
Approximation, Taylor Polynomials, and Derivatives

Derivatives for functions f : Rn → R will be central to much of Econ 501A, 501B, and 520 — and

also to most of what you’ll do as professional economists. The derivative of a function f is simply a

linearization, or linear (or affine) approximation of f . For real functions, f : R → R, this is pretty

straightforward, and it’s something you already know. So we’ll start there, and then generalize to

functions f : Rn → R.

Suppose, then, that we want to approximate the values of f(x) = x2. This is as simple as it gets:

all we have to do is multiply x times x and we get f(x) exactly, not merely an approximation. But

this example will actually be instructive, as we’ll see.

Here’s a second example: We wish to evaluate, or approximate, the values of f(x) = ex — let’s say

we want to approximate ex at x = 1. So we’re actually approximating the value of e. This one is

not as obvious as f(x) = x2.

Let’s first use the simple example of f(x) = x2 to develop our ideas and some useful notation.

Suppose we want to approximate the value of f(x) for values of x near x = 1, as in Figure 1,

because we know that f(x) = 1. Let’s use y to denote f(x) — i.e., y = f(x). For any x ∈ R, let’s

write

∆x = x− x, i.e., x = x + ∆x;

∆y = y − y = f(x)− f(x) = f(x + ∆x)− f(x) = F (∆x);

we’re defining F to be F (∆x) := f(x + ∆x) − f(x), so that ∆y = F (∆x). Notice that ∆y is the

exact change in y that takes place, given by ∆y = F (∆x), as in Figure 2, and that the graph of F

is the same as the graph of f but with the coordinates shifted.

We want to find a function, say G(∆x), that gives a best approximation of ∆y = F (∆x) — we

want G to be a best approximation of the exact function F (∆x). Equivalently, we want a function

g(x) = f(x) + G(∆x) that approximates f(x).

What we want is a simple function G that will be a good approximation of F . So let’s say we want

to find the best linear function G(∆x) = a∆x to approximate F (∆x). In other words, we want to

know what the coefficient a should be in order to make the function G(∆x) = a∆x the best linear

approximation of the nonlinear function F (∆x). We even say that this best linear approximating

function is the linearization of F near x. (Note that G(0) = 0: at ∆x = 0, G coincides with F .)

Intuition about the diagram in Figure 3 suggests that the best linear approximation to F , near

x = 1, is the tangent to the graph of F (which is also the graph of f) at x = 1. If that’s the case,

then the best coefficient a is the slope of the tangent — a should be the derivative f ′(x), the slope

of the tangent to the graph of f at x. Moreover, if a is any other number, such as ã in Figure 4,

then the approximation, at least near x, will not be as good.



We make this intuition precise by saying that a best approximation G(∆x) is one that satisfies the

equation

lim
∆x→0

1

∆x

[
F (∆x)−G(∆x)

]
= 0, (1)

i.e., as ∆x grows small the “error” of the approximation, F (∆x)−G(∆x) grows small a lot faster.

The equation (1) can also be written as

lim
∆x→0

[
f(x + ∆x)− f(x)

]
− a∆x

∆x
= 0, (2)

or as

lim
∆x→0

[
f(x + ∆x)− f(x)

]
∆x

= a. (3)

We have to tie up one loose end here: the left-hand side of the equation (3), and also of (1) and (2),

is the limit of a function of ∆x. We need to know the limit exists, and that it’s unique, in order to

say that the coefficient a that we’re looking for is this limit. In general, of course, the limit might

or might not exist. So we say that a best linear approximation to the function F is the function

G(∆x) = a∆x, where a is given by (3), if the limit exists. And if it does, we know it’s unique,

because we know that’s a property of the limit of a function.

This motivates the definition of the derivative of a real function:

Definition: Let f : R → R and let x ∈ R. The derivative of f at x, denoted f ′(x), is the

number a ∈ R for which the function G(∆x) = a∆x is a best linear approximation (BLA) of

F (∆x) := f(x + ∆x)− f(x) — i.e.,

f ′(x) := lim
∆x→0

[
f(x + ∆x)− f(x)

]
∆x

(4)

if this limit exists, in which case we say that f is differentiable at x.

So far, we’ve just been reviewing things you already know. Before we move ahead, let’s go back to

our example of f(x) = x2 and see how all this works for that function.

Example 1: Let f : R→ R be the function defined by f(x) = x2.

Example 2: Let f : R→ R be the function defined by f(x) = ex.

I haven’t typed up the examples yet.
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There are two directions in which we need to generalize what we’ve done so far: (i) we need to study

2nd-order (quadratic) and higher-order approximations, and (ii) we need to do the same things for

functions whose domain is Rn as we’ve done for functions with domain R. We’ll do the higher-order

approximations first.

Taylor Polynomials

In the example in the previous section we suggested that in addition to a best linear approximation

we could also define a best quadratic approximation to a function f , or to the function F (∆x) =

f(x+ ∆x)− f(x). Here we’re actually going to go farther and define a best approximation of order

n, the best n-th degree polynomial approximation of F , for any n ∈ N. As we did in the linear-

approximation case, where n = 1, we start with the fact that F (0) = 0 — i.e., f(x + ∆x) = f(x)

when ∆x = 0. We’re looking for the best n-th degree polynomial to approximate F , so we’re looking

for the best function

Gn(∆x) = a1∆x + a2(∆x)2 + a3(∆x)3 + · · ·+ an(∆x)n. (5)

Let’s use the notation G
(k)
n , F (k), and f (k) to denote the k-th derivatives of the functions Gn, F ,

and f ; and note that F (k)(∆x) = f (k)(x + ∆x) — in particular, F (k)(0) = f (k)(x).

By analogy with the case n = 1 we’ll guess that for every n the best approximation of order n

satisfies the condition that

G(n)
n (∆x) = F (n)(∆x) at ∆x = 0, (6)

— i.e., not only does the value of G equal the value of F at ∆x = 0, but the first derivative

(the slope) of the linear approximation G1(·) has the same value as F ′ at ∆x = 0 (i.e., at x); the

second derivative (the curvature) of G2(·) has the same value as F ′′(·) at ∆x = 0; and so on, with

G
(n)
n (0) = F (n)(0) for every n.

Combining (5) and (6) for each n, we have

a1 = f ′(x), a2 =
1

2
f ′′(x), a3 =

1

3
(
1

2
)f ′′′(x), · · · , ak =

1

k!
f (k)(x), · · · , an =

1

n!
f (n)(x). (7)

Exercise: Verify that (7) is correct — i.e., that ak =
1

k!
f (k)(x) for each k = 1, . . . , n in the function

Gn(·) in (5).

The function Gn in Equation (5), with the coefficients as in (7), is called the homogeneous n-th

degree Taylor polynomial of f , which approximates the increment ∆y. The non-homogeneous

form of the Taylor polynomial, which approximates the value of f at x = x + ∆x, is

Pn(x) = f(x) + Gn(∆x)

= f(x) + f ′(x)∆x +
1

2
f ′′(x)(∆x)2 +

1

6
f ′′′(x)(∆x)3 + · · ·+ 1

n!
f (n)(x)(∆x)n.
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