
Vector Spaces

Definition: The usual addition and scalar multiplication of n-tuples x = (x1, . . . , xn) ∈ Rn

(also called vectors) are the addition and scalar multiplication operations defined component-wise:

x + y := (x1 + y1, . . . , xn + yn) and λx := (λx1, . . . , λxn).

Remark: The usual addition and scalar multiplication in Rn are functions:

Addition : Rn × Rn → Rn

Scalar multiplication : R× Rn → Rn.

Remark: The usual addition and scalar multiplication in Rn have the following properties:

(VS1) ∀x,y ∈ Rn : x + y ∈ Rn. (Rn is closed under vector addition.)

(VS2) ∀λ ∈ R, ∀x ∈ Rn : λx ∈ Rn. (Rn is closed under scalar multiplication.)

(VS3) ∀x,y ∈ Rn : x + y = y + x. (Vector addition is commutative.)

(VS4) ∀x,y, z ∈ Rn : (x + y) + z = x + (y + z),

and ∀λ, µ ∈ R, ∀x ∈ Rn : λ(µx) = (λµ)x. (Both operations are associative.)

(VS5) ∀λ ∈ R, ∀x,y ∈ Rn : λ(x + y) = λx + λy,

and ∀λ, µ ∈ R,∀x ∈ Rn : (λ+ µ)x = λx + µx. (The operations are distributive.)

(VS6) ∀x ∈ Rn : λx = x for the scalar λ = 1.

(VS7) ∃x̂ ∈ Rn : ∀x ∈ Rn : x̂ + x = x. (Note that x̂ is the origin of Rn, viz. 0. It’s called

the additive identity.)

(VS8) ∀x ∈ Rn : ∃x′ ∈ Rn : x + x′ = 0. (Note that for each x ∈ Rn, x′ is −x. It’s called

the additive inverse of x.)

This particular algebraic structure — operations that satisfy (VS1) - (VS8) — is not unique to Rn.

In fact, it’s pervasive in mathematics (and in economics and statistics). So we generalize in the

following definition and say that any set V with operations that behave in this way — i.e., that

satisfy (VS1) - (VS8) — is a vector space. And in order to highlight definitions, theorems, etc.,

that are about general vector spaces (and not just about Rn), I’ll indicate these general propositions

by this symbol: �.

Definition:� A vector space is a set V together with operations

Addition : V × V → V

Scalar multiplication : R× V → V

that satisfy the conditions (VS1) - (VS8) if Rn is replaced throughout with V .

Notation:� In any vector space V , we denote the additive identity by 0 and the additive inverse

of any x ∈ V by −x. We’ll use boldface for vectors and regular font for scalars and other numbers.



Some examples of vector spaces are:

(1) Mm,n, the set of all m× n matrices, with component-wise addition and scalar multiplication.

(2) R∞, the set of all sequences {xk} of real numbers, with operations defined component-wise.

(3) The set F of all real functions f : R→ R, with f + g and λf defined by

(f + g)(x) := f(x) + g(x), ∀x ∈ R
(λf)(x) := λf(x), ∀x ∈ R.

(4) For any set X, the set of all real-valued functions on X, with operations defined as in (3).

(5) The set S of all solutions (x1, . . . , xn) of the m× n system of linear equations

a11x1 + · · ·+ a1nxn = 0

a21x1 + · · ·+ a2nxn = 0

· · · · · · · · ·

am1x1 + · · ·+ amnxn = 0,

i.e., the set of all solutions of the matrix equation Ax = 0, where aij is the i, jth element of A.

Notice that the set S in (5) consists of n-tuples of real numbers, so S is a subset of Rn. Assuming that

S retains the component-wise definitions of the operations from Rn, we can show that S is a vector

space in its own right — a vector subspace of Rn. In order to verify that S is a vector space we have

to verify that S satisfies the conditions (VS1) - (VS8). The conditions (VS3) - (VS5) are satisfied

automatically, since S retains the operations from Rn, where we know (VS3) - (VS5) are satisfied.

