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Vector Spaces

Definition: The usual addition and scalar multiplication of n-tuples x = (z1,...,z,) € R"

(also called vectors) are the addition and scalar multiplication operations defined component-wise:

x+y:=(z1+y1,. ., Tn+yn) and Ax:= (Az1,...,ATy).

Remark: The usual addition and scalar multiplication in R™ are functions:
Addition : R" x R" — R"

Scalar multiplication : R x R™ — R"™.

Remark: The usual addition and scalar multiplication in R™ have the following properties:
(VS1) vx,y €eR":x+y € R" (R"is closed under vector addition.)
(VS2) VAeR,Vx € R": Ax € R". (R"is closed under scalar multiplication.)
(VS3) Vx,y eR":x+y=y+x. (Vector addition is commutative.)
(VS4) Vx,y,zeR": (x+y)+z=x+(y +2),
and VA, u € R, Vx € R : A\(ux) = (Au)x. (Both operations are associative.)
(VS5) VAeR,Vx,y e R": A(x+y)=Ax+ Ay,
and VA, u€R,Vx €R": (A+ pu)x = Ax + ux. (The operations are distributive.)
(VS6) IXxeR™:¥x € R :X+x =x. (Note that X is the origin of R", viz. 0. It’s called
the additive identity.)
(VS7) vx e R":3x' € R":x + x' = 0. (Note that for each x € R", x" is —x. It’s called
the additive inverse of x.)

(VS8) Vx € R"™: Ax = x for the scalar A = 1.

This particular algebraic structure — operations that satisfy (VS1) - (VS8) — is not unique to R".
In fact, it’s pervasive in mathematics (and in economics and statistics). So we generalize in the
following definition and say that any set V' with operations that behave in this way — i.e., that
satisfy (VS1) - (VS8) — is a vector space. And in order to highlight definitions, theorems, etc.,
that are about general vector spaces (and not just about R™), I’ll indicate these general propositions
by this symbol: ¢.

Definition:* A vector space is a set V together with operations

Addition: V xV -V
Scalar multiplication : R x V' — V

that satisfy the conditions (VS1) - (VS8) if R™ is replaced throughout with V.

Notation:* In any vector space V, we denote the additive identity by 0 and the additive inverse

of any x € V by —x. We’ll use boldface for vectors and regular font for scalars and other numbers.
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Some examples of vector spaces are:

(1) My, p, the set of all m x n matrices, with component-wise addition and scalar multiplication.
(2) R, the set of all sequences {x}} of real numbers, with operations defined component-wise.
(3) The set F of all real functions f : R — R, with f + g and Af defined by

(f+9(x) = f(x)+g(z),VzeR
(A)(z) = Af(z), Yz eR.

(4) For any set X, the set of all real-valued functions on X, with operations defined as in (3).

(5) The set S of all solutions (z1,...,2,) of the m x n system of linear equations
anzi+ -+ amtn = 0
a1 + -+ amn = 0
Am1%1 + -+ Gy = 0,

i.e., the set of all solutions of the matrix equation Ax = 0, where a;; is the 4, j“‘ element of A.

Notice that the set S in (5) consists of n-tuples of real numbers, so S is a subset of R". Assuming
that S retains the component-wise definitions of the operations from R", we can show that S is
a vector space in its own right — a wvector subspace of R™. In order to verify that S is a vector
space we have to verify that S satisfies the conditions (VS1) - (VS8). The conditions (VS3) - (VS5)
are satisfied automatically, since S retains the operations from R", where we know (VS3) - (VS5)
are satisfied. (VS6) is satisfied, because 0 € S — i.e., A0 = 0. (VS7) is satisfied, because if
x is a solution of the equation system, then so is —x — d.e., Ax = 0 = A(—x) = 0. (VS8) is
trivially satisfied. What about (VS1) and (VS2)? We verify that S is closed under vector addition:
X,y€ES=>x+y€S —ie,[Ax=0&Ay =0] = A(x+y) = 0. And we verify that S is closed
under scalar multiplication: (A € R,x € §] = Ax € § — i.e., Ax = 0 = Alx = 0. We've verified
that S satisfies all eight of the conditions that define a vector space.

