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Introductory Notes on Public Goods

for Intermediate Microeconomics

Let’s begin with an extremely simple example of a public good. Suppose there are only

two people who live on the shore of Lake Magnavista. Amy likes to water ski and Bev likes

to sunbathe. Both activities are seriously affected by the level of the water in the lake. When

there is a lot of water in the lake, it’s good for water skiing but the water line is so high that

there is no beach for sunbathing. When there is much less water, the sunbathing is good

but the lake is too shallow for water skiing. Therefore Amy prefers that the lake have lots

of water, and Bev prefers that it have much less water. Fortunately, it’s possible to raise or

lower the water level costlessly, by opening a dam at one end of the lake or at the other end.

Unfortunately, it’s not clear at what level the water ought to be set.

In order to have a measure of the amount of water in the lake, let’s use the water’s depth

at a specified location on the lake: let x denote the water’s depth (in feet) at that location.

Amy’s and Bev’s preferences are described by the following utility functions:

uA(x, yA) = yA − (15 − x)2 and uB(x, yB) = yB − 1

2
(6 − x)2,

where x denotes the water level and yA and yB are Amy’s and Bev’s daily consumption of

other goods, measured in dollars. Suppose Amy and Bev each have incomes of $100 per day.

Note that Amy’s and Bev’s marginal rates of substitution are

MRSA = 30 − 2x and MRSB = 6 − x.

Amy’s most-preferred water level is x̂A = 15 and Bev’s most-preferred level is x̂B = 6. Figure

1 depicts their indifference maps. Notice that if the water level is above x̂B, Bev would be

willing to pay (i.e., to give up some of the y-good) to have x reduced, and that Amy would

similarly be willing to pay to reduce x if it’s above her ideal level, x̂A.

What makes this situation different than everything we’ve seen before is that the x variable

can’t be at different levels for different people. It’s not like pizza or beer, where Amy can

consume one quantity and Bev a different quantity. In this case, the water level can be varied,

but it will be the same for both of them. That’s why we haven’t used A and B subscripts on

the x variable: it’s just one variable, not two. The water level in this example is a public

good.



Figure 1

Let’s try to determine which outcomes are Pareto efficient. Let’s start by asking whether a

water level of x = 8 feet is efficient. Figure 2 will be helpful here: it’s a diagram similar to

the Edgeworth Box. The difference is that here in this diagram the “corners” or “origins”

for both consumers are placed on the left edge of the box, so that when x increases (i.e., as

we move toward the right), both persons’ consumption of the x-good is increasing. This is in

contrast to the Edgeworth Box, where as we move toward the right, Person A’s consumption

is increasing and B’s is decreasing, because with “private goods” like pizza or beer, the more

one person gets, the less is available for the other person.

Figure 2

At x = 8, Amy’s and Bev’s MRS’s will be MRSA = 14 and MRSB = −2. Amy would be

willing to pay $14 to increase the water level one foot and Bev would be willing to pay $2 to
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decrease it by one foot — or Bev would be willing to accept a payment of $2 as compensation

for increasing the water level by one foot. Therefore, if we were to increase the water level

by a foot, and if Amy were to compensate Bev by paying her, say, $6, then they would both

be better off. In fact, you can calculate that Amy’s utility will increase from 51 to 58 and

that Bev’s utility will increase from 98 to 1011
2
.

So what about this new water level of x = 9 feet — is it efficient? We have MRSA = 12

and MRSB = −3, so we could increase the water level by another foot, with Amy paying

another $6 to compensate Bev. The $6 payment is less than the $12 Amy would have been

willing to pay, and more than the $3 Bev would have been willing to accept as compensation,

so they’re again both better off from the one-foot increase with $6 compensation. You can

calculate that their utilities will have increased again, to uA = 63 and uB = 104.

Now it’s becoming clear that as long as Amy would be willing to pay more for an increase

than Bev would be willing to accept as compensation, then such a bargain — increasing

the water level, with Amy compensating Bev — will make them both better off. In other

words, the water level is not Pareto efficient so long as MRSA > −MRSB — i.e., so long as

MRSA +MRSB > 0. When MRSA +MRSB > 0 the marginal social value of an increase

in x is positive, so x should be increased. Similarly, we could show that if MRSA+MRSB < 0,

then x should be decreased (because the marginal social value of an increase is negative, so

the marginal social value of a decrease in x is positive).

