Second-Orden Conditions and Quadratic Forms content titare are Constraints

Recall that at a Point $\bar{x} \in \mathbb{R}^{n} \omega \in$ APPROximate THE CHANGE IN THE VALUE \&F A FUNCTION $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ THAT RESULTS FROM A CHANGE ("DISPACEMENT") $\Delta x \in \mathbb{R}^{n}$ by a Taylor polynomial. Using Just THE FIrst-degree (linear) Taylor polynomial, WE HAVE

$$
\left.\Delta f \approx \nabla f(\bar{x}) \cdot \Delta x=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\bar{x}) \Delta x_{i}\right)
$$

AND THIS MUST BE ZERO For ALL $\Delta x \in \mathbb{R}^{n}$ if $\vec{x} \bar{x}$ is ${ }^{A}$ maximizes or minimizes f, ie, $\nabla f(\bar{x})=0$. CRIT, poi

We use the second-degree Taylor Polynomial AS OUR APPROXIMATION IF WE WANT TO DETERMINE whether a critical point \vec{x} is a local maximum or minimum:

$$
\begin{aligned}
\Delta f & \approx \nabla f \cdot \Delta x+\frac{1}{2} \Delta x \Delta^{2} f \Delta x \\
& =\frac{1}{2} \Delta x D f^{2} \Delta x, \sin c \in \nabla f=0 \text { Ar } \bar{x} .
\end{aligned}
$$

FOR X TO PE A LOCAL MAXIMUM THE QUADRATIC FORM $\Delta x^{\top} D^{2} f \Delta x$ HAS TO BE NEGATIVE DEFINITE (THE SUFFICIENT CONDITION, WITH $\nabla f=0$) OR NEGATIVE SRMIDEFINITE (THE NECESSARY CONDITIoN), AND SIMILARLy FOR POSITIVE TAEFINITE/JEMIDEFIN ITE IF \bar{x} is TO BE A LOCAL MINIMUM of f.

In order that \bar{x} be a maximum ar minimum of f SUBJECT TO A CONSTRAINT. $G(x)=0$, wE NEED TO HAVE $\nabla f-\lambda \nabla G=0$ (ie. $\nabla f=\lambda \nabla G$)
AT \bar{x} for some λ, and THE QUADRATIC FORM $\triangle X D f^{2} \Delta x$ MUST DE POSITIVE AR NEGATIVE DERINITE/SEMIDEFINITE SUBSET TO THE CONSTRAINT $G(x)=G(\bar{x})$ - i.e, SUBTECT TO THE LINEAR APPROXIMATION

$$
\Delta G \approx \nabla G \cdot \Delta x=0=\sum_{i=1}^{\infty} \frac{\partial G}{\partial x_{i}} \Delta x_{i}=0 .
$$

The quadratic form $\Delta \times D f^{2} \Delta \times$ DOESN'T NEED TO BE ZERO FOR ALL $\Delta x \neq 0 \in \mathbb{R}^{n}$, IT ONLY NERDS TO $D E$ ZERO FOR THOSE $\triangle X$ THAT SATISFY THE LINEAR CONSTRAINT $\nabla G \cdot \Delta x=0$.

"LINEARIzed Constraint"
The Constraints
butane $G(x)=\sigma(x)$,
$\Delta G \approx 0$, Because $\nabla G-\Delta x=0$ ON TOUSLING
ing, $\Delta G=0$ exactly

SO WE WANT TO DETERMINE CONDITIONS UNDER WHICH A QUADRATIC FORM WILL DE POSITIVE COR NEGATIVE DEFINITE SUBJECT TO A LINEAR CONSTRAINT - OR TO SEVERAL LINEAR CONSTRAINTS, IF WE LUPNT TO know About optimization subject to multiple constraints.

Quadratic Forms
subjEct to linear constraints

A central toul for working with second-order (CURVATURE) CONDITIONS WHEN THERE ARE CONSTRAINTS IS BORDERED MATRICES AND THEIR Determinants. Let's Start off by Defining Borderved matrices ans (for the 2×2 case with A Single constraint) EvAluating titer DETERMINANTS.