To a large extent, the subject of vector spaces is about situations like the one in the preceding
paragraph, where a subset S of a vector space V turns out to be itself a vector space — a vector

subspace of V' (also called a linear subspace of V, or just a subspace of V).

Definition:* A subspace of a vector space V is a subset of V which is itself a vector space, under

the same operations as in V.

The following remark tells us that in order to determine whether a nonempty subset of a vector
space V is actually a subspace of V, it’s sufficient to merely check whether it satisfies conditions
(VS1) and (VS2) — whether it’s closed under vector addition and scalar multiplication. If it is,
then its operations, under which V' is a vector space, must necessarily satisfy (VS3) - (VS8).



1 Remark:® If V is a vector space and S C V, then S is a subspace of V' if and only if it is nonempty

and satisfies (VS1) and (VS2) — i.e., if and only if it is nonempty and is closed under vector

addition and scalar multiplication.

MM') Proof: Obviously, if S is itself a vector space, then it satisfies (VS1) and (VS2). Conversely,

we must show that if S satisfies (VS1) and (VS2), then it satisfies the remaining conditions (VS3) -
(VS8) as well. Conditions (VS3) - (VS5) are immediate from the fact that S has the same operations
as V and that V satisfies (VS3) - (VS5). You should be able to establish on your own that S satisfies
(VS6), (VS7), and (VS8), given that it is nonempty and satisfies (VS1) - (VS5). ||

Question:* Why does the Remark include the restriction that S be nonempty, while the definition
of a subspace doesn’t include that restriction? Could the empty set satisfy (VS1) and (VS2)? Could
the empty set satisfy (VS3) - (VS8)?

Exercise:* Verify that if a nonempty subset S of a vector space V satisfies (VS1) - (VS5), then it
satisfies (VS6), (VS7), and (VS8).
Some additional examples of subspaces:

(6) The set Q of all quadratic forms on R" is a subspace of the vector space V' of all functions
f: R* —» R. (Recall that there is a one-to-one correspondence between quadratic forms and

symmetric matrices.)

(7) A sequence {z\} of real numbers is said to be bounded if there is a number M such that
|zk| £ M for every k =1,2,.... The set B of bounded sequences is a subspace of the space R* of

all real sequences. It may help here to write a sequence as x = (1, z2,23,...) € R*®.

(8) The set C of all continuous real functions, with operations defined as in (3), is a subspace of the
vector space F in (3). In order to verify (VS1), we have to show that the sum of any two continuous
real functions is continuous (i.e., C' is closed under vector addition). In order to verify (VS2), we
have to show that any multiple Af of a continuous function is continuous (i.e., C is closed under

scalar multiplication). What is the additive identity in this vector space?
Exercise: Verify that the sets in (6) and (7) are subspaces of the respective vector spaces.

Here are some examples of subsets S C R? that are not subspaces of R?:
(9) S is any singleton other than 0 — for example, S = {(1,1)}.

(10) §=A(0,0),(1,1)}.

(11) S={(0,0),(1,1),(-1,-1)}.

(12) S={(z1,2z2)| x1 + 22 =1}.

(13) S ={x € R?| |z3| = |z1]}.
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Exercise: In each of the examples (9) - (13) determine which of the conditions (VS1), (VS2),
(VS6), (VST), and (VS8) are satisfied and which are violated. You'll probably find it helpful to

draw diagrams of the sets S.

Definition:* In a vector space V, let S = {vy,..., vy} be a nonempty finite set of vectors. A
vector w € V is a linear combination of the vectors vy, ..., v, if there are scalars aj,...,an

such that w = a1vy + - + am V-

Definition:* In a vector space V, let S C V be a (not necessarily finite) nonempty subset of V.

The span of S, denoted L[S], is the set of all linear combinations of members of S.

Note that while the set S in this definition can be infinite, every linear combination of members of
S must be a linear combination of only a finite number of members of S, according to the definition

of linear combination. We don’t define linear combinations of an infinite number of vectors.

