
Mixed Strategy Equilibrium 
 

Abstract:  A mixed strategy is a probability distribution one uses to randomly choose 
among available actions in order to avoid being predictable.  In a mixed strategy 
equilibrium each player in a game is using a mixed strategy, one that is best for him 
against the strategies the other players are using.  In laboratory experiments the behavior 
of inexperienced subjects has generally been inconsistent with the theory in important 
respects;  data obtained from contests in professional sports conforms much more closely 
with the theory. 

__________________ 
 
In many strategic situations a player’s success depends upon his actions being 
unpredictable.  Competitive sports are replete with examples.  One of the simplest occurs 
repeatedly in soccer (football):  if a kicker knows which side of the goal the goaltender 
has chosen to defend, he will kick to the opposite side; and if the goaltender knows to 
which side the kicker will direct his kick, he will choose that side to defend.  In the 
language of game theory, this is a simple 2x2 game which has no pure strategy 
equilibrium.  
 
John von Neumann’s (1928) theoretical formulation and analysis of such strategic 
situations is generally regarded as the birth of game theory.  von Neumann introduced the 
concept of a mixed strategy: each player in our soccer example should choose his Left or 
Right action randomly, but according to some particular binomial process.  Every zero 
sum two-person game in which each player’s set of available strategies is finite must have 
a value (or security level) for each player and each player must have at least one minimax 
strategy – a strategy that assures him that no matter how his opponent plays, he will 
achieve at least his security level for the game, in expected value terms.  In many such 
games the minimax strategies are pure strategies, requiring no mixing; in others, they are 
mixed strategies.   
 
John Nash (1950) introduced the powerful notion of equilibrium in games (including 
non-zero-sum games and games with an arbitrary number of players):  an equilibrium is a 
combination of strategies (one for each player) in which each player’s strategy is a best 
strategy for him against the strategies all the other players are using.  An equilibrium is 
thus a sustainable combination of strategies, in the sense that no player has an incentive 
to change unilaterally to a different strategy.  A mixed-strategy equilibrium (MSE) is one 
in which each player is using a mixed strategy;  if a game’s only equilibria are mixed, we 
say it is an MSE game.  In two-person zero-sum games there is an equivalence between 
minimax and equilibrium: it is an equilibrium for each player to use a minimax strategy, 
and an equilibrium can consist only of minimax strategies.   
 
An example or two will be helpful.  First consider the game Tic-tac-toe.  There are three 
possible outcomes:  Player A wins, Player B wins, or the game ends in a draw.  Fully 
defining the players’ possible strategies is somewhat complex, but anyone who has 
played the game more than a few times knows that each player has a strategy that 
guarantees him no worse than a draw.  These are the players’ respective minimax 



strategies and they constitute an equilibrium.  Since they are pure strategies (requiring no 
mixing), Tic-tac-toe is not an MSE game.  
 
A second example is the game called Matching Pennies.  Each player places a penny 
either heads up or tails up;  the players reveal their choices to one another 
simultaneously;  if their choices match, Player A gives his penny to Player B, otherwise 
Player B gives his penny to Player A.  This game has only two possible outcomes and it 
is obviously zero-sum.  Neither of a player’s pure strategies (Heads or Tails) ensures that 
he won’t lose.  But by choosing Heads or Tails randomly, each with a ½ probability (for 
example, by “flipping” the coin), he ensures that in expected value his payoff will be zero 
no matter how his opponent plays.  This 50-50 mixture of Heads and Tails is thus a 
minimax strategy for each player, and it is an MSE of the game for each player to choose 
his minimax strategy.  
 
Figure 1 provides a matrix representation of Matching Pennies.  Player A, when choosing 
Heads or Tails, is effectively choosing one of the matrix’s two rows;  Player B chooses 
one of the columns;  the cell at the resulting row-and-column intersection indicates Player 
A’s payoff.  Player B’s payoff need not be shown, since it is the negative of Player A’s 
(as always in a zero-sum game).  Matching Pennies is an example of a 2x2 game: each 
player has two pure strategies, and the game’s matrix is therefore 2x2.  
 

- - Figures 1 and 2 should go about here - -  
 
Figure 2 depicts our soccer example, another 2x2 MSE game.  The kicker and the goalie 
simultaneously choose either Left or Right;  the number in the resulting cell (at the row-
and-column intersection) is the probability a goal will be scored, given the players’ 
choices.  The probabilities capture the fact that for each combination of choices by kicker 
and goalie the outcome is still random – a goal is less likely (but not impossible) when 
their choices match and is more likely (while not certain) when they don’t.  The specific 
probabilities will depend upon the abilities of the specific kicker and goalie: the 
probabilities in Figure 2 might represent, for example, a situation in which the kicker is 
more effective kicking to the left half of the goal than to the right half.  For the specific 
game in Figure 2 it can be shown that the kicker’s minimax strategy is a 50-50 mix 
between Left and Right and the goalie’s minimax strategy is to defend Left 3/5 of the 
time and Right 2/5.  The reader can easily see that the value of the game is therefore 3/5, 
i.e., in the MSE the kicker will succeed in scoring a goal 60% of the time.  
 