ExAMPLE:
Let A be $A \times 2$ matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ AND LES $b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$. I IN GENERAL, WE WILL HAVE $(m<n)$ AN $n \times n$ MATRIX A AND m-TUPVES (OR ZSAnxl MATRICES) $b^{i} \in \mathbb{R}^{n}$.] THE ASSOCIATED
BORDERED MATRIX is

$$
\mathbb{B}=\left[\begin{array}{lll}
0 & b_{1} & b_{2} \\
b_{1} & a_{11} & a_{12} \\
b_{2} & a_{21} & a_{22}
\end{array}\right] \text { wHICH wE COVLD wRITE AS }\left[\begin{array}{c:c}
0 & b \\
\hdashline b & \hat{A}
\end{array}\right] .
$$

Its Determinant is

$$
|B|=\left|\begin{array}{ccc}
0 & b_{1} & b_{2} \\
b_{1} & a_{11} & a_{12} \\
b_{2} & a_{21} & a_{22}
\end{array}\right|=a_{12} b_{1} b_{2}+a_{21} b_{1} b_{2}-a_{11} b_{2} b_{2}-a_{22} b_{1} b_{1}
$$

We use these concepts mostly with symmetric matrices A, where le would have

$$
|B|=2 a_{12} b_{1} b_{2}-a_{11} b_{2}^{2}-a_{22} b_{1}^{2}
$$

Note that |IBI is the Same if we Rut the border at the right and bottom: *

$$
|\mathbb{B}|=\left|\begin{array}{cc:c}
a_{11} & a_{12} & b_{1} \\
a_{21} & e_{22} & b_{2} \\
\hdashline b_{1} & b_{2} & 0
\end{array}\right|
$$

In the general m-constraint, n-variable CASE, WE HAVE

UE're GOINE To Focus on THE maI (ONE Constrains) case.

* Both ways of doing it are common - border ON THE LIFT AND TOP, ANS BORDER ON THE rIGHT ANA BOTTOM. In SUME IST-yEAR TENTBCOKS: Les 2 Top: Jehle re Reny; Simon \& plume; de la fuentes. Right Bottom: Mas lonely, Whinstor, and GREEn; Varian.

EXAMPLE 16.6 NS SB:
THis is an Example of a quadratic form That's INDEFINITE ON THE ENTIRE SPACE (\mathbb{R}^{2} IN TH IS THROUGH CASE), BUT IS POSITIVE DEFINITE OR NEGATIVE DEFINITE ON EVERY LINE KIN R^{2} EXCEPT TWO (ON EAEH OF luHICH If's identically zero).

$$
Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}=x^{\top} A x \text { for } A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

$A_{\text {IS INDEFINITE }}=\exists x \in \mathbb{R}^{2}: x^{\top} A x>0$
and $\exists x \in \mathbb{R}: x^{\top} A x<0$.
In Particular: - cilice
If $x_{2}=a x_{1}^{2}$, THEN $x^{5} A x=x_{1}^{2}-a^{2} x_{1}^{2}=\left(1-a^{2}\right) x_{1}^{2}$
So $x^{\top} A x>0 ; \forall x$ s.t. $x_{2}=a x_{1}$ (flak (Except $\left.x=(0,0)\right)$
And $x^{\top} A x<0$, $\forall x$ s.t. $x_{2}=a x_{1}$ |f $|a|>1$ (except $x=(0,0)$).
AND $x^{\top} A x=0, \forall x$ st. $x_{2}=a x_{1}$ if $|a|=1$.