(VS6) is trivially satisfied. (VS7) is satisfied, because 0 ∈ S — i.e., A0 = 0. (VS8) is satisfied,

because if x is a solution of the equation system, then so is −x — i.e., Ax = 0⇒ A(−x) = 0. What

about (VS1) and (VS2)? We verify that S is closed under vector addition: x,y ∈ S ⇒ x+y ∈ S —

i.e., [Ax = 0 &Ay = 0]⇒ A(x+y) = 0. And we verify that S is closed under scalar multiplication:

[λ ∈ R,x ∈ S]⇒ λx ∈ S — i.e., Ax = 0⇒ Aλx = 0. We’ve verified that S satisfies all eight of the

conditions that define a vector space.

To a large extent, the subject of vector spaces is about situations like the one in the preceding

paragraph, where a subset S of a vector space V turns out to be itself a vector space — a vector

subspace of V (also called a linear subspace of V , or just a subspace of V ).

Definition:� A subspace of a vector space V is a subset of V which is itself a vector space, under

the same operations as in V .

The following remark tells us that in order to determine whether a nonempty subset of a vector

space V is actually a subspace of V , it’s sufficient to merely check whether it satisfies conditions

(VS1) and (VS2) — whether it’s closed under vector addition and scalar multiplication. If it is,

then its operations, under which V is a vector space, must necessarily satisfy (VS3) - (VS8).
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Remark:� If V is a vector space and S ⊆ V , then S is a subspace of V if and only if it is nonempty

and satisfies (VS1) and (VS2) — i.e., if and only if it is nonempty and is closed under vector

addition and scalar multiplication.

Proof: Obviously, if S is itself a vector space, then it satisfies (VS1) and (VS2). Conversely,

we must show that if S satisfies (VS1) and (VS2), then it satisfies the remaining conditions (VS3) -

(VS8) as well. Conditions (VS3) - (VS5) are immediate from the fact that S has the same operations

as V and that V satisfies (VS3) - (VS5). You should be able to establish on your own that S satisfies

(VS6), (VS7), and (VS8), given that it is nonempty and satisfies (VS1) - (VS5). ‖

Question:� Why does the Remark include the restriction that S be nonempty, while the definition

of a subspace doesn’t include that restriction? Could the empty set satisfy (VS1) and (VS2)? Could

the empty set satisfy (VS3) - (VS8)?

Exercise:� Verify that if a nonempty subset S of a vector space V satisfies (VS1) - (VS5), then it

satisfies (VS6), (VS7), and (VS8).

Some additional examples of subspaces:

(6) The set Q of all quadratic forms on Rn is a subspace of the vector space V of all functions

f : Rn → R. (Recall that there is a one-to-one correspondence between quadratic forms and

symmetric matrices.)

(7) A sequence {xk} of real numbers is said to be bounded if there is a number M such that

|xk| 5M for every k = 1, 2, . . . . The set B of bounded sequences is a subspace of the space R∞ of

all real sequences. It may help here to write a sequence as x = (x1, x2, x3, . . .) ∈ R∞.

(8) The set C of all continuous real functions, with operations defined as in (3), is a subspace of the

vector space F in (3). In order to verify (VS1), we have to show that the sum of any two continuous

real functions is continuous (i.e., C is closed under vector addition). In order to verify (VS2), we

have to show that any multiple λf of a continuous function is continuous (i.e., C is closed under

scalar multiplication). What is the additive identity in this vector space?

Exercise: Verify that the sets in (6) and (7) are subspaces of the respective vector spaces.

Here are some examples of subsets S ⊆ R2 that are not subspaces of R2:

(9) S is any singleton other than 0 — for example, S = {(1, 1)}.

(10) S = {(0, 0), (1, 1)}.

(11) S = {(0, 0), (1, 1), (−1,−1)}.

(12) S = {(x1, x2) | x1 + x2 = 1}.

(13) S = {x ∈ R2 | |x2| = |x1|}.
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Exercise: In each of the examples (9) - (13) determine which of the conditions (VS1), (VS2),

(VS6), (VS7), and (VS8) are satisfied and which are violated. You’ll probably find it helpful to

draw diagrams of the sets S.

Definition:� In a vector space V , let S = {v1, . . . ,vm} be a nonempty finite set of vectors. A

vector w ∈ V is a linear combination of the vectors v1, . . . ,vm if there are scalars a1, . . . , am

such that w = a1v1 + · · · + amvm. The linear combination is trivial if the scalars are all zero;

otherwise it is non-trivial.