Non-zero-sum games and games with more than two players often have mixed strategy 
equilibria as well.  Important examples are decisions whether to enter a competition (such 
as an industry, a tournament, or an auction), “wars of attrition” (decisions about whether 
and when to exit a competition), and models of price dispersion (which explain how the 
same good may sell at different prices), as well as many others.  
 
How do people actually behave in strategic situations that have mixed strategy equilibria?  
Does the MSE provide an accurate description of people’s behavior?  Virtually from the 
moment Nash’s 1950 paper was distributed in preprint, researchers began to devise 



experiments in which human subjects play games that have mixed strategy equilibria.  
The theory has not fared well in these experiments.  The behavior observed in 
experiments typically departs from the MSE in two ways:  participants do not generally 
play their strategies in the proportions dictated by the game’s particular MSE probability 
distribution;  and their choices typically exhibit negative serial correlation – a player’s 
mixed strategy in an MSE requires that his choices be independent across multiple plays, 
but experimental subjects tend instead to switch from one action to another more often 
than chance would dictate.  Experimental psychologists have reported similar “switching 
too often” in many experiments designed to determine people’s ability to intentionally 
behave randomly.  The evidence suggests that humans are not very good at behaving 
randomly. 
 
The results from experiments were so consistently at variance with the theory that 
empirical analysis of the concept of MSE became all but moribund for nearly two 
decades, until interest was revived by Barry O’Neill’s (1987) seminal paper.  O’Neill 
pointed out that there were features of previous experiments that subtly invalidated them 
as tests of the theory of mixed strategy equilibrium, and he devised a clever but simple 
experiment that avoided these flaws.  Although James Brown and Robert Rosenthal 
(1990) subsequently demonstrated that the behavior of O’Neill’s subjects was still 
inconsistent with the theory, the correspondence between theory and observation was 
nevertheless closer in his experiment than in prior experiments.   
 
Mark Walker and John Wooders (2001) were the first to use field data instead of 
experiments to evaluate the theory of mixed strategy equilibrium. They contended that 
while the rules and mechanics of a simple MSE game may be easy to learn quickly, as 
required in a laboratory experiment, substantial experience is nevertheless required in 
order to develop an understanding of the strategic subtleties of playing even simple MSE 
games.  In short, an MSE game may be easy to play but not easy to play well.  This fact 
alone may account for much of the theory’s failure in laboratory experiments.  
 
Instead of using experiments, Walker and Wooders applied the MSE theory to data from 
professional tennis matches.  The “serve” in tennis can be described as a 2x2 MSE game 
exactly like the soccer example in Figure 2:  the server chooses which direction to serve, 
the receiver chooses which direction to defend, and the resulting payoff is the probability 
the server wins the point.  Walker and Wooders obtained data from matches between the 
best players in the world, players who have devoted their lives to the sport and should 
therefore be expert in the strategic subtleties of this MSE game.  Play by these world-
class tennis players was found to correspond quite closely to the MSE predictions.  
Subsequent research by others, with data from professional tennis and soccer matches, 
has shown a similar correspondence between theory and observed behavior.    
 
Thus, the empirical evidence to date indicates that MSE is effective for explaining and 
predicting behavior in strategic situations at which the competitors are experts and that it 
is less effective when the competitors are novices, as experimental subjects typically are.  
This leaves several obvious open questions:  In view of the enormous disparity in 
expertise between world-class athletes and novice experimental subjects, how can we 



determine, for specific players, whether the MSE yields an appropriate prediction or 
explanation of their play?  And when MSE is not appropriate, what is a good theory of 
play?  We clearly need a generalization of current theory, one that includes MSE, that 
tells us in addition when MSE is “correct,” and that explains behavior when MSE is not 
correct.  Moreover, the need for such a theory extends beyond MSE games to the theory 
of games more generally.   
 
A more general theory will likely comprise either an alternative, more general notion of 
equilibrium or a theory of out-of-equilibrium behavior in which some players may, with 
enough experience, come to play as the equilibrium theory predicts.  Recent years have 
seen research along both lines.  Among the most promising developments are the notion 
of quantal response equilibrium introduced by Richard McKelvey and Thomas Palfrey 
(1995), the theory of level-n thinking introduced by Dale Stahl and Paul Wilson (1994), 
and the idea of reinforcement learning developed by Ido Erev and Alvin Roth (1998). 
 
Mark Walker 
John Wooders 
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