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Arrow-Debreu Equilibrium

The Arrow-Debreu model incorporates time and uncertainty in general
equilibrium theory in a way that preserves the theory’s main conclusions
but at the cost of making the unrealistic assumption that all trading takes
place at one initial moment, before anything other than trade occurs. Time
and uncertainty are included by collapsing the entire future into a fictitious
present. Despite this drawback, the model enriches the theory and its inter-
pretation, for the extreme restriction on trading may be replaced by more
plausible assumptions.

7.1 The Arrow-Debreu Model

The Arrow-Debreu approach requires a model of uncertainty and the pas-
sage of time. Uncertainty is represented by using a set of states, S, called the
states of the world. I usually assume that S is a finite set, though a valid the-
ory exists with an infinite set S. Each state s in S isa complete description
of everything that is relevant to the situation studied. It should be imag-
ined that only one state, s, actually occurs. What people observe are events,
and these are subsets of S. Not all subsets of S are included as events, but
only those that are considered to be observable. It is assumed that if A and
B are events, then AU B, AN B,and S\A ={s € S | s € A} are events as
well. The set of events may or may not include subsets consisting of a single
state. It is assumed that the whole set, S, and the empty set, ¥, are events.
Probabilities are assigned to events by means of a function p, from the set of
events to the unit interval, [0, 1]. If A is an event, p(A) is, roughly speaking,
the proportion of times that A would occur if the circumstances generat-
ing the observation were repeated a great many times. If p(A) =1, then A
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would always occur, and if p(A) =0, A would never occur. It is assumed
that p(S) = 1and that p(A U B) = p(A) + p(B), if A and B are disjoint
events. These two assumptions imply that p(@) = 0. If S is a finite set, then
the probability of an event is the sum of the probabilities of the individual
states in the event, provided these states are themselves events. If there are
infinitely many states, it may not be possible to build up the probabilities of
all events from those of individual states. The following examples illustrate
these notions.

EXAMPLE 7.1 You toss a fair coin twice. The set of states is
S={(H,H),(H, T),(T, H),(T, T)},

where H represents heads and T represents tails. The state (H, T) repre-
sents heads on the first toss and tails on the second. Each state, (x, y), may
be thought of as an event {(x, y)}, where x and y can be either H or T.
The probability of each state is 1/4, so that p((H, H)) = 1/4 and so on.
The set of events is the set of all possible subsets of S. The event of heads
on the second toss is {(H, H), (T, H)}, and the probability of this event is
p((H,H)+ p((T,H)=1/4+1/4=1/2.

EXAMPLE 7.2 A coin is tossed twice by an unknown mechanism, and you
are told the number of times heads comes up. The set of states is as in the
previous example, but the observable events are only the empty set, @, the
whole set, S, and the sets {(T, T)}, {(H, T), (T, H)), and {(H, H)}. It
makes sense to assign probabilities only to these observable sets, since the
mechanism generating the tosses is unknown.

EXAMPLE 7.3 A number is chosen from the interval [0, I] with uniform
probability. The set of states is [0, 1]. Events are what is known as Lebesgue
measurable subsets of [0, 1]. It includes all intervals, such as [a, b}, as well
as many other sets, but does not include all subsets of [0, 1]. The probability
of any single state, {s} is zero, whereas the probability of the interval [a, b]
isb — a,if b > a.Ifb > a, the probability of [a, b] cannot, therefore, be the
sum of the probabilities of the individual states in [a, b}.

In example 7.1, events occur in a temporal sequence; there is a first toss,
and there is a second toss. The set of states is the set of histories of what
occurs. These histories may be described by a tree diagram, as in figure
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(0, {(H, ), (H.T),(T, H), (T, N}

(1, {(H, H), (H, T)}) (L{(T,H), (T, T}
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Figure 7.1 A dated event tree

7.1. The nodes in the figure correspond to what are called dated events. The
dated event (0, {(H, H), (H, T), (T, H), (T, T))) is the situation at time
0 before anything has happened. The dated event (1, {(T, H), (T, T)}) is
the situation at time 1 occurring after tails occurred at time 0. The dated
event (2, {((H, T)}) is the situation at time 2 after heads occurred at time 0
and tails at time 1.