The Pareto efficient outcomes are therefore the ones that satisfy the Test Condition MRSA+

MRSB = 0. In our example, it’s easy to solve for the efficient water level in the lake:

MRSA + MRSB = (30 − 2x) + (6 − x) = 36 − 3x;

therefore the Test Condition yields

36 − 3x = 0 i.e., x = 12.

The efficient water level is 12 feet, where MRSA = 6 and MRSB = −6.

Now we know the water level that’s Pareto efficient. But what level will actually be chosen?

As usual, that depends on the institutional arrangements that are used for choosing the water

level. For example, the affected parties might vote on the level they want. The outcome of

that institution can be analyzed using game theory, which we won’t do here. Let’s suppose

instead that Bev owns the lake, or at least that she has the right to choose the water level.

What will the water level be? It seems that Bev will choose the level that she likes best,

namely x = 6 feet.
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But we’ve already seen that at such a low water level, Bev would be better off to allow

a higher level if Amy will compensate her appropriately. Indeed, just exactly as in our

discussion earlier in the semester of bargaining between two parties, we would expect them

to arrive at a mutually agreeable bargain in which there are no more gains to be had from

further trade or bargaining — i.e., at a Pareto efficient outcome. In our example this means

that the water level will be 12 feet, with Amy paying Bev some amount as compensation for

the increase from 6 to 12 feet. In Figure 3 they will end up on the vertical line at x = 12, with

Amy paying Bev an amount that leaves their y consumptions between their initial indifference

curves, the ones that pass through the allocation in which x = 6 and yA = yB = 100.

Figure 3

What if instead Amy has the right to choose the water level? At first it seems as if she would

choose the level she likes best, x = 15 feet. But the same argument as in the preceding

paragraph tells us that again we should expect the two women to bargain with one another

to set the water level at x = 12 feet, but this time with Bev paying some compensation to

Amy for setting the water level below what Amy would like the most.

It was the economist Ronald Coase who pointed out that the assignment of legal rights will

affect only who pays compensation, and how much, but will not affect the level of the activity

that affects both parties. He was awarded the Nobel Prize for this idea, which has had a

profound effect on law and, to a lesser extent, legislation in recent decades.

What if the public good is not costless, as the water level was? Then the Pareto Efficiency

Test Condition (PETC) is that the marginal social value of a one-unit increase in the amount

of the public good must be equal to the marginal cost of producing that additional unit —

i.e., that the sum of all the MRS’s must be equal to MC:

(PETC) MRS1 + MRS2 + · · · + MRSn = MC.
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Notice that in our lake example the MC of changing the water level was zero, so this Test

Condition is actually the same as the one we used in the example, just generalized to account

for costly public goods as well as costless ones.

Another example: Suppose Amy and Bev are plagued by mosquitoes, but it’s possible to

control the number of mosquitoes by spraying regularly. However, the mosquito spray can’t

be confined to the property of just one of the women: any spray that’s applied affects the

entire lake shore equally. Suppose Amy’s and Bev’s preferences are described by the same

utility functions as in our water-level example, where x now denotes the number of gallons

that are sprayed each week, and yA and yB still denote the amounts Amy and Bev spend on

other goods. If each gallon of spray were free, our problem would be exactly the same as

before, because we would have MC = 0. But suppose instead that the spray costs $24 per

gallon. Then our Test Condition (PETC) yields the following:

MRSA + MRSB = MC : (30 − 2x) + (6 − x) = 24; i.e., 36 − 3x = 24.

Therefore the Pareto efficient amount of mosquito spray is 4 gallons per week, which equates

the marginal social value to the marginal social cost, $24.

