Game Forms and Mechanism Design

Recall that a **game** is an *n*-tuple $(S_i, \pi_i)_{i=1}^n$, where

 S_i is i's strategy or action set (i = 1, ..., n),

$$\pi_i: S_1 \times \cdots \times S_n \to \mathbb{R}$$
 is i's payoff function $(i = 1, \dots, n)$.

A **game form** is a way to model the rules of a game, or an institution, independently of the players' utility functions over the game's outcomes. The notion of a game form is an important idea for *mechanism design* (also called *institution design* or *market design*).

Definition: Let X be a set of possible **outcomes**. A **game form** for X consists of

- (1) n action sets S_1, \ldots, S_n , and
- (2) an outcome function $\varphi: S_1 \times \cdots \times S_n \to X$.

Definition: Given an outcomes set X and

- (1) a game form $(S_1, \ldots, S_n; \varphi)$ for X, and
- (2) n utility functions $u_i: X \to \mathbb{R}$ over outcomes (i = 1, ..., n),

the **associated game** or **induced game** is defined by the n action sets S_1, \ldots, S_n and the n payoff functions

$$\widetilde{u}_i(s_1,\ldots,s_n):=u_i(\varphi(s_1,\ldots,s_n)),\ i=1,\ldots,n.$$

In our public goods model, where x is the level at which the public good is provided and y_i is the number of dollars i spends on other goods, an outcome is an (n+1)-tuple $(x, y_1, \ldots, y_n) \in \mathbb{R}^{n+1}_+$, so our outcome set is $X = \mathbb{R}^{n+1}_+$. Assume that the cost of the public good is given by C(x) = cx, so marginal cost is c (for example, c is the price that's charged for each unit of the public good).

Example: The Voluntary Contributions Mechanism (VCM) for a public good.

The **VCM** institution, or game form, is defined by the following action sets and outcome function:

Actions: Each person *i* chooses a contribution m_i in the action set \mathbb{R}_+ . Let $\mathbf{m} = (m_1, \dots, m_n)$. Outcome function:

 $x = \pi(\mathbf{m}) = \frac{1}{c} \sum_{i=1}^{n} m_i$ (i.e., x is whatever quantity the contributions $\sum_{i=1}^{n} m_i$ will buy); $y_i = \mathring{y}_i - t_i$, where $t_i = \tau^i(\mathbf{m}) = m_i$ (i.e., i's "tax" is simply his contribution, m_i).

Thus, the outcome function is $\varphi(\mathbf{m}) = (\pi(\mathbf{m}), \mathring{y}_1 - \tau^1(\mathbf{m}), \dots, \mathring{y}_n - \tau^n(\mathbf{m}))$.

The induced game is given by the utility functions $u^{i}(x, y_{i}), i = 1, ..., n$, so the payoff functions in the induced game are

$$\widetilde{u}^{i}(m_{1},\ldots,m_{n}):=u^{i}(\pi(\mathbf{m}),\,\mathring{y}_{i}-\tau^{i}(\mathbf{m}))=u^{i}(\frac{1}{c}\sum_{j=1}^{n}m_{j},\,\mathring{y}_{i}-m_{i}),\,\,i=1,\ldots,n.$$

The Nash equilibrium of the VCM institution (i.e., the NE of the associated game) is as follows:

The first-order marginal condition that characterizes individual i's choice of m_i is

(FOMC)
$$\frac{\partial \widetilde{u}^i}{\partial m_i} \leq 0 \quad \text{and} \quad \frac{\partial \widetilde{u}^i}{\partial m_i} = 0 \text{ if } m_i > 0.$$

We have

$$\frac{\partial \widetilde{u}^i}{\partial m_i} = \frac{\partial u^i}{\partial x_i} \frac{\partial \pi}{\partial m_i} + \frac{\partial u^i}{\partial y_i} \frac{\partial (-\tau^i)}{\partial m_i} = u_x^i \cdot \frac{1}{c} + u_y^i \cdot (-1) = \frac{1}{c} u_x^i - u_y^i.$$

Therefore

$$\frac{\partial \widetilde{u}^i}{\partial m_i} \leq 0$$
 if and only if $\frac{u_x^i}{u_y^i} \leq c$.

Therefore the FOMC above, for individual i, can be written as

$$\frac{u_x^i}{u_y^i} \le c$$
 and $\frac{u_x^i}{u_y^i} = c$ if $m_i > 0$

i.e.,
$$MRS^i \leq MC$$
 and $MRS^i = MC$ if $m_i > 0$.

Note that this is identical to the *market outcome* we obtained earlier, in which the public good is provided at a level that's less than the Pareto level: those who contribute are only those with the largest MRS^i ; everyone else is a free rider; and *no one* will contribute if everyone has $MRS^i < MC$ when x = 0.

Mechanism Design: The mechanism design problem is to devise an outcome function φ for which the Nash equilibria (or some other specified solution) have one or more desirable properties — for example, an outcome function for which the Nash equilibria are Pareto efficient. For our simple public-goods model, the outcome function φ is the (n+1)-tuple of functions $(\pi, \tau^1, \dots, \tau^n)$, so our mechanism design problem is to devise a provision function π and tax/transfer functions τ^i for each i for which the Nash equilibrium is Pareto efficient, or better yet, is a Lindahl equilibrium allocation.

The first institution/mechanism with Pareto efficient Nash equilibria was devised by Grove & Ledyard. The first mechanism with Lindahl Nash equilibria was devised by Leo Hurwicz.