
Nonlinear Programming

and the

Kuhn-Tucker Conditions

We typically begin studying constrained optimization analysis with just a single, binding con-

straint (an equation), and with variables that are otherwise unrestricted. This rules out situations

where there are multiple constraints, where some constraints may be non-binding, and where non-

negativity constraints may be binding (i.e., where some variables may be zero at the optimum).

The Kuhn-Tucker Conditions provide a unified treatment of constrained optimization in which

• there may be any number of constraints;

• constraints may be binding or not binding at the solution;

• boundary solutions (some xi’s = 0) are permitted;

• non-negativity and structural constraints are treated in the same way;

• dual variables (also called Lagrange multipliers) are shadow values (i.e., marginal values).

The Kuhn-Tucker Conditions are simply the first-order conditions for a constrained optimization

problem – a generalization of the first-order conditions we’re familiar with, a generalization that

can handle the situations described above. A special case covered by the Kuhn-Tucker Conditions

is Linear Programming.

The Kuhn-Tucker Conditions

Let f : Rn → R and G : Rn → Rm be continuously differentiable functions, and let b ∈ Rm.

We want to characterize those vectors x̂ ∈ Rn that satisfy

(∗) x̂ is a solution of the problem

(P) Maximize f(x) subject to x = 0 and G(x) 5 b,

i.e., subject to x1, x2, . . . , xn = 0 and to Gi(x) 5 bi for i = 1, . . . ,m.

The Kuhn-Tucker Conditions are the first-order conditions that characterize the vectors x̂ that

satisfy (∗) (when appropriate second-order conditions are satisfied, which we’ll see momentarily):

∃λ1, . . . , λm ∈ R+ such that

(KT1) For j = 1, . . . , n :
∂f

∂xj
5

∑m
i=1 λi

∂Gi

∂xj
, with equality if x̂j > 0 ;

(KT2) For i = 1, . . . ,m : Gi(x̂) 5 bi, with equality if λi > 0 ,

where the partial derivatives are evaluated at x̂.
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The Kuhn-Tucker Conditions given above are in partial derivative form. An equivalent statement

of the conditions is in gradient form:

∃λ ∈ Rm
+ such that

(KT1) ∇f 5
∑m

i=1 λi∇Gi and x̂ · (∇f −
∑m

i=1 λi∇Gi) = 0 ;

(KT2) G(x̂) 5 b and λ · (b−G(x̂)) = 0 ,

where gradients are evaluated at x̂.

The Kuhn-Tucker Theorems

The first theorem below says that the Kuhn-Tucker Conditions are sufficient to guarantee that x̂

satisfies (∗), and the second theorem says that the Kuhn-Tucker Conditions are necessary for x̂ to

satisfy (∗). Taken together, the two theorems are called the Kuhn-Tucker Theorem.

Theorem 1: Assume that each Gi is quasiconvex; that either (a) f is concave or (b) f is

quasiconcave and ∇f 6= 0 at x̂; and that f and each Gi are differentiable. If x̂ satisfies the Kuhn-

Tucker Conditions then x̂ satisfies (∗).
[Briefly, (KT) ⇒ (∗).]

Theorem 2: Assume that f is quasiconcave; that each Gi is quasiconvex and the constraint set

{x ∈ Rn | G(x̂) 5 b} satisfies one of the constraint qualifications (to be described shortly); and

that f and each Gi are differentiable. If x̂ satisfies (∗) then x̂ satisfies the Kuhn-Tucker Conditions.

[Briefly, (∗) ⇒ (KT).]

The next theorem tells us how changes in the values of the bi’s affect the value of the objective

function f . For the nonlinear programming problem defined by f , G, and b, define the value

function v : Rm → R as follows:

∀b ∈ Rm : v(b) is the value of f(x̂) where x̂ satisfies (∗).

Theorem 3: If (∗) and (KT) are both satisfied at x̂, then λi =
∂v

∂bi
for each i.

In other words, λi is the “shadow value” of the ith constraint, the marginal value to the objective

function of relaxing or tightening the constraint by one unit.

Note that second-order (curvature/convexity/concavity) conditions are required in order for the

Kuhn-Tucker (first-order) conditions to be either necessary or sufficient for x̂ to be a solution to

the nonlinear programming problem.
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