Theorem:* Let V be a vector space and let S be a nonempty subset of V. The span of S, £[S], is

a subspace of V.

Proof: To show that £[S] is closed under scalar multiplication, let x € L[S] and let A € R.
Then x = a1vy + - - - + @ vy, for some vectors vy, ...,v,, € S and some numbers aq,...,a, € R.
Then Ax = Aajvy + -+ 4+ Aam Ve, — 4.€., AX is a linear combination of v1,...,v,, and is therefore
in £[S]. To show that L£[S] is closed under vector addition, let x and y be members of L[S], and
we show that x +y € L[S]. We have x = a1vi + -+ + apmVvy, and y = bywy + -+ + bgwg for
some vectors vi,...,Vy,W1,...,Wg € S and some ai,...,0n,b1,...,bx € R. Therefore x +y =

;’;l a;v; + Zch=1 bgwr = a1v1 + - + amVm + 01wy + - - + bgwg, which is a linear combination
of members of S, and is therefore in £[S]. (Note that this is still correct even if some of the vectors

v; and wy, coincide.) ||

Because L[S] is always a vector space, it is sometimes referred to as the vector space spanned by

the set S, or the vector space generated by the set S.

Definition:* In a vector space V, a set S of vectors is linearly dependent if some vector in S is
a linear combination of other vectors in S. A set S is linearly independent if it is not linearly

dependent — i.e., if no vector in S is a linear combination of other vectors in S.

Remark:* A set S of vectors is linearly dependent if and only if the vector 0 is a linear combination
of some of the members of S. A set S is linearly independent if and only if

Vi, oy Vm €S & a1vi+- -+ apvm =0 = a1 =---=ap =0.

Definition:* A basis of a vector space V is a linearly independent subset of V that spans V.



9.156 Theorem:* Let B be a finite basis of a vector space V. Any set S C V containing more vectors

21.7,) than B is linearly dependent.
(m Proof: Let B = {vi,...,v;n} and let wy,...,w, € S, with n > m. We will show that the
vectors wi, ..., Wy are linearly dependent. Since B is a basis of V, each vector w; can be written

as
W = a1Vl + -+ QmjVm for some numbers Aljy -5 Amyj-

For any linear combination ¢;wq + - - - + ¢, Wy, of the w; vectors, we have

awi+ -+ epwn = clanvi+ o+ amivm) + o+ en(@nvi + - F G Vim)

n n
= Zaljcj vi+---+ Z amjCj | Vim
j=1 j=1
= (a;-c)vi+ -+ (am - C)vm,
where a; = (8i1,. - ,in); t=1,...,m; and ©=(€1,..4;Cp)-

Now assume that ciwy + --- + ¢,w, = 0 € V, which yields (a; - ¢)vy + -+ + (am - ¢)vi, = 0.
Since the vectors vy, ..., vy, are linearly independent (B is a basis), we must have a; - ¢ = 0 for all
i=1,...,m. Because n > m, this m X n equation system has solutions ¢ # 0. Equivalently, let A
be the m x n matrix whose rows are the n-tuples a;; then, because n > m, the equation Ac = 0

has solutions ¢ # (0, ...,0). Therefore the vectors wy, ..., w, are linearly dependent. ||
?.75L Corollary:* If a vector space V has a finite basis, then every basis of V has the same number of
(ﬂ‘m\’)ﬂ.?,\ vectors.

?.zq’g This corollary ensures that the following notion of the dimension of a (finite-dimensional) vector

space is well-defined:

p ,75(. Definition:* The dimension of a vector space that has a finite basis B is the number of vectors
in B. We write dim V' for the dimension of V.
Remark:* If dim V = n and the n vectors vy, ..., v, span V, then {vy,...,v,} is a basis of V.
Proof: Exercise.

Definition:* If a vector space has a finite basis, it is said to be finite-dimensional; otherwise it

is said to be infinite-dimensional.