I now describe terminology and notation that permits discussion of gen-
eral dated events.

DEFINITION 7.4 A partition of a set S is a set, 8, of nonempty subsets of
§ that are mutually disjoint and whose union is S. Thatis, AN B = @, for
any distinct members, A and B, of §,and UpesA = S.

DEFINITION 7.5 If F and § are partitions of S, F refines 8 if every A in S
is a union ofsets in F. That is, for every A in §, the sets in F that are subsets
of A form a partition of A.

Partitions can be used to express the revelation of information over time.
Suppose that the information is revealed over periodst =0, 1, .. ., T and
that § is the set of possible states of the world. The amount of information
available at time ¢ is represented by a partition, 8,, of S. If nothing is
forgotten, so that information increases over time, then §, , , refines §,, for
all ¢, The partition 8, is the set of events that occur up to time . Suppose
that such a sequence of partitions, §,, is given, fort =0, 1, ..., T.
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DEFINITION 7.6 The set of dated events, ', equals {(t, A) |0 <t <T, 3
A € 8, for all 1}, where in a pair (7, A) the letter ¢ is the date of occurrence
of the event A.

There are as many dated events for period  as there are events in §,. Since
8, may contain many events, there may be many dated events for period 0.
Imagine that all the agents in an economy observe the same events, and
let the dated event set, ", be as above. Finally, imagine that the same N '
commodities are available in each dated event.

DEFINITION 7.7 A contingent claim is an agreement to deliver or receive
an amount of a specified commodity in a specified dated event.

The set of all vectors of quantities of commodities in dated events is
RN = {x:T x {1,..., N} > R} = {x: ' > RV}, ‘

where I’ x N denotes the Cartesian productofthesetsT"and {1, 2, ..., N}
That is, ' x N ={((t, A),n) | (t,A)eT and n=1,2,..., N}. (The
Cartesian product of sets A and Bis A x B={(a, b) |a € Aand b € B}.)
A typical component of a vector x in RI ¥ is x, 4 ,, where (r, A) is a
dated event in T" and n is one of the N commodities. If S is finite, the sets
and T x N are finite as well.

Imagine that trade in all the contingent claims occurs at a moment,
time —1, just preceding time 0, that trade is made against a single unit of
account, and that no trade occurs after the initial moment when trade in
contingent claims occurs. In periods 0, 1, . .., T, deliveries are made and
taken according to the contingent contracts purchased and sold at time —1.
Trade occurs at time —1 for commodities in all dated events of any given
period ¢, even though only one of those events is actually realized.

Imagine an economy where all trading is in contingent claims. In such
an economy, if you wanted to buy 5 pounds of wild bird food on a certain
winter day (but only if there had been snow on the ground for at least a
week), the purchase would be arranged beforehand on a market for bird
food, at that date and when there had been snow on the ground for at
least a week. An economy where all trades are arranged through forward
contingent trades is said to be Arrow-Debreu or to have complete markets.
To model such an economy, let the input-output possibility set, ¥; of the
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jth firm be a subset of RF*¥, for each j, and for each consumer i, let
the utility function be u;: R} *Y — R and the endowment be ¢; € RV, : i
where RT* is the set of all vectors in RT*¥ with nonnegative components. 4 .
An equilibrium in such a model is termed an Arrow-Debreu equilibrium. il 1l
It is denoted by (x, y, p), where (x,y) is a feasible allocation and pe ' !
]REXN is a price vector. We know from the first welfare theorem 5.2 (in
section 5.1) that if the utility functions are locally nonsatiated, then any
equilibrium allocation is Pareto optimal. The Pareto optimality of Arrow- § |
Debreu equilibria explains economists’ interest in them.

The following example should clarify the meaning of the concept.

pxAMPLE 7.8 There are two periods, 0 and 1, two states in the second
period, a and b, and the events are {a} and {b}. The dated events are .
(0, {a, b)), (1, {a}),and (1, {b}). Let {a, b} = §. There is one firm, one con- 15
sumer, and one commodity in each dated event, so that this is a Robinson b
Crusoe economy. The consumer is endowed with one unit of the good in : i
i period 0 and none in period 1 in either state. That is, the consumer’s initial |
endowment is

| e = (e, 5y €1,a)s €0,b)) = (1, 0, 0),

I where I use (1, @) and (1, b) to stand for (1, {a}) and (1, {b}), respectively. _
1 Each of the two states a and b has probability one-half, the consumer has |
| utility In(x) for consumption of x units of the good in any state, and the | i
consumer’s utility is the sum of the utility from consumption in period 0 i

and the expected utility from consumption in period 1. That is, the con- i

sumer’s utility function is .