Lex's SEE WHAT HAPPENS FOR AN ARBITRARY QUAARATIC FORM in $\mathbb{R}^{2}, Q\left(x_{1}, x_{2}\right)=x^{\top} A x$, if WE RESTRICT OURSELVES TO A LINE

$$
b_{1} x_{1}+b_{2} x_{2}=0, \quad \text { ie. } \quad b-x=0
$$

AT LEAST ONE of THE COEFFI eVENTS b_{1}, b_{2} MUST BE NON-ZERO; WLOG LET'S SAy $b_{2} \neq 0$. THEN LE CAN WRITE

$$
x_{2}=-\frac{b_{1}}{b_{2}} x_{1}
$$

AND SUBSTITUTE THIS INTO TIE QUADRATIC FORM:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =x^{\top} A x=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{21} x_{2} x_{1}+a_{22} x_{2}^{2} \\
& =a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \text {, BEAUSEA15 } \\
& =a_{11} x_{1}^{2}+2 a_{12} x_{1}\left(-\frac{b_{1}}{b_{2}} x_{1}\right)+a_{22}\left(-\frac{b_{1}}{b_{2}} x_{1}\right)^{2} \\
& =a_{11} x_{1}^{2}-2 \frac{b_{1}}{b_{2}} e_{12} x_{1}^{2}+\frac{b_{1}^{2}}{b_{2}^{2}} a_{22} x_{1}^{2} \\
& =\frac{1}{b_{2}^{2}} x_{1}^{2}\left[a_{11} b_{2}^{2}+a_{22} b_{1}^{2}-2 a_{12} b_{1} b_{2}\right] . \\
& =\frac{1}{b_{2}^{2}} x_{1}^{2}(-1)|\mathbb{B}|, \text { chan } \mathbb{B} 15 \text { THE }
\end{aligned}
$$

symметд_

$$
\text { BORDERED MATRIX }\left[\left.\frac{0}{\frac{b}{b}} \right\rvert\, \frac{b}{A}\right]
$$

委 $\left.\right|_{F} b_{2}=0$ WE MUST HAVE $b_{1} \neq 0$, IN WHICH EASE

$$
x^{\top} A x=\frac{1}{b_{1}^{2}} x_{2}^{2}(-1)|B|
$$

For a 2×2 matrix A and one linear CONSTRAINT, UE'VE PROVED THE FLOWING THEDREM:

THEOREM: ON THE LINE $b_{1} x_{1}+b_{2} x_{2}=0$ in \mathbb{R}^{2} THE quADRATIC FORM $x^{\top} A x 15$

POSITIVE DEFINITE IF AND ONLY IE $|B|<0$, NEGATIVE DEFINITE IF AND ONLY IF $|B|>0$.

In order to gengralizethis result to on variables and one constraint, or to invariables and on constraints ($m<n$), We need to work with tate principal minors of THE MADRIX B, AS WE DID WITT THE MINORS of A UHEN WE STUDIED QUADRATIC FORMS THAT WEREN'T CONSTRAINED.

As before, weill voe tie notation B_{k} For PRINCIPAL SUBMATRICES of ORDER k (i.e, with b rows and columns). Therefore ThE Largest principal submatrix af B — i.e., BITSELF \rightarrow S \mathbb{B}_{m+n}, BECAUSE of THEM maN BORDERS. PRINEIPAL MINORS OF B ARE THE DETERMINANTS OF TIE PRINCIPAL SUBMATRICES.

As in the unconstrained case, Wére going TO BE USING THE LEADING PRINCIPAL MINORS OF IB. I'vE FOUND THAS FOR BORDERED Matrices IT's helpful to have another, alternative notation for the leading principal Minos:

Notation: For a bordered matrix

$$
\mathbb{B}=\left[\begin{array}{l:l}
0 & B \\
B^{T} & A
\end{array}\right], \text { witane } A \text { is } n \times n \times 1
$$