How much will be sprayed if Amy and Bev each choose on the basis of just their own personal

benefits from the spray? Bev won’t choose to spray at all, because even when x = 0 her MRS

is much less than the price of the spray ($6 vs. $24). Amy will choose x = 3 gallons of spray,

which equates her own MRS to the $24 price of the spray. So the amount of spray that’s

chosen will be less than the Pareto efficient amount. Both women would be better off if an

additional gallon were sprayed and Amy were to pay, say, $22 of the cost of the additional

gallon and Bev paid the remaining $2.

A more striking example: Suppose there are 100 homeowners living on the lake shore,

and that each one has MRS = 6 − x, where x is the number of tankfuls that are sprayed.

Suppose that the cost of the mosquito spray is $100 per tankful. Then the Pareto efficient

amount of spray is x = 5 tankfuls:∑
MRSi = MC : 100(6 − x) = 100; i.e., 600 − 100x = 100.

How much will actually be sprayed if each homeowner chooses on the basis of just his own

benefit from the spray? At x = 0 each homeowner has MRS = 6 — i.e., each would be

willing to pay $6 to increase x from x = 0 to x = 1 tankful sprayed. But the cost of such an

increase — $100 — far exceeds each person’s MRS. Therefore no one will choose to spray.

Even though the marginal social benefit is $600 and the marginal cost is only $100, no spray

is forthcoming.
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Public Goods: Pareto Efficiency and Market Outcomes

A Motivating Example: Water Skiing vs. Sunbathing

Read the Introductory Notes for Microeconomics. Note that the Pareto marginal condition

for two persons is shown to be not MRS1 = MRS2 = MC, but MRS1 + MRS2 = MC

instead. And since MC = 0 in the example, we obtained MRS1 +MRS2 = 0.

A Second Motivating Example: Mosquito Spray

The homeowners in a residential neighborhood are plagued by mosquitoes. The number

of mosquitoes can be controlled by spraying. The mosquito spray is a public good because

whatever amount is sprayed, this is the amount that is experienced (for good or bad) by all

the homeowners: it’s not possible to contain the spray so as to affect only the homeowner

who purchases it. Let x denote the number of tankfuls of spray that are sprayed. For each

i ∈ N = {1, . . . , n} let yi denote household i’s dollar expenditure on other goods, and let

ui(x, yi) be household i’s utility function. An allocation is an (n+ 1)-tuple (x, y1, . . . , yn).

Pareto Efficiency:

We first derive the marginal conditions that characterize the Pareto allocations. The

Pareto maximization problem is

max
x,(yi)n1

λ1u
1(x, y1) subject to x, y1, . . . , yn = 0

n∑
i=1

yi + C(x) 5 ẙ, (σ)

ui(x, yi) = ui, i = 2, ..., n. (λi)

(P-Max)

The first-order marginal conditions for an interior solution are

∃ σ = 0 and λ2, ..., λn = 0 such that

λ1u
1
x + λ2u

2
x + . . . λnu

n
x = σC ′(x) and λiu

i
y = σ, i = 1, ..., n. (FOMC)

Combining these first-order equations yields

n∑
i=1

MRSi = MC,

which is the Samuelson Marginal Condition for Pareto efficiency with a public good.



The Market Outcome:

In our mosquito-spray example, assume that there’s a market in which firms provide

mosquito-control spraying service at a price p per tankful of spray. Let’s also assume that

the homeowners are price-takers. In this case that’s not enough to define the individual

homeowner’s decision problem: the amount of spray an individual wishes to purchase will

be affected by how much the other homeowners purchase. What the individual homeowner

cares about is the total amount of spray purchased by everyone, which we’ve denoted by x.

Let ξi denote the amount of spray purchased by individual i; and let X−i denote the total

purchased by everyone else: X−i =
∑

j 6=i ξj. Then x =
∑n

1 ξj = X−i+ ξi. Let’s assume, then,

that each individual i takes both the market price p and the total amount purchased by all

the others, X−i, as given.

The decision problem for each individual i is

(U-max) max
(ξi,yi)∈R2

+

ui(x, yi) = ui(X−i + ξi, yi) subject to pξi + yi 5 ẙi,

or equivalently,

max ui(X−i + ξi, ẙi − pξi) for ξi ∈ [0, ẙi/p].

The first-order marginal condition (assuming that ξi < ẙi/p) is

MRSi 5 p and MRSi = p if ξi > 0.

