Approximation, Taylor Polynomials, and Derivatives

Derivatives for functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ will be central to much of Econ 501A, 501B, and 520 - and also to most of what you'll do as professional economists. The derivative of a function f is simply a linearization, or linear (or affine) approximation of f. For real functions, $f: \mathbb{R} \rightarrow \mathbb{R}$, this is pretty straightforward, and it's something you already know. So we'll start there, and then generalize to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Suppose, then, that we want to approximate the values of $f(x)=x^{2}$. This is as simple as it gets: all we have to do is multiply x times x and we get $f(x)$ exactly, not merely an approximation. But this example will actually be instructive, as we'll see.

Here's a second example: We wish to evaluate, or approximate, the values of $f(x)=e^{x}$ - let's say we want to approximate e^{x} at $x=1$. So we're actually approximating the value of e. This one is not as obvious as $f(x)=x^{2}$.

Let's first use the simple example of $f(x)=x^{2}$ to develop our ideas and some useful notation. Suppose we want to approximate the value of $f(x)$ for values of x near $\bar{x}=1$, as in Figure 1, because we know that $f(\bar{x})=1$. Let's use \bar{y} to denote $f(\bar{x})$ - i.e., $\bar{y}=f(\bar{x})$. For any $x \in \mathbb{R}$, let's write

$$
\begin{aligned}
\Delta x & =x-\bar{x}, \quad \text { i.e., } x=\bar{x}+\Delta x \\
\Delta y & =y-\bar{y}=f(x)-f(\bar{x})=f(\bar{x}+\Delta x)-f(\bar{x})=F(\Delta x)
\end{aligned}
$$

we're defining F to be $F(\Delta x):=f(\bar{x}+\Delta x)-f(\bar{x})$, so that $\Delta y=F(\Delta x)$. Notice that Δy is the exact change in y that takes place, given by $\Delta y=F(\Delta x)$, as in Figure 2, and that the graph of F is the same as the graph of f but with the coordinates shifted.

We want to find a function, say $G(\Delta x)$, that gives a best approximation of $\Delta y=F(\Delta x)$ - we want G to be a best approximation of the exact function $F(\Delta x)$. Equivalently, we want a function $g(x)=f(\bar{x})+G(\Delta x)$ that approximates $f(x)$.

What we want is a simple function G that will be a good approximation of F. So let's say we want to find the best linear function $G(\Delta x)=a \Delta x$ to approximate $F(\Delta x)$. In other words, we want to know what the coefficient a should be in order to make the function $G(\Delta x)=a \Delta x$ the best linear approximation of the nonlinear function $F(\Delta x)$. We even say that this best linear approximating function is the linearization of F near \bar{x}. (Note that $G(0)=0$: at $\Delta x=0, G$ coincides with F.)

Intuition about the diagram in Figure 3 suggests that the best linear approximation to F, near $\bar{x}=1$, is the tangent to the graph of F (which is also the graph of f) at $\bar{x}=1$. If that's the case, then the best coefficient a is the slope of the tangent - a should be the derivative $f^{\prime}(\bar{x})$, the slope of the tangent to the graph of f at \bar{x}. Moreover, if a is any other number, such as \widetilde{a} in Figure 4, then the approximation, at least near \bar{x}, will not be as good.

We make this intuition precise by saying that a best approximation $G(\Delta x)$ is one that satisfies the equation

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}[F(\Delta x)-G(\Delta x)]=0 \tag{1}
\end{equation*}
$$

i.e., as Δx grows small the "error" of the approximation, $F(\Delta x)-G(\Delta x)$ grows small a lot faster. The equation (1) can also be written as

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} \frac{[f(\bar{x}+\Delta x)-f(\bar{x})]-a \Delta x}{\Delta x}=0 \tag{2}
\end{equation*}
$$

or as

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} \frac{[f(\bar{x}+\Delta x)-f(\bar{x})]}{\Delta x}=a . \tag{3}
\end{equation*}
$$

We have to tie up one loose end here: the left-hand side of the equation (3), and also of (1) and (2), is the limit of a function of Δx. We need to know the limit exists, and that it's unique, in order to say that the coefficient a that we're looking for is this limit. In general, of course, the limit might or might not exist. So we say that a best linear approximation to the function F is the function $G(\Delta x)=a \Delta x$, where a is given by (3), if the limit exists. And if it does, we know it's unique, because we know that's a property of the limit of a function.