LET B^{r} DENOTE THE PRINCIPAL SUBMATRIX in Which the LeAding (i.e., "NOTAHWEST") r ROWS AND COLUMNS OF A ARE RETAINED, "retained" ALONG WITH THE FIRST r COLUMNS OF B,象 THE FIRST Y ROWS OF B^{T}, AND THE ENTIRE $m \times m$ mimi TONOTED BY O ABOVE. THUS, ONLY THE $n-r$ RIGHTMOST COLUMNS AND THE n-r BOTTOM ROWS OF B ARE DELETED. Note that \bar{B}^{r} has $m+r$ rows and columns, SO ITS THE LEADING PRINCIPAL GUBMATRIX of B of order $k=m+r$. (As always, A minor IS THE DETERMINANT \&FA SUBMATR x.)
The 16.4
THEOREM: LETA bE AN XxV SymmGRIC MATRIX
AND LET BBE AN maN mATRIX. On THE SUBSPACE $C=\left\{x \in \mathbb{R}^{n} \mid B x=0\right\}$, THE QUADRATIC FORM $x^{r} A x$ is (a) POSITIVE DEFIN, TE $\left|F(-1)^{m}\right| \mathbb{B}^{r} \mid>0$ For $r=m+1, \ldots, n$;
(b) NEGATIVE DEFINITR IF $(-1)^{r}\left|B^{r}\right|>0$ for $r=m+1, \ldots, n$.

CSHOWLD BE IP AND ONLY IF
SO WE CONSIDER ONLY THE LEADING PRINCIPAL MINORS Of B of order $k=2 m+1, \ldots$, -ie, THTOSE of orderlargar Tran 2 m .

For example:

FOR EXAMPLE, IF $m=1$ And $n=4$:

$$
\begin{aligned}
& \left.\begin{array}{l}
r=m+1=2=n-2 \\
k=2 m+1=3
\end{array}\right\} \quad\left|\mathbb{B}^{2}\right|=\left|\begin{array}{lll}
0 & b_{1} & b_{2} \\
b_{1} & a_{11} & a_{12} \\
b_{2} & a_{21} & a_{22}
\end{array}\right|<0 \text { POS.DEF. }(-1)^{2}=1 \\
& \left.\begin{array}{l}
r=m+2=3=n-1 \\
k=2 m+2=4
\end{array}\right\} \quad\left|B^{3}\right|=\left|\begin{array}{llll}
0 & b_{1} & b_{2} & b_{3} \\
b_{1} & a_{1}, & a_{12} & a_{13} \\
b_{2} & a_{21} & a_{22} & a_{23} \\
b_{3} & a_{33}, a_{32} & a_{33}
\end{array}\right|<0 \text { POS. DEF. } f^{2}
\end{aligned}
$$

ExAMPLE: $m=2, n=4$

The Conditions for A to be pos.daf./Nel def. SUBJECT TO $B x=0$ INCLUDE THANT THESE TWO DETERMINANTS: $r=o n+1, \ldots, r$

$$
\text { ie., } r=3,4 \text {. }
$$

BEMIDEFINITENASSE.
THE FOLLOWING THEOREM GIVES CONDITIONS FOR $\times A x$ TO BE POSITIVE OR NEGATIVE SEMIDEFIN.TE SUBTET TO CONSTROINT. THE REMATION of THESE CONDITIONS TO THE CONDITIONS WE'VE JUST DEVELOPED FOR $X A x$ TO BE POSITIVE OR NEGATIVE DEFINITE SUBJECT TO CONSTRAINT IS PARALLEL TO THE RELATe, ON BESUREN THE DEFIN IDES AND SEMIDEFINITENESS CONDI TIONSIN THE UNCONSTIZAINED CASE.

Ihegram: ThE quadratic form $x A x$ is Positive or NEGATIVE ZEMIDEFINITE ON TIE $\operatorname{ser}\left\{x \in \mathbb{R}^{n} \mid B x=0\right\}$ IF AND ONLY IF THE CONDITIONS (a) AND (b) ARE Tin the presenting CHANGED AS FOLLOWS: THEOREM
(i) ALL INEGUALITIES ARE CHANGER TO WEAK I NERUAUTIES;
(ii) THE CONDIJIONS ARE EXPANDED TO INELUDE ALL. BORDER-PRESERVING PRINCIPAL MINORS FOR $r=m+1, \ldots, n \rightarrow i n$, TO iNCLUDE ALL PERMUTATIONS of The rows and Counts of A.