The diagrams in Figure 1 depict the individual’s decision problem. The total amount everyone

else has purchased is X−i. That’s the smallest level of x individual i can obtain, by choosing

ξi = 0. And it’s the level he will choose unless his MRSi at X−i exceeds p. If his MRSi does

exceed p at X−i, he will choose ξi (and therefore x) up to the level at which his MRSi = p.

Figure 1
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This leads naturally to the following definition of equilibrium:

Definition: Let p be the price at which a public good is provided. A public-good price-

taking Nash equilibrium at price p is an n-tuple (ξ1, . . . , ξn) ∈ Rn
+ that satisfies (U-max)

for each i = 1, . . . , n.

Clearly, if an equilibrium has x > 0, then some individual h ∈ N must satisfy ξh > 0

and therefore MRSh = p. Each i whose MRSi is less than p will not purchase any of the

public good (i.e., ξi = 0 for each such i), but some or all of these individuals’ marginal

rates of substitution — their marginal values for the public good — may nevertheless be well

above zero. Consequently we would have
∑n

1 MRSi > p, and indeed the sum will often be

substantially larger than p.

For the n consumers of the public good, note that the marginal cost to them of an additional

unit of the good is its price p. Thus, to the n consumers, a market equilibrium typically

satisfies the inequality
∑n

1 MRSi > MC — the equilibrium is not Pareto efficient, because

the equilibrium level of x is too low. And if
∑n

1 MRSi is substantially larger than p, then

the equilibrium x may be substantially less than Pareto efficiency would require, as in the

following examples.

Example 1: There are five homeowners: N = {1, 2, 3, 4, 5}. Their utility functions are all

of the form u(x, yi) = yi − 1
2
(αi − x)2, where x denotes the level at which a public good is

provided, and yi denotes the amount of money homeowner i has available to spend on other

goods. The values of their preference parameters αi are

α1 = 30, α2 = 27, α3 = 24, α4 = 21, α5 = 18,

and their MRS functions are therefore

MRS1 = 30−x, MRS2 = 27−x, MRS3 = 24−x, MRS4 = 21−x, MRS5 = 18−x.

The firms that produce the public good all charge a per-unit price of p dollars; p is therefore

the marginal cost to the homeowners for each unit of x. Suppose p = $40. Because the utility

functions are quasilinear, there’s a unique Pareto level of the public good, namely x = 16:

ΣMRSi = 120− 5x and MC = 40, therefore ΣMRSi = MC at x = 16.

And because each i ∈ N has MRSi < p at every x ∈ R+, there is also a unique equilibrium:

ξi = 0 for all i, and therefore x = 0.

None of the public good is purchased, despite the fact that the Pareto level is x = 16 and

despite the fact that when x = 0, the marginal social value of the public good, ΣMRSi, is 120,
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which far exceeds the marginal cost (i.e., the $40 price) of each unit of x. Consumer surplus

at the Pareto provision level, x = 16, is $640, all of which is foregone at the equilibrium.

Example 2: With the same five consumers as in Example 1, suppose p = $20. In this case

the unique Pareto level of x is x = 20. There is again a unique equilibrium: (ξ1, ξ2, ξ3, ξ4, ξ5) =

(10, 0, 0, 0, 0) and therefore x = 10. Note that at the equilibrium outcome, MRS1 = $20 = p

and for all other i, 0 < MRSi < p, as in the middle diagram in Figure 1. In everyday,

nontechnical language, the other four consumers would be said to be “free riding” on Con-

sumer 1, and would be referred to as “free riders:” they’re purchasing none of the public

good while receiving positive benefit from Consumer 1’s purchase. We have ΣMRSi = 70,

which is substantially larger than the $20 price. Consumer surplus at the Pareto provision

level, x = 20, is $1000; consumer surplus at the equilibrium is $750.

Example 3: Suppose the price is p = $20 as in Example 2, but that the preference param-

eters in Examples 1 and 2 are changed to

α1 = α2 = α3 = 30, α4 = 25, α5 = 5,

so that the MRS functions are now

MRS1 = MRS2 = MRS3 = 30− x, MRS4 = 25− x, MRS5 = 5− x.