1 1 :
u(X(o‘s), X(1,a)* x(l,b)) = ln(.t(o's)) + E ln(x(l,a)) + '2‘ ln(x(l’,,,). i 1

The firm's output is ,/—y(q, s, in dated event (1, ), and —y(,s) in dated Al
event (1, b), where —y(o 5, is the firm’s input of the good in period 0. 1

Since the Arrow-Debreu equilibrium allocation in this example is Pareto !
optimal, it is optimal, so that the equilibrium allocation is the optimal one. ‘
That is, in order to calculate the equilibrium allocation, we must solve the !

problem } | i
|'.
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1 1
max I:]n(x(o.s)) + E In(x(; ) + 5 1n(x(,_,,)):|

X0, $)%(1,a)2X(1, b1 Y(0, 5)
st.  Yo,5) <0
0<xp,5 <1+ y0o,s)

0 < x1,0) < v/~ Yo,s)» and

0=<x1,5) < —Y0,5)-

Solving this problem, we find that x5, = 2, x(; o) = /2, x(1.5) = 3, and

Yo,5) =— % In calculating Arrow-Debreu prices, I normalize them so that
P, s) = 1. A first-order condition for the consumer’s utility-maximization
problem over a budget constraint is

u(x,5)> X(1,a)> X(1,b))

= Ap,s)
dx(, s

where A is the consumer’s marginal utility of unit of account. This equation
implies that

1 7

A=
Xo,5) 4

Another first-order condition for the consumer’s maximization problem is

u(x, ) X(1,a)» X(1,5))

= APq,a)»
ax(l.a) ‘
which implies that
1 1
= = AP(1,a)>
2 x“’a) “
and hence
24/221
Paay = BT
Similarly, the first-order condition
(X, 5)> X(1,a)> ¥(1,6)) _ Ap
= AP (Lb)
Bx(l,,,)
implies that
1 1

= ap(l,b)’ ’

2.X(1,b)
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and hence that
2
Pa,p) = 3

There are two important things to notice about this example. First of
all, the prices for the good in the dated events (1, @) and (1, b) are not
proportional to the events’ probabilities, though the consumer maximizes
the expected utility of consumption in period 2. The probabilities of the
two events are equal, yet p(; ,) = ﬁ < % = p(,p)- Because more of the
good is available in dated event (1, a) than (1, b), the good is cheaper in
event (1, a). The second thing to notice is that the firm does not need to
know the probabilities of the events in order to maximize its profits. It
need only know the Arrow-Debreu prices. The firm’s profit-maximization
problem is

max [P, 5)¥0,5 + P,av/=Yo.5) + Pa.bn(—Yo,s)]

Yo, 520
2 2
= max + — /= + _(_ )] ‘
Y0.520 [y O Y T Yo.9) T 317Y0.9)

The probabilities appear nowhere in this expression. This feature of the
model does not correspond to reality, because executives of actual firms are
preoccupied with trying to predict the future. They cannot, however, buy
their inputs and sell their outputs on markets for contingent claims. If they
could do so, they would, no doubt, care little about the likelihoods of the
various future events.

7.2 Arrow Equilibrium

I now present an idea of Kenneth Arrow (1953) that makes Pareto op-
timality of equilibrium with uncertainty seem somewhat more feasible
than it might otherwise appear. The Arrow-Debreu equilibrium strains our
credulity, for not only does it require that all trading occur at an initial mo-
ment, but people must trade on an enormous number of markets at that
time. Suppose that 8, = {S} and that for every time period ¢, every member
of the set of events, 8,, contains two members of the partition §, ... Suppose
also that there are N goods in each dated event and that ¢ =0, 1,...,T.
Then there are N types of contingent claim for period 0, 2N for period
1, 4N for period 2, and 2'N for period ¢. Since the number of events in
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