Definition:� In a vector space V , let S ⊆ V be a (not necessarily finite) nonempty subset of V .

The span of S, denoted L[S], is the set of all linear combinations of members of S.

Note that while the set S in this definition can be infinite, every linear combination of members of

S must be a linear combination of only a finite number of members of S, according to the definition

of linear combination. We don’t define linear combinations of an infinite number of vectors.

Theorem:� Let V be a vector space and let S be a nonempty subset of V . The span of S, L[S], is

a subspace of V .

Proof: To show that L[S] is closed under scalar multiplication, let x ∈ L[S] and let λ ∈ R.

Then x = a1v1 + · · · + amvm for some vectors v1, . . . ,vm ∈ S and some numbers a1, . . . , am ∈ R.

Then λx = λa1v1 + · · ·+ λamvm — i.e., λx is a linear combination of v1, . . . ,vm and is therefore

in L[S]. To show that L[S] is closed under vector addition, let x and y be members of L[S], and

we show that x + y ∈ L[S]. We have x = a1v1 + · · · + amvm and y = b1w1 + · · · + bKwK for

some vectors v1, . . . ,vm,w1, . . . ,wK ∈ S and some a1, . . . , am, b1, . . . , bK ∈ R. Therefore x + y =∑m
i=1 aivi +

∑K
k=1 bkwk = a1v1 + · · ·+ amvm + b1w1 + · · ·+ bKwK , which is a linear combination

of members of S, and is therefore in L[S]. (Note that this is still correct even if some of the vectors

vi and wk coincide.) ‖

Because L[S] is always a vector space, it is sometimes referred to as the vector space spanned by

the set S, or the vector space generated by the set S.

Definition:� In a vector space V , a set S of vectors is linearly dependent if some vector in S is

a non-trivial linear combination of other vectors in S. A set S is linearly independent if it is not

linearly dependent — i.e., if no vector in S is a non-trivial linear combination of other vectors in S.

Remark:� A set S of vectors is linearly dependent if and only if the vector 0 is a non-trivial linear

combination of some of the members of S. A set S is linearly independent if and only if

[v1, . . . ,vm ∈ S & a1v1 + · · ·+ amvm = 0]⇒ a1 = · · · = am = 0.

Definition:� A basis of a vector space V is a linearly independent subset of V that spans V .
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Theorem:� Let B be a finite basis of a vector space V . Any set S ⊆ V containing more vectors

than B is linearly dependent.

Proof: Let B = {v1, . . . ,vm} and let w1, . . . ,wn ∈ S, with n > m. We will show that the

vectors w1, . . . ,wn are linearly dependent. Since B is a basis of V , each vector wj can be written

as
wj = a1jv1 + · · ·+ amjvm for some numbers a1j , . . . , amj .

For any linear combination c1w1 + · · ·+ cnwn of the wj vectors, we have

c1w1 + · · ·+ cnwn = c1(a11v1 + · · ·+ am1vm) + · · ·+ cn(a1nv1 + · · ·+ amnvm)

=

 n∑
j=1

a1jcj

v1 + · · ·+

 n∑
j=1

amjcj

vm

= (a1 · c)v1 + · · ·+ (am · c)vm,

where ai = (ai1, . . . , ain), i = 1, . . . ,m, and c = (c1, . . . , cn).

Now assume that c1w1 + · · · + cnwn = 0 ∈ V , which yields (a1 · c)v1 + · · · + (am · c)vm = 0.

Since the vectors v1, . . . ,vm are linearly independent (B is a basis), we must have ai · c = 0 for all

i = 1, . . . ,m. Because n > m, this m× n equation system has solutions c 6= 0. Equivalently, let A

be the m × n matrix whose rows are the n-tuples ai; then, because n > m, the equation Ac = 0

has solutions c 6= (0, . . . , 0). Therefore the vectors w1, . . . ,wn are linearly dependent. ‖

Corollary:� If a vector space V has a finite basis, then every basis of V has the same number of

vectors.

This corollary ensures that the following notion of the dimension of a (finite-dimensional) vector

space is well-defined:

Definition:� The dimension of a vector space that has a finite basis B is the number of vectors

in B. We write dimV for the dimension of V .