Examples:

p.2 4y (14) For the vector space R™ the n unit vectors
(g-xﬁmﬂfe 11.9) e1 = (1,0,0,...,0), 3 = (0,1,0,...,0), ..., e, = (0,0,...,0,1)

constitute a basis. Therefore (fortunately!) dimR™ = n.

(15) Let a = (a1,...,an) € R™ and let S = {x € R" | a-x = 0}, the set of solutions of the linear
equation ajz1 + - - - + apzy, = 0. We've already seen that S is a subspace of R™. Now we also have

dimS=mn—1: Sisan (n — 1)-dimensional hyperplane in R™ that contains 0.



Exercise: Verify in Example (14) that the unit vectors form a basis of R", and verify in Example
(15) that the dimension of the set S is n — 1.

Note that we’ve defined the dimension of a finite-dimensional vector space, but we haven’t defined
the dimension of an infinite-dimensional vector space. This is not an oversight. Infinite-dimensional
vector spaces are important — in fact, we’ve already seen four important ones: the set 7 of all real
functions; the set C of all continuous real functions; the set R* of all sequences of real numbers;
and the set B of all bounded sequences of real numbers. And it’s a fact (but a fact not so easily
proved!) that every vector space does have a basis. But for an infinite-dimensional space V, it’s
typically not clear how to identify, or enumerate, any of its bases, like we did above for R™. So
while we’ll be working with some important infinite-dimensional vector spaces, we won’t be using
the concept of a basis for them.

Exercise: Show that in R* the unit vectors
e; = (1,0,0,...), e2=(0,1,0,0,...), e3 =(0,0,1,0,0,...), ...

do not constitute a basis, unlike the situation in R™. (Hint: Recall that linear combinations are
defined only for finite sets of vectors.) Also note that here (as we’ll often do) we're writing a
sequence as (z1, 2,3, ...) instead of {z}.
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Linear Functions

Definition:* Let V and W be vector spaces. A function f:V — W is a linear function if

(%) Vx,yeV:f(x+y)=Ffx)+fly) and VxeV,VAeR: f(Ax)=Af(x).

A linear function from a vector space into itself — i.e., f: V — V — is sometimes called a linear

transformation.

Theorem:* If V and W are vector spaces and f : V — W is a linear function, then for every
subspace S of V', f(S) is a subspace of W.

Proof: Exercise.

For linear functions on R", the following theorem is the fundamental characterization in terms of

matrices:

Theorem: A function f:R™ — R™ is linear if and only if there is a unique m x n matrix A such
that Vx € R™: f(x) = Ax.

Proof: If Vx € R" : f(x) = Ax, it’s trivial that (x) is satisfied, and f is therefore linear.
Conversely, suppose [ is linear; we show that there is a matrix A such that f(x) = Ax. For each
Jj=1,...,nlet ; be the j-th unit vector in R™, and let a; = f(e;); note that a; € R™. Define A

to be the m x n matrix in which the column vector a; is the j-th column. Then we have

f(x) = f(zer+- - +zne,)
= f(zie1)+ -+ f(zpe,), because f is linear
= z1f(e1)+ -+ anf(e), because f is linear
= ra;+ -+ rpay

= Ax.

To see that A is unique, note that if f(x) = Ax = Bx for all x € R", then the columns a; and b;
of A and B satisfy a; = f(e;) = bj. ||

Corollary: A real-valued linear function f :R™ — R has the form f(x) =a-x = Z?Il a;T;.

I like the following excerpt from Simon & Blume (p. 288): “[The above characterization theorem]
underlines the one-to-one correspondence between linear functions from R™ to R™ and m x n
matrices. Each linear function f is [defined by] a unique m x m matrix. This fact will play an
important role in the rest of this book. Matrices are not simply rectangular arrays of numbers . ...
Matrices are representations of linear functions. When we use calculus to do its main task, namely
to approximate a nonlinear function F* at a given point by a linear function, [namely] the derivative
of F', we will write that linear function as a matrix. In other words, derivatives of functions from

R™ to R™ are m x n matrices.”