We still have ΣMRSi = 120 − 5x, so the Pareto level of x is still x = 20, as in Example 2.

But now there are multiple equilibria: the equilibria are all the (ξ1, ξ2, ξ3, ξ4, ξ5) that satisfy

ξ1 + ξ2 + ξ3 = 10 and ξ4 = ξ5 = 0. In each of the equilibria we have MRSi = p = 20 for

i = 1, 2, 3, and we have MRS4 = 15 < p and MRS5 = −5 < p. Note that Consumer 5 is

not a free rider here: her consumer surplus is zero. She receives some surplus on the first five

units of x, which is just offset by the negative consumer surplus she receives from the next

five units. Her decision problem corresponds to the rightmost diagram in Figure 1.

Example 4: In Example 3, change α4 to 28 and α5 to 2. The Pareto level of x and the

equilibria are unchanged, but now MRS4 = 18 and MRS5 = −8 at the equilibria. Now

Consumer 5 “suffers damages” at the equilibrium: her consumer surplus is −$30. She is

worse off than if none of the public good were provided. For example, think of a homeowner

who experiences respiratory difficulties from mosquito spray if it’s provided at a level greater

than x = 2.
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An Alternative Institution:

Suppose the homeowners form a homeowners association (HOA) to deal with their mosquito

problem: the HOA will accept voluntary contributions from the homeowners, and will then

use the total contributions to purchase as much mosquito spray as the contributions will

buy. More formally, each homeowner i ∈ N chooses to contribute a dollar amount ti ∈ R+

to the mosquito fund. The total amount contributed is Σi∈N ti. Then the HOA purchases

x = 1
p
Σi∈N ti tanks of spray, where p is the price per tank.

We’ll assume that each homeowner takes the total of all the others’ contributions as given,

and chooses his own contribution ti to maximize his utility. Let T−i denote the total of the

others’ contributions: T−i = Σj 6=itj. The individual’s maximization problem is

(∗) max
ti∈R+

ui(x, yi), where x =
1

p
(T−i + ti) and yi = ẙ − ti.

We define an equilibrium as follows:

Definition: A voluntary contributions equilibrium for a public good with price p ∈ R++

is an n-tuple (t1, . . . , tn) ∈ Rn
+ in which, for each i ∈ N , ti is a solution of (∗).

The first-order marginal condition for each individual’s maximization problem (∗) is

1

p
uix − uiy 5 0 and

1

p
uix − uiy = 0 if ti > 0,

i.e.,

MRSi 5 p and MRSi = p if ti > 0.

This is the same marginal condition as in the individual-purchases institution we analyzed

above. Therefore a voluntary contributions equilibrium and a price-taking equilibrium are

identical, with the individual actions ti and ξi related by the equations ti = pξi for each i ∈ N .

In Example 1 we have ti = 0 for each i ∈ N , and x = 0. In Example 2 we have t1 = $200

and ti = 0 for i = 2, 3, 4, 5, and x = 10. In Examples 3 and 4 we have t1 + t2 + t3 = $200 and

t4 = t5 = 0, and x = 10.
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Public Goods:  Examples 

 

The classical definition of a public good is one that is non‐excludable and non‐rivalrous. The 

classic example of a public good is a lighthouse.  A lighthouse is:  

Non‐excludable because it’s not possible to exclude some ships from enjoying the benefits of 

the lighthouse (for example, excluding ships that haven’t paid anything toward the cost of the 

lighthouse) while at the same time providing the benefits to other ships; and  

Non‐rivalrous because if the lighthouse’s benefits are already being provided to some ships, it 

costs nothing for additional ships to enjoy the benefits as well.  This is not like a “rivalrous 

good,” where providing a greater amount of the good to someone requires either that more of 

the good be produced or else that less of it be provided to others – i.e., where there is a very 

real opportunity cost of providing more of the good to some people.    