Remark:� If dimV = n and the n vectors v1, . . . ,vn span V , then {v1, . . . ,vn} is a basis of V .

Proof: Exercise.

Definition:� If a vector space has a finite basis, it is said to be finite-dimensional; otherwise it

is said to be infinite-dimensional.

Examples:

(14) For the vector space Rn the n unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1)

constitute a basis. Therefore (fortunately!) dimRn = n.

(15) Let a = (a1, . . . , an) 6= 0 ∈ Rn and let S = {x ∈ Rn | a · x = 0}, the set of solutions of the

linear equation a1x1 + · · ·+ anxn = 0. We’ve already seen that S is a subspace of Rn. Now we also

have dimS = n− 1: S is an (n− 1)-dimensional hyperplane in Rn that contains 0.
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Exercise: Verify in Example (14) that the unit vectors form a basis of Rn, and verify in Example

(15) that the dimension of the set S is n− 1.

Note that we’ve defined the dimension of a finite-dimensional vector space, but we haven’t defined

the dimension of an infinite-dimensional vector space. This is not an oversight. Infinite-dimensional

vector spaces are important — in fact, we’ve already seen four important ones: the set F of all real

functions; the set C of all continuous real functions; the set R∞ of all sequences of real numbers;

and the set B of all bounded sequences of real numbers. And it’s a fact (but a fact not so easily

proved!) that every vector space does have a basis. But for an infinite-dimensional space V , it’s

typically not clear how to identify, or enumerate, any of its bases, like we did above for Rn. So

while we’ll be working with some important infinite-dimensional vector spaces, we won’t be using

the concept of a basis for them.

Exercise: Show that in R∞ the unit vectors

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . .

do not constitute a basis, unlike the situation in Rn. (Hint: Recall that linear combinations are

defined only for finite sets of vectors.) Also note that here (as we’ll often do) we’re writing a

sequence as (x1, x2, x3, . . .) instead of {xk}.
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Linear Functions

Definition:� Let V and W be vector spaces. A function f : V →W is a linear function if

(∗) ∀x,y ∈ V : f(x + y) = f(x) + f(y) and ∀x ∈ V,∀λ ∈ R : f(λx) = λf(x).

A linear function from a vector space into itself — i.e., f : V → V — is sometimes called a linear

transformation.

Theorem:� If V and W are vector spaces and f : V → W is a linear function, then for every

subspace S of V , f(S) is a subspace of W .

Proof: Exercise.

For linear functions on Rn, the following theorem is the fundamental characterization in terms of

matrices:

Theorem: A function f : Rn → Rm is linear if and only if there is a unique m× n matrix A such

that ∀x ∈ Rn : f(x) = Ax.

Proof: If ∀x ∈ Rn : f(x) = Ax, it’s trivial that (∗) is satisfied, and f is therefore linear.

Conversely, suppose f is linear; we show that there is a matrix A such that f(x) = Ax. For each

j = 1, . . . , n let ej be the j-th unit vector in Rn, and let aj = f(ej); note that aj ∈ Rm. Define A

to be the m× n matrix in which the column vector aj is the j-th column. Then we have

f(x) = f(x1e1 + · · ·+ xnen)

= f(x1e1) + · · ·+ f(xnen), because f is linear

= x1f(e1) + · · ·+ xnf(en), because f is linear

= x1a1 + · · ·+ xnan

= Ax.

To see that A is unique, note that if f(x) = Ax = Bx for all x ∈ Rn, then the columns aj and bj

of A and B satisfy aj = f(ej) = bj . ‖

Corollary: A real-valued linear function f : Rn → R has the form f(x) = a · x =
∑n

j=1 ajxj .

I like the following excerpt from Simon & Blume (p. 288): “[The above characterization theorem]

underlines the one-to-one correspondence between linear functions from Rn to Rm and m × n

matrices. Each linear function f is [defined by] a unique m × n matrix. This fact will play an

important role in the rest of this book. Matrices are not simply rectangular arrays of numbers . . . .