In other lolords, tuft as in this un constrained ease, UE EAN ENSURG PRAFINITENESS (i.e, WE HPNE SUFFICIENCY) WITH INEQUALITIES INVOLVING JUST THE LEADING PRINCIPAL MINORS (TIES BORDER-PIUESERUING ONES, HARE), PUT FOR GEMIPEGNITENESS ALL THE APPROPRIATE-ORDER RRINEIPRL MINORS MUST WVASATISFY THE INEQUALITIES. ALL MINORS ARE NEEDED BECAUSE THEE INEGUALI TIES ARE EHANGR FROM STRICT TO WEAK.

Optimization with Constraints

We can now add second-order conditions to our first-order conditions for a local maximum or minimum of a function, subject to constraints that are equations.

Theorem: Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $G^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(i=1, \ldots, m)$ are C^{2}-functions; let $\overline{\mathbf{x}} \in \mathbb{R}^{n}$ be a point at which $\nabla f(\overline{\mathbf{x}}) \neq \mathbf{0}$, and assume that

$$
G^{i}(\overline{\mathbf{x}})=c_{i}(i=1, \ldots, m) \text { and } \nabla f(\overline{\mathbf{x}})=\lambda_{1} \nabla G^{1}(\overline{\mathbf{x}})+\cdots+\lambda_{m} \nabla G^{m}(\overline{\mathbf{x}})
$$

for some nonzero Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{m}$ - i.e., the first-order conditions for a constrained extremum of f are satisfied at $\overline{\mathbf{x}}$. Then the second-order conditions necessary or sufficient for $\overline{\mathbf{x}} \in \mathbb{R}^{n}$ to be a local maximum or a local minimum point of f, subject to the constraints $G^{i}(\mathbf{x})=c_{i}(i=1, \ldots, m)$, are the corresponding conditions for the quadratic form $\Delta \mathbf{x} H(\overline{\mathbf{x}}) \Delta \mathbf{x}$ to be negative or positive definite or semidefinite subject to the homogeneous linear constraints $\nabla G^{i}(\overline{\mathbf{x}}) \Delta \mathbf{x}=0(i=1, \ldots, m):$

For $\overline{\mathbf{x}}$ to be a local maximum point of f subject to the constraints:
Sufficient: $\Delta \mathbf{x} H(\overline{\mathbf{x}}) \Delta \mathbf{x}$ is negative definite subject to $\nabla G^{i} \Delta \mathbf{x}=0(i=1, \ldots, m)$
Necessary: $\Delta \mathbf{x} H(\overline{\mathbf{x}}) \Delta \mathbf{x}$ is negative semidefinite subject to $\nabla G^{i} \Delta \mathbf{x}=0(i=1, \ldots, m)$
For $\overline{\mathbf{x}}$ to be a local minimum point of f subject to the constraints:
Sufficient: $\Delta \mathbf{x} H(\overline{\mathbf{x}}) \Delta \mathbf{x}$ is positive definite subject to $\nabla G^{i} \Delta \mathbf{x}=0(i=1, \ldots, m)$
Necessary: $\Delta \mathbf{x} H(\overline{\mathbf{x}}) \Delta \mathbf{x}$ is positive semidefinite subject to $\nabla G^{i} \Delta \mathbf{x}=0(i=1, \ldots, m)$,
where $H(\overline{\mathbf{x}})$ is the Hessian matrix $D^{2} f$ evaluated at $\overline{\mathbf{x}}$ and where each ∇G^{i} is evaluated at $\overline{\mathbf{x}}$.

In other words, in the bordered symmetric matrices \mathbb{B}^{r} in the Quadratic Forms Theorems

$$
\text { we replace each } a_{i j} \text { with } \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\overline{\mathbf{x}}) \text { and each } b_{i j} \text { with } \frac{\partial G^{i}}{\partial x_{j}}(\overline{\mathbf{x}}) \text {, }
$$

and then the conditions on the determinants $\left|\mathbb{B}^{r}\right|$ for the quadratic form to be negative or positive definite or semidefinite subject to constraints become the conditions for $\overline{\mathbf{x}}$ to be a maximum or minimum point of f subject to constraints.

