Lecture Outline 4: Functions and Calculus of Several Variables

This lecture note is based on Chapter 13 and 14 of *Mathematics for Economists* by Simon and Blume.

1. Functions Between Euclidean Spaces: I leave this to your own reading.

2. Geometric Representation of Functions
 - Two variables: the slice method
 Exercise 1 Use the slice method to sketch the graphs of the following functions: a) \(z = -x^2 - y^2 \); b) \(z = y - x^2 \); c) \(z = ye^{-x} \).
 - Level curves
 Exercise 2 If you had the graph of \(z = f(x, y) \), how would you use it to draw level curves of \(f \)?
 Exercise 3 Describe another example where a map with level curves occurs naturally in real life. What are the implications of curves being close together in this situation?
 - Planar level sets in economics
 * Isoquants
 * Indifference curves
 * Level sets

3. Special Kinds of Functions
 - Linear functions on \(\mathbb{R}^k \): \(f(x) = Ax \) for all \(x \in \mathbb{R}^k \)
 - Quadratic forms: \(Q(x_1, \ldots, x_k) = \sum_{i,j=1}^{k} a_{ij}x_i x_j \), or in matrix form, \(x'Ax \) (Q: what is the geometric representation of a general quadratic form on \(\mathbb{R}^2 \)?)
 - Monomials and polynomials
 Exercise 4 Write the following functions in matrix form:
 (a) \(f(x_1, x_2, x_3) = 2x_1 - 3x_2 + 5x_3 \)
 (b) \(f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^2 \)

4. Continuous Functions: I leave this to your own reading.

5. Vocabulary of Functions
 - Basic vocabulary: domain, target space, range, image, preimage
 - Onto functions and one-to-one functions: surjective vs. injective
 - Inverse functions
 - Compositions of functions
 Exercise 5 For each of the following functions, what is the domain and the range of \(f \)? Which ones are one-to-one? For those which are one-to-one, write the expression for the inverse. Which ones are onto?
 (a) \(f(x) = 3x - 7 \)
 (b) \(f(x) = x^3 - x \)

6. Calculus
 - Total derivatives
 * Geometric interpretation
7. Directional Derivatives and Gradients of Functions from \(R^n \) to \(R^1 \)

- Derivative of \(F \) at \(x^* \) in the direction of \(v \): \(DF_{x^*} \cdot v \) (\(DF_{x^*}: \) row vector of partial derivatives; \(v \): direction)
- Gradient: column vector of partial derivatives
- Normalize the length of \(v \) to be 1
- Gradient points into the the direction in which \(F \) increases most rapidly.

Exercise 9 Consider the function \(y^2 e^{3x} \). In what direction should one move from the point \((0,3)\) to increase the value of this function most rapidly? Express your answer as a vector of length 1.

8. Explicit Functions from \(R^n \) to \(R^m \)

- Jacobian derivatives \(DF_{x^*}: m \times n \) matrix of partial derivatives
- The Chain Rule of functions from \(R^1 \) to \(R^m \): \(g'(t) = DF(a(t)) \cdot a'(t) \): \(g'(t) \) is a \(m \times 1 \) vector; \(a'(t) \) is a \(n \times 1 \) vector
- The Chain Rule of functions from \(R^n \) to \(R^m \): \(Dg(t) = DF(a(t)) \cdot Da(t) \): \(Dg(t) \) is a \(m \times s \) vector; \(Da(t) \) is a \(n \times s \) vector

Exercise 10 Given that \(G(x, y) = (x^2 + y^2) \) and \(F(u, v) = (u + v, u^2) \), compute the Jacobian derivative matrix of \(F(G(x, y)) \) at the point \((x, y) = (1, 1)\).

9. Higher Order Derivatives

- Continuously Differentiable Functions and Cross partial Derivatives
- Hessian Matrix \(D^2 f \)
- Young’s Theorem: the order of differentiation does NOT matter.

Exercise 11 Compute the Hessian matrix for each of the following functions. Verify that each is a symmetric matrix.
(a) \(4x^2 y - 3xy^3 + 6x \)
(b) \(e^{2x+3y} \)