Matrices are representations of linear functions. When we use calculus to do its main task, namely

to approximate a nonlinear function F at a given point by a linear function, [namely] the derivative

of F , we will write that linear function as a matrix. In other words, derivatives of functions from

Rn to Rm are m× n matrices.”
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Determinants and Linear Transformations

Throughout this section we’ll be working with linear transformations from Rn into itself — i.e.,

linear functions f : Rn → Rn. We’ve shown that any such linear transformation can be represented

by a unique n×n matrix A: ∀x ∈ Rn : f(x) = Ax. We also know that the determinant of A tells us

something about the function f , namely that f is invertible if and only if detA 6= 0, in which case

f−1(y) = A−1y. We’ll show here that the determinant of A provides some additional information

about the transformation f : it tells us how f affects the area or volume of a set S in Rn when f

transforms S into f(S).

Everything in this section will be done for just the case n = 2; everything can be done for general

n but the notation and the algebra are both a lot more complicated. Because n = 2, we have

f(x) = Ax =

[
a11 a12

a21 a22

][
x1

x2

]
= x1

[
a11

a21

]
+ x2

[
a12

a22.

]

We’ll assume, until further notice, that each element aij of A is nonnegative.

We’re going to analyze what f does to the unit square, which will tell us everything we need to

know. The four corners of the unit square are (0, 0), (1, 0), (0, 1), and (1, 1) — i.e., 0, e1, e2, and

e1 + e2. The function f transforms these four points as follows:

f(0, 0) = (0, 0), f(1, 0) = (a11, a21), f(0, 1) = (a12, a22), f(1, 1) = (a11 + a12, a21 + a22),

which, if we write the images under f as column vectors, looks like this:

f(0, 0) =

[
0

0

]
, f(1, 0) =

[
a11

a21

]
, f(0, 1) =

[
a12

a22

]
, f(1, 1) =

[
a11 + a12

a21 + a22

]
.

Let’s consider the simplest case first: a12 = a21 = 0, so that[
a11 a12

a21 a22

]
=

[
a11 0

0 a22

]
.

In this case we have |A| = a11a22, and

f(0, 0) =

[
0

0

]
, f(1, 0) =

[
a11

0

]
, f(0, 1) =

[
0

a22

]
, f(1, 1) =

[
a11

a22

]

— the unit square S is transformed into a rectangle, f(S), as depicted in Figure D-1. The area

of the rectangle is a11a22 = |A|, and since the area of S is 1, f has transformed S into a set f(S)

whose area is |A| times the area of S.

Next let’s consider the case in which just one of the off-diagonal elements of A is zero, say[
a11 a12

a21 a22

]
=

[
a11 a12

0 a22

]
.
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Figure D-1

We still have |A| = a11a22, but now we have

f(0, 0) =

[
0

0

]
, f(1, 0) =

[
a11

0

]
, f(0, 1) =

[
a12

a22

]
, f(1, 1) =

[
a11 + a12

a22

]

— the unit square S is transformed into a parallelogram, as in Figure D-2. But the area of the

parallelogram, its base times its height, is still equal to a11a22 = |A|. So it’s still true that the area

of f(S) is |A| times the area of the unit square S.

Figure D-2

Now let’s consider an arbitrary 2 × 2 matrix A (but still with nonnegative elements): we have

|A| = a11a22 − a12a21. The four corners of the square S are again mapped to the four vertices of a

parallelogram, as depicted in Figure D-3, where now none of the sides is parallel to an axis. The

NE vertex of the parallelogram is the point

f(1, 1) =

[
a11 + a12

a21 + a22

]

Let R denote the rectangle defined by that NE vertex and the origin, (0, 0). Let’s also let R denote

the area of the rectangle: the length of its base is a11 + a12 and its height is a22 + a21 so its area is

R = (a11 + a12)(a21 + a22) = a11a22 + a12a21 + a11a21 + a12a21.
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Now note that the rectangle R is made up of a bunch of pieces: the parallelogram f(S), which is

denoted by P in Figure D-3, and the four triangles T1, T2, T3, and T4. Using the notation P and

T1, T2, T3, T4 for the areas of the figures as well, we have

R = P + T1 + T2 + T3 + T4.

Note that the areas T1 and T2 are the same, and

T1 = 1
2(a11 + a12)a21 = 1

2a11a21 + 1
2a12a21, so T1 + T2 = a11a21 + a12a21.

Similarly, T3 and T4 are the same, and

T3 = 1
2(a21 + a22)a12 = 1

2a12a21 + 1
2a12a22, so T3 + T4 = a12a21 + a12a22.

