
Example: Linear Programming

A linear programming problem is a nonlinear programming problem in which all functions (ob-

jective function and constraint functions) are linear. Here’s a simple linear programming problem:

Suppose a firm produces two products and uses three inputs in the production process. The firm

already has on hand 70 units of input #1, 40 units of input #2, and 90 units of input #3. Produc-

tion of each unit of Product #1 requires two units of input #1 and one unit of each of the other two

inputs; each unit of Product #2 requires three units of input #3 and one unit of each of the other

two inputs. The two products can be sold at unit prices of $40 and $60, respectively. How many

units of each product should the firm produce in order to maximize its profit? (This is equivalent

to maximizing revenue here, since the inputs are already on hand and therefore cost nothing.) In

other words, what’s the best way for the firm to allocate its stock of inputs to production of its

two products?

The firm’s problem is described analytically in the following constrained maximization prob-

lem, which is a linear programming problem. (The Lagrange multipliers σi associated with the

constraints are not part of the LP problem, but it’s useful to specify them here.)

max
(x1,x2)∈R2

+

π(x1, x2) = 40x1 + 60x2

subject to 2x1 + x2 5 70 : σ1 (1)

x1 + x2 5 40 : σ2 (2)

x1 + 3x2 5 90 : σ3 (3)

(LP)

Figure 1 depicts the three constraints; you should add two or three contours of the objective

function. Note that constraints (1) and (2) intersect at the point (30, 10) and that constraints (2)

and (3) intersect at the point (15, 25). Constraints (1) and (3) intersect at the point (24, 22), which

is outside the feasible set (it violates constraint (2)). It’s easy to see that the profit-maximizing

production plan is (x1, x2) = (15, 25), which yields profit of π = (40)(15) + (60)(25) = 2100. (For

example, it’s clear from the geometry that this plan attains the highest objective contour in the

feasible set.)

The first-order marginal conditions for an interior-point solution are

x1 : 40 = 2σ1 + σ2 + σ3

x2 : 60 = σ1 + σ2 + 3σ3

The remaining first-order conditions – the complementary slackness conditions – are

σ1(2x1 + x2 − 70) = 0

σ2(x1 + x2 − 40) = 0

σ3(x1 + 3x2 − 90) = 0
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We’ve suggested above that the plan (15, 25) appears to be the solution of the maximization

problem (LP). Let’s check whether the first-order conditions are satisfied at the point (15, 25).

First note that (15, 25) lies inside the first constraint, so according to the first complementary

slackness condition we must have σ1 = 0. The other two complementary slackness conditions are

clearly satisfied, because (15, 25) satisfies those two constraints exactly (geometrically, the point

lies on the constraints). With σ1 = 0 the two marginal conditions are easy to solve for σ2 and σ3:

σ2 = 30 and σ3 = 10. So all five first-order conditions are satisfied at (15, 25).

It’s useful to notice an important consequence of the linearity of the objective function: the

marginal conditions are independent of x1 and x2. The derivatives of a linear function are constant,

independent of the variables’ values; they’re simply the coefficients of the variables. Therefore

the marginal conditions aren’t equations that can be solved to obtain the optimal values of the

variables, unlike the typical situation when the objective function is not linear. In fact, there

are powerful alternative techniques for solving LP problems, such as the Simplex Method, that

specifically exploit the problems’ complete linearity. We will not address those solution techniques

in these notes. The notes focus only on the Lagrange multipliers as shadow values.

Lagrange Multipliers as Shadow Values

Now suppose the firm has thirty more units of input #3, so that constraint (3) is now

x1 + 3x2 5 120.

Constraints (2) and (3) now intersect at the point (0, 40), which is the solution of the revised LP

problem. The firm’s profit will now be π = (40)(0) + (60)(40) = 2400, and we therefore have

∆b3 = 30, ∆π = 300, and
∆π

∆b3
= 10,

where b3 denotes the right-hand-side (RHS) coefficient in constraint (3). Thus, for sufficiently

small marginal changes in the RHS of constraint (3), the resulting effect on the objective value π

is given by σ3. And this tells us that the firm should be willing to pay up to σ3 = $10 per unit to

obtain additional units of input #3, or be willing to sell input #3 for any amount above σ3 = $10

per unit. In other words, the marginal value of input #3 to the firm is given by σ3.

Instead of “relaxing” constraint (3), as we did above, let’s tighten constraint (2): suppose the

firm has only 30 units of input #2, so that constraint (2) is now

x1 + x2 5 30.

2



Constraints (2) and (3) now intersect at the point (0, 30), which is the solution of the revised LP

problem. The firm’s profit will now be π = (40)(0) + (60)(30) = 1800, and we therefore have

∆b2 = −10, ∆π = −300, and
∆π

∆b2
= 30.

Thus, for sufficiently small marginal changes in the RHS of constraint (2), the resulting effect on

the objective value π is given by σ2. This tells us that the firm should be willing to pay up to

σ2 = $30 per unit to obtain additional units of input #2 – or alternatively, the firm should be

willing to sell input #2 for any amount above σ2 = $30 per unit. In other words, the marginal

value of input #2 to the firm is given by σ2.

Finally, note that the marginal value of input #1 is σ1 = 0: constraint (1) is not binding at

the optimal solution, so having a little bit more or a little bit less of input #1 will have no effect

on either the optimal solution or the resulting profit.

Exercise: Determine the optimal solution if the per-unit revenue from Product #2 is $30 instead

of $60, and determine the values of all three Lagrange multipliers.

Figure 1
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