Some other examples of public goods:  

Radio and television:  Today no one who broadcasts a radio or TV program “over the air” 

excludes anyone from receiving the broadcast, and the cost of the broadcast is unaffected by 

the number of people who actually tune in to receive it (it’s non‐rivalrous).  In the early decades 

of broadcasting, exclusion was not technologically possible; but technology to “scramble” and 

de‐scramble TV signals was invented so that broadcasters could charge a fee and exclude non‐

payers.  Scrambling technology has been superseded by cable and satellite transmission, in 

which exclusion is possible.  But while it’s now technologically possible to produce a TV or radio 

signal from which non‐payers are excluded (so that it’s not a public good), it’s important to note 

that because TV and radio signals are non‐rivalrous, they are technologically public goods: it’s 

technologically possible to provide them without exclusion.   

Clean air; pollution abatement:  The quality of the air we breathe in a particular neighborhood 

is both non‐excludable and non‐rivalrous.  Pollution abatement is therefore a public good.   

The examples above, together with our in‐class examples of the water level in a lake and a 

mosquito‐abatement program, make it clear that the essential characteristic of a public good is 

that it’s not possible to vary the level of the good (i.e., its quantity, its quality, etc.) across 

people.  Changing the level for one changes the level for all.  In other words, it’s non‐rivalrous.  

If a non‐rivalrous good is inherently non‐excludable – if exclusion is not possible, as with the 

lake water level or with TV in the old days – then what we have is a public good.  But if 

exclusion is technologically possible for a non‐rivalrous good, as with TV today, then the good is 

potentially a public good, but it may not be manifested as a public good in practice.   

A highway system; a mass‐transit system; a school system:  In each of these examples, 

everyone who has access to the system benefits (or suffers) from the same system.  The 

system’s characteristics – for example, the quality of the teaching in a school, or the time it 

takes the subway to travel from Brooklyn to the Bronx, or the number of potholes in the streets 

– these are the same for all users.  However, in each of these cases it’s at least possible to 



exclude people from access, and therefore to charge a fee or a toll for access. And these public 

goods are also all subject to congestion when too many people use them, so that the quality of 

the good may be affected by adding more users.  Additional examples of public goods that are 

subject to congestion are a bridge, a public swimming pool, and an airport.   

The characteristics of a home:  The size of the TV, the color of the living room, the size of the 

swimming pool and the temperature of the pool’s water, the size of the refrigerator, the speed 

of the internet connection – these are all public goods to the residents of the home.  Whatever 

is chosen for one is chosen for all.   

The thermostat setting in a room:  The temperature in our seminar room, 401KK – or in a 

shared office, or in a home – is the same temperature for all who occupy the room.  We can’t 

make it warm for some and cool for others.   

Police protection; national defense:  National defense can’t be provided at different levels to 

different citizens.  Similarly for the level of police protection in a community, but police 

protection (unlike national defense) is subject to congestion: a larger population requires a 

larger police force to provide the same level of protection.   

Books:  Consider the information in a book.  After the information has been produced (i.e., 

once the book has been written), it needn’t be written again in order for additional people to 

read it.  So in this respect, a book is non‐rivalrous.  But until recently there was still a significant 

cost to making the book available to additional readers:  additional copies of the book had to be 

printed, bound, and delivered, and all these steps required resources (a marginal cost) for each 

additional copy of the book.  So the public‐good character of a book (the non‐rivalrous 

information it contained, i.e., the writing) was outweighed by its private‐good character, the 

marginal cost of producing each additional copy of the physical book.  But this has completely 

changed:  today it’s possible, once a book has been written, to distribute unlimited copies 

electronically at essentially zero marginal cost.  So today a book is a public good – i.e., like a TV 

broadcast, a book is technologically a public good, but to the extent that exclusion is possible, in 

practice the book may or may not be a public good in any particular case.  

Information; “content”:  Everything we said in the preceding paragraph about books is equally 

true for recorded music, movies, newspapers, magazines – for what’s today often called 

“content.”  In the not‐very‐distant past, it was costly to manufacture and distribute additional 

copies of any particular content, such as a CD or videotape or magazine.  But today, once the 

fixed cost of creating the content has been incurred, the marginal cost of making that content 

(information) available to additional people is essentially zero.   