Combining the equations for R, T1 + T2, and T3 + T4, we have

P = R− (T1 + T2 + T3 + T4)

= a11a22 + a12a21 + a11a21 + a12a21

− a12a21 − a11a21 − a12a22 − a12a21
= a11a22 − a12a21
= |A|.

The area of the parallelogram P — the image f(S) of the unit square — is again |A|. The linear

function f(x) = Ax has multiplied the area of the square by |A|.

Figure D-3

Let’s look at an instructive numerical example. Let

A =

[
1 2

2 1

]
,

so we have |A| = −3. The diagram for f(x) = Ax is Figure D-4.
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Using the same geometric method as before, we have P = 3 as the area of the parallelogram, and

|A| = −3. So now |A| is the negative of the change in area induced by the function f(x) = Ax. But

note that this diagram is slightly different than Figure D-3: the relative positions of f(1, 0) and

f(0, 1) are reversed, both from their positions in Figure D-3 and also from the relative positions of

(1, 0) and (0, 1) in the unit square S. This reflects the fact that the sign of |A| indicates whether A

preserves orientations or reverses them: if |A| is negative then the transformation f(x) = Ax reverses

the orientation of the unit square, and of any other set in R2. The magnitude (absolute value) of

|A| indicates how much the area of a set in Rn is increased by the transformation f(x) = Ax.

Figure D-4

What if |A| = 0? This tells us that f(x) = Ax reduces the area of the unit square to zero. But of

course we already knew that: if |A| = 0 that means that A is singular, and that f(S) — in fact,

f(R2) — lies in a proper subspace of R2, a one-dimensional line, which has zero area.

The relationship we’ve developed here between the linear transformation associated with a matrix

A and the determinant of A is completely general: you can check it out with 2 × 2 matrices that

include some negative elements, and you can check it out with examples in R3 for 3 × 3 matrices,

where |A| tells us the change in volume induced by the linear transformation f(x) = Ax.
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Addition of Sets

The sum of sets is an important concept in economics. For example, if a firm has a production

process by which it can achieve any input-output n-tuple in the set X1 ⊆ Rn and also another

process by which it can achieve any n-tuple in X2 ⊆ Rn, then we might assume that altogether

it could achieve any vector z = x1 + x2 such that x1 ∈ X1 and x2 ∈ X2 (if operating one of the

processes imposes no external effects on the other process). Or if there are m firms and Firm i can

achieve any input-output plan xi ∈ Xi ⊆ Rn (i = 1, . . . ,m), then we might expect the economy to

be able to achieve, in the aggregate, any input-output vector z ∈ Rn that’s the sum x1 + · · ·+xm of

vectors xi that each lie in the respective sets Xi (if a firm’s production imposes no external effects

on the other firms’ production possibilities). This motivates the following definition:

Definition:� Let X1 and X2 be subsets of a vector space V . The sum X1+X2 is defined as follows:

X1 +X2 = {x1 + x2 | x1 ∈ X1 & x2 ∈ X2}.

For sets X1, . . . , Xm ⊆ V we define X1 + · · ·+Xm, or
∑m

i=1Xi, similarly:

X1 + · · ·+Xm = {x1 + · · ·+ xm | xi ∈ Xi, i = 1, . . . ,m}.

For intuition, it’s helpful to note that we can write the definition equivalently as

X1 +X2 = {z ∈ V | ∃x1 ∈ X1 & x2 ∈ X2 such that x1 + x2 = z}.

If one of the sets is a singleton — for example, A = {x} — we typically write x + B instead of

{x}+B or A+B.

Examples:

(1) 0 +A = A for any set A.

(2) A = {x ∈ R2 | x21 + x22 5 1}, B = {(2, 2)}. See Figure 1.

(3) A = {x ∈ R2 | x21 + x22 5 1}, B = {(2, 2), (2, 1)}. See Figure 2.

(4) A = {x ∈ R2 | 1 5 x1 5 2, 1 5 x2 5 3}, B = {x ∈ R2 | (x1 − 4)2 + (x2 − 3)2 5 1}.

