \(g(x) \geq b \)
 - Alternative 1: minimizing \(f = \) maximizing \(-f\)
 - Alternative 2: negative Lagrangian multiplier

 Exercise 3 Check that the NDCQ are satisfied in Example 18.11.
Exercise 4 Present a geometric proof that in the problem of minimizing $f(x, y)$ on the constraint set $g(x, y) \geq b$, the gradient of f and the gradient of g point in the same direction at a minimizer for which the constraint is binding.

5. Kuhn-Tucker Formulation

- Separate nonnegativity constraint from the rest of the inequality constraints

Exercise 5 Write out the Kuhn-Tucker conditions for problem 18.10

6. Examples and Applications: Please read it by yourself. You can skip the Averch-Johnson Effect.