Some decisions by a corporation or a partnership:  Alternative strategies or investments by a 

firm typically have different time‐paths for their costs and returns, and often have different 

state‐contingent outcomes.  If the partners or shareholders have different time preferences or 

different risk preferences, the firm’s decision can’t generally yield outcomes that differ for the 

various owners – the outcomes are necessarily the same for all the owners, so the decision is a 

public good from the perspective of the owners.   



Lindahl Equilibrium

Suppose that five homeowners live on the shore of Lake Magnavista: Amy, Bev, Cat, Dee, and

Eve. In order to deal with such public goods problems as deciding on the water level in the lake

and how to control mosquitoes in the summer, they’ve formed a homeowners’ association (HOA

for short).

Concerning the mosquitoes, the five women’s preferences are all described by utility functions of

the form u(x, yi) = yi− 1
2
(αi−x)2, where x denotes the number of tankfuls of mosquito spray that

are sprayed each week during the summer, and yi denotes the amount of money homeowner i has

available to spend on other goods. The values of their preference parameters αi are

αA = 30, αB = 27, αC = 24, αD = 21, αE = 18,

and their MRS functions are therefore

MRSA = 30− x, MRSB = 27− x, MRSC = 24− x, MRSD = 21− x, MRSE = 18− x.

There are several local firms that will spray to control mosquitoes. The firms all charge the same

price, p = $40 per tankful they spray. This $40 is therefore the marginal cost to the homeowners of

a tankful of bug spray. Because of the homeowners’ quasilinear utility functions, there is a unique

Pareto amount of bug spray for them, namely x = 16 tanks: ΣMRSi = 120− 5x and MC = 40,

so ΣMRSi = MC at x = 16.

If the homeowners each contract separately with bug-spray firms to spray, each taking the others’

purchases as given, then none of them will purchase any spray at all: the $40 cost for each unit

exceeds everyone’s MRS. And as we’ve seen, if the HOA instead creates a fund into which they

all voluntarily contribute, and uses the contributed funds to purchase the mosquito spray, the

same outcome will occur: no contributions will be forthcoming, and therefore no spray will be

purchased.

Now let’s note that the homeowners’ marginal rates of substitution at the Pareto amount of spray

would be

MRSA = 14, MRSB = 11, MRSC = 8, MRSD = 5, MRSE = 2.

Suppose the homeowners decide that instead of each of them purchasing bug spray separately and

each paying $40 per tankful (resulting in no spray at all being purchased), their HOA will instead
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charge each of them only a share of the $40 price: homeowner i will pay the price-share (or per-unit

tax) pi for each unit the HOA purchases, with
∑5

i=1 pi = 40.

Suppose the HOA sets these price-shares in such a way that each person’s share pi is equal to her

marginal value for bug spray — i.e., her MRS — at the Pareto amount x = 16. Then

pA = 14, pB = 11, pC = 8, pD = 5, pE = 2.

Now the HOA asks each homeowner “How much spray in total do you want the HOA to purchase,

knowing you will pay your price-share pi for each tankful that’s sprayed?” If each homeowner

behaves as a price-taker — taking her price-share pi as given — how much spray will she request?

Choosing (x, yi) to maximize her utility subject to the budget constraint pix + yi = ẙi, each

homeowner will choose the x at which MRSi = pi — i.e., each homeowner will request x = 16.

How much money will the HOA have available to pay for the 16 tanks of spray? It will collect

pA + pB + pC + pD + pE = $40 for each tank that’s sprayed — i.e., exactly the marginal cost to

the HOA of the spray. An alternative approach would be for the HOA to draw up an agreement

with one of the firms, say Bug Spray, Inc. (BSI), as follows: BSI will charge different prices pi

to each homeowner and ask each homeowner to report how much spray, in total, she would like

BSI to spray at that price; and BSI is to adjust the personal prices pi until all the homeowners

are in agreement — i.e., until each homeowner requests the same amount of spray. This has

all the earmarks of an equilibrium: personal prices and the amount produced and consumed are

adjusted as long as the participants don’t agree on that amount; and when the participants do

agree, adjustments no longer occur.