(5) Suppose one firm’s production possibilities are described by the production function fA and the

associated inequality y 5 fA(x) = 1
2x, where x is the amount of input used and y is the resulting

amount of output, and the inequality reflects the fact that the firm could produce inefficiently,

producing less output than the amount it could produce with the input amount x. The set of possible

input-output combinations (vectors) for this firm would be A = {(x, y) ∈ R2
+ | y 5 1

2x}. Suppose

a second firm’s production possibilities are described by the production function y 5 fB(x) =
√
x

with the inequality interpreted the same way. This firm’s set of possible input-output combinations

is B = {(x, y) ∈ R2
+ | y 5

√
x}. Altogether, the aggregate input-output combinations (x, y) that

are possible for the two firms are the ones in the set A+B (again, assuming no externalities from

one firm’s production on the other firm’s possibilities). See Figure 3.
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Figure 1 Figure 2

(6) Generally, we don’t want to say ahead of time which goods are inputs and which are outputs.

Which ones are which will depend on the firm, for example: a particular good might be an output

for one firm and an input for another. So rather than doing things the way we did in (5), where

effectively we specified that one of the goods is an input (the one measured by x) and the other

is an output (measured by y), we instead say that if xk > 0 for good k in an input-output plan

(x1, x2) ∈ R2, then that’s the amount of good k produced in the plan (x1, x2); and if xk < 0, then

that’s (the negative of) the amount of good k used as input in the plan (x1, x2). Following this

convention, the exact same economic situation described in (5) would be described by A = {x ∈
R2 | x1 5 0, 0 5 x2 5 1

2(−x1)} and B = {x ∈ R2 | x1 5 0, 0 5 x2 5
√
−x1 }. See Figure 4. (Note

that in this example both firms are using the same good as input to produce the same good as

output. That’s not so in the next example.)

(7) One firm’s production possibilities set is A = {x ∈ R2 | x1 5 0, 0 5 x2 5 3
2(−x1)} and the

other firm’s is B = {x ∈ R2 | x2 5 0, 0 5 x1 5 1
3(−x2)}. See Figure 5. Note that A + B includes

the entire negative quadrant. For example, the plan xA = (−4, 6) is in A and the plan xB = (3,−9)

is in B, so the aggregate plan x = xA + xB = (−1,−3) is in A + B. Suppose the economy has

an endowment x̊ = (4, 9) of the two goods and allocates the endowment to the two firms so as to

have Firm A do xA and Firm B do xB. Now the economy would have x̊ + (−1,−3) = (3, 6) —

i.e., less of both goods than it started with. That would be an especially bad way to allocate the

endowment to production. Suppose you were the economy’s sole consumer (Robinson Crusoe? ...

or Tom Hanks?) and these two production processes were available to you. How would you allocate

the endowment x̊ = (4, 9)?

Exercise: Draw a diagram for Example 4, depicting the sets A,B, and A+B.

Sum-of-Sets Maximization Theorem:� Let X1, X2, . . . , Xm be subsets of a vector space V , and

for each i = 1, . . . ,m let xi ∈ Xi. Let x =
∑m

i=1 xi, let X =
∑m

i=1Xi, and let f : V → R be a linear

function. Then x maximizes f on X if and only if, for each i = 1, . . . ,m, xi maximizes f on Xi.

Proof: Exercise.
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Remark: In the vector space Rn, real-valued linear functions have the form f(x) = p · x, so the

theorem says that x maximizes p · x on X if and only if, for each i = 1, . . . ,m, xi maximizes p · x
on Xi. So if p is a list of prices, then the theorem says that the “aggregate” vector x =

∑m
i=1 xi

maximizes value on X if and only if each of the vectors xi maximizes value on Xi. For example,

the aggregate production plan x maximizes value (revenue, or profit) on the set X of aggregate

plans if and only if each xi maximizes value on the respective sets Xi. Because of this application

of the theorem, it’s often referred to as a “disaggregation” or “decentralization” theorem: it says

that the decision about x can be decentralized, or disaggregated, into separate decisions about the

xi vectors without compromising the objective of choosing a value-maximizing x. Of course, this

requires that f — i.e., value — be a linear function, and (b) that there are no external effects, in

which the choice of some xi affects some other set Xj of possible choices.

Exercise: Provide a counterexample to show that linearity of the function f is required in the

theorem.
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