Notation for Sets of Functions and Subsets

Recall that we defined a sequence as a function on the domain \mathbb{N} of natural numbers. Thus, a sequence of real numbers - i.e., an element $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}-$ is a function $\mathbf{x}: \mathbb{N} \rightarrow \mathbb{R}$. A sequence of elements of a set X is a function $\mathbf{x}: \mathbb{N} \rightarrow X$, and we would denote the set of all such sequences as X^{∞}.

We can do the same for "finite sequences":
An ordered pair of real numbers, $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, is a function $\mathbf{x}:\{1,2\} \rightarrow \mathbb{R}$.
An n-tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is a function $\mathbf{x}:\{1,2, \ldots, n\} \rightarrow \mathbb{R}$.
In each case, the argument of the function can be written either as a subscript or, in the notation that's more common for a function, inside parentheses - either x_{i} or $x(i)$, it's really just a matter of convenience (and convention!) which way we choose to do it.

And note that we write
\mathbb{R}^{2} for the set of all functions from $\{1,2\}$ into \mathbb{R};
\mathbb{R}^{n} for the set of all functions from $\{1,2, \ldots, n\}$ into \mathbb{R};
\mathbb{R}^{∞} for the set of all functions from $\{1,2, \ldots\}$ into \mathbb{R}.

Now let X and Y be arbitrary sets. The notation we use for the set of all functions $f: X \rightarrow Y$ is the following:

Notation: For any sets X and Y, the set of all functions $f: X \rightarrow Y$ is denoted Y^{X}.

Here's another useful piece of standard notation:

Notation: For finite sets X, the number of elements of X is denoted $|X|$, or sometimes $\# X$.

Exercise: Let $X=\{a, b, c\}$ and $Y=\{$ red, green $\}=\{r, g\}$. Enumerate all the elements of the set Y^{X} - i.e., all the functions that assign to each $x \in X$ either the color red or the color green. You should find that there are eight functions - i.e., $\left|Y^{X}\right|=8$. Note that $|Y|^{|X|}=2^{3}=8$ as well.

Exercise: Let X and Y be finite sets - say, $|X|=n$ and $|Y|=m$. Without loss of generality, you could let $X=\{1, \ldots, n\}$ and $Y=\{1, \ldots, m\}$. Verify that $\left|Y^{X}\right|=|Y|^{|X|}-$ i.e., $\left|Y^{X}\right|=m^{n}$.

Exercise: Let $Y=\{0,1\}$ and let X be any finite set. Without loss of generality, you could let $X=\{1, \ldots, n\}$. Verify that the number of distinct subsets of X is 2^{n} - i.e., it is $2^{|X|}$, or $|\{0,1\}|^{|X|}$, which is $\left|\{0,1\}^{X}\right|$. But $\left|\{0,1\}^{X}\right|$ is also the number of functions from X into $\{0,1\}$, because $\{0,1\}^{X}$ is the set of all functions from X into $\{0,1\}$.

This last exercise motivates the idea of indicator functions:

Definition: Let X be a set. For each subset $S \subseteq X$, define the indicator function I_{S} of the set S as follows:

$$
I_{S}(x)= \begin{cases}0, & \text { if } x \notin S \\ 1, & \text { if } x \in S\end{cases}
$$

Thus, the set of all indicator functions on X is essentially the same as the set of all subsets of X : every function from X into $\{0,1\}$ corresponds to a distinct subset of X, and every subset of X corresponds to a distinct function from X into $\{0,1\}$. We could therefore use the notation $\{0,1\}^{X}$ - the set of all functions from X into $\{0,1\}$ - for the set of all subsets of X. However, the convention is instead to just write 2^{X} for the set of all subsets of X, meaning the set of all functions from X into a two-point set, the set of all indicator functions on X.

Notation: For any set X, the set of all subsets of X is denoted 2^{X}, sometimes called the power set of X.