This motivates the definition of the derivative of a real function:
Definition: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $\bar{x} \in \mathbb{R}$. The derivative of f at \bar{x}, denoted $f^{\prime}(\bar{x})$, is the number $a \in \mathbb{R}$ for which the function $G(\Delta x)=a \Delta x$ is a best linear approximation (BLA) of $F(\Delta x):=f(\bar{x}+\Delta x)-f(\bar{x})-$ i.e.,

$$
\begin{equation*}
f^{\prime}(\bar{x}):=\lim _{\Delta x \rightarrow 0} \frac{[f(\bar{x}+\Delta x)-f(\bar{x})]}{\Delta x} \tag{4}
\end{equation*}
$$

if this limit exists, in which case we say that f is differentiable at \bar{x}.
So far, we've just been reviewing things you already know. Before we move ahead, let's go back to our example of $f(x)=x^{2}$ and see how all this works for that function.

Example 1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$.
Example 2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=e^{x}$.

I haven't typed up the examples yet.

There are two directions in which we need to generalize what we've done so far: (i) we need to study 2nd-order (quadratic) and higher-order approximations, and (ii) we need to do the same things for functions whose domain is \mathbb{R}^{n} as we've done for functions with domain \mathbb{R}. We'll do the higher-order approximations first.

Taylor Polynomials

In the example in the previous section we suggested that in addition to a best linear approximation we could also define a best quadratic approximation to a function f, or to the function $F(\Delta x)=$ $f(\bar{x}+\Delta x)-f(\bar{x})$. Here we're actually going to go farther and define a best approximation of order n, the best n-th degree polynomial approximation of F, for any $n \in \mathbb{N}$. As we did in the linearapproximation case, where $n=1$, we start with the fact that $F(0)=0-i . e ., f(\bar{x}+\Delta x)=f(\bar{x})$ when $\Delta x=0$. We're looking for the best n-th degree polynomial to approximate F, so we're looking for the best function

$$
\begin{equation*}
G_{n}(\Delta x)=a_{1} \Delta x+a_{2}(\Delta x)^{2}+a_{3}(\Delta x)^{3}+\cdots+a_{n}(\Delta x)^{n} . \tag{5}
\end{equation*}
$$

Let's use the notation $G_{n}^{(k)}, F^{(k)}$, and $f^{(k)}$ to denote the k-th derivatives of the functions G_{n}, F, and f; and note that $F^{(k)}(\Delta x)=f^{(k)}(\bar{x}+\Delta x)$ - in particular, $F^{(k)}(0)=f^{(k)}(\bar{x})$.

By analogy with the case $n=1$ we'll guess that for every n the best approximation of order n satisfies the condition that

$$
\begin{equation*}
G_{n}^{(n)}(\Delta x)=F^{(n)}(\Delta x) \text { at } \Delta x=0, \tag{6}
\end{equation*}
$$

- i.e., not only does the value of G equal the value of F at $\Delta x=0$, but the first derivative (the slope) of the linear approximation $G_{1}(\cdot)$ has the same value as F^{\prime} at $\Delta x=0$ (i.e., at \bar{x}); the second derivative (the curvature) of $G_{2}(\cdot)$ has the same value as $F^{\prime \prime}(\cdot)$ at $\Delta x=0$; and so on, with $G_{n}^{(n)}(0)=F^{(n)}(0)$ for every n.

Combining (5) and (6) for each n, we have

$$
\begin{equation*}
a_{1}=f^{\prime}(\bar{x}), a_{2}=\frac{1}{2} f^{\prime \prime}(\bar{x}), a_{3}=\frac{1}{3}\left(\frac{1}{2}\right) f^{\prime \prime \prime}(\bar{x}), \cdots, a_{k}=\frac{1}{k!} f^{(k)}(\bar{x}), \cdots, a_{n}=\frac{1}{n!} f^{(n)}(\bar{x}) . \tag{7}
\end{equation*}
$$

Exercise: Verify that (7) is correct - i.e., that $a_{k}=\frac{1}{k!} f^{(k)}(\bar{x})$ for each $k=1, \ldots, n$ in the function $G_{n}(\cdot)$ in (5).

The function G_{n} in Equation (5), with the coefficients as in (7), is called the homogeneous n-th degree Taylor polynomial of f, which approximates the increment Δy. The non-homogeneous form of the Taylor polynomial, which approximates the value of f at $x=\bar{x}+\Delta x$, is

$$
\begin{aligned}
P_{n}(x) & =f(\bar{x})+G_{n}(\Delta x) \\
& =f(\bar{x})+f^{\prime}(\bar{x}) \Delta x+\frac{1}{2} f^{\prime \prime}(\bar{x})(\Delta x)^{2}+\frac{1}{6} f^{\prime \prime \prime}(\bar{x})(\Delta x)^{3}+\cdots+\frac{1}{n!} f^{(n)}(\bar{x})(\Delta x)^{n} .
\end{aligned}
$$

We want to approximate $f(x)$
-i.e, APPROXimATE ΔY IF we know $f(x)$.

Figure l

Figure z

Figune 3

Figure 4

