Lecture Outline 3: Proofs, Limits, and Sets

This lecture note is based on Appendix 1 and Chapter 12 of Mathematics for Economists by Simon and Blume.

1. Sets and Numbers: I leave this to your own reading.
2. Proofs
 - Direct (Deductive) Proof
 - Indirect Proof or Proof by Contradiction
 * Converse: \(A \implies B \)'s converse is \(B \implies A \)
 * If and only if: \(A \iff B \)
 * Contrapositive: see rule 1 of lecture outline 1.
 * Proof by contradiction: to prove to prove \(A \implies B \) is to prove \(\neg(B) \implies \neg(A) \)
 - Inductive Proof
 * Prove statement \(P(1) \) is true.
 * Prove \(P(n) \implies P(n + 1) \).
 * Only applies to propositions about or indexed by integers.

Exercise Show that \(\sqrt{3} \) is an irrational number.

3. Sequence of Real Numbers (Sequence in \(R^1 \))
 - A sequence \(\{x_1, x_2, \ldots, x_n, \ldots\} \)
 - Limit of a sequence \(\lim_{n \to \infty} x_n = r \)
 - Compare: accumulation point. (Q: If a sequence has multiple accumulation points, does there exist a limit?)
 - A sequence can have at most one limit. (Q: prove it by contradiction?)
 - Algebraic Properties of Limits
 * Limits of sequences are preserved by algebraic operations.
 * Check out the proofs of the theorems: What types of proofs are these? Can you prove them yourselves?

Exercise Suppose that \(\{x_n\}_{n=1}^{\infty} \) is a sequence of real numbers that converges to \(x_0 \) and that all \(x_n \) and \(x_0 \) are nonzero.

 a. Prove that there is a positive number \(B \) such that \(|x_n| \geq B \) for all \(n \).
 b. Using a, prove that \(\{ \frac{1}{x_n} \} \) converges to \(\{ \frac{1}{x_0} \} \).

4. Sequences in \(R^m \)
 - A sequence of vector in \(R^m \) converges if and only if all \(m \) sequences of its components converge in \(R^1 \).
 - Results about sequences in \(R^1 \) apply to sequences in \(R^1 \).

5. Open Sets
 - Open: no boundary
 - Is \(\{x \in R^2 : 0 < x_1 < 1, x_2 = 0\} \) an open set?
 - Any union of open sets is open.
 - The finite intersection of open sets is open. (Q: why not infinite?)
6. Closed Sets
 - Closed: must contain all its boundary points.
 - Closedness and openness are complementary.
 - Any intersection of closed sets is closed.
 - The finite union of closed sets is closed.

 Exercise Show that closed intervals in \mathbb{R}^1 — sets of the form \(\{x : a \leq x \leq b\} \) for fixed numbers a and b — are closed sets.

 Exercise Is \(\{(x, y) : -1 < x < 1, y = 0\} \) open or closed? Explain.

7. Compact Sets
 - Closed and bounded (Q: Can you give an example of a closed but unbounded set?)
 - Bolzano-Weierstrass theorem: Any sequence defined on a compact set must contain a subsequence that actually converges.

 Exercise Prove that every finite set is compact.

 Exercise Brainstorm examples of open, closed, and compact sets.