This idea is due to the Swedish economist Erik Lindahl, who proposed it in 1919. Here is a

formal definition of Lindahl equilibrium for the one-public-good, one-private-good case. It’s

straightforward to write down the definition for multiple public and private goods as well, but that

requires more notation than I want to introduce here. We assume here that there is one public

good (quantity denoted by x) and one “regular” or private good (with yi denoting the quantity

consumed by i). There are n consumers, with utility functions ui(x, yi). There are m firms; each

firm has a production function fj according to which zj units of input (the private good) are

converted into qj = fj(zj) units of the public good. Each consumer i owns the share θij = 0 of

firm j’s profit, and Σiθij = 1 for each j = 1, . . . ,m. Denote the price of the private good by py.

There are Lindahl prices (also called Lindahl taxes) p1, . . . , pn that the consumers i = 1, . . . , n

are charged for the public good.
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Definition: For an economy as described above, a Lindahl equilibrium is

a price-list (p∗y, p
∗
1, . . . , p

∗
n),

a production allocation (z∗1 , . . . , z
∗
m), and

a consumption allocation (x∗, y∗1, . . . , y
∗
n)

that satisfy the following conditions, where p∗x = Σn
1p

∗
i :

(π-Max) ∀j : z∗j maximizes firm j’s profit, πj(zj) := p∗xfj(zj)− p∗yzj,

(U-Max) ∀i : (x∗, y∗i ) maximizes ui(x, yi) subject to p∗ix+ yi 5 ẙi + Σm
j=1θijπj(z

∗
j ),

(M-Clr-x) x∗ 5 Σm
1 q

∗
j and x∗ = Σm

1 q
∗
j if p∗x > 0, where q∗j = fj(z

∗
j ), j = 1, . . . ,m,

(M-Clr-y) Σn
1y

∗
i + Σm

1 z
∗
j 5 Σn

1 ẙi and Σn
1y

∗
i + Σm

1 z
∗
j = Σn

1 ẙi if p∗y > 0.

Note that this has a certain parallel with the no-externalities Walrasian equilibrium: at both the

Walrasian and Lindahl equilibria, the price that a consumer pays for a good is the same for every

unit she consumes, and (if she is maximizing utility) the price is equal to her marginal rate of

substitution, i.e., her marginal value for the good. But in the Walrasian case everyone pays the

same price, p, while here everyone will typically be paying a different price pi. The Walrasian

equilibrium definition implicitly assumes that the price will adjust if net demands don’t sum to

zero; the Lindahl equilibrium definition implicitly assumes that the price-shares and quantity will

adjust if demands for the public good aren’t all the same.

Samuelson argued, colorfully but informally, that the Lindahl idea is unworkable because it’s

unrealistic to expect people to take their Lindahl prices as given. (See, for example, “The Pure

Theory of Public Expenditure”, Review of Economics and Statistics, 1954.) Arrow, as we will see,

provided a clearer, more formal version of this argument, but he drew a less sweeping conclusion

from it than Samuelson had done.

The Lindahl equilibrium is useful because it provides a benchmark in which, just as in the Wal-

rasian equilibrium, each consumer’s per-unit payment to finance the public good is equal to his

marginal value for the good, and no consumer is worse off at the equilibrium than if he instead just

consumed his initial endowment, and the resulting allocation is Pareto optimal. These properties

have motivated the design of game forms (“institutions”) in which the Nash equilibrium actually

yields Lindahl prices and a Lindahl allocation.
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Arrow’s Walrasian Model

of Public Goods and Other Externalities

Arrow showed that we can recast the public-goods allocation problem as one involving

only private goods, so that our Walrasian analysis applies. Arrow defined each individual’s

consumption of the public good as a distinct commodity, with a distinct market and price,

but with “jointness” in the production of these goods. Here’s how this works in our one-

public-good-one-private-good model with n consumers (where X is the public good and Y is

the private good):

We redefine the economy as having n + 1 goods X1, . . . , Xn, Y , with quantities denoted by

x1, . . . , xn, y. An allocation is therefore an n(n+ 1)-tuple(
(x11, . . . , x

1
n, y

1), (x21, . . . , x
2
n, y

2), . . . , (xn1 , . . . , x
n
n, y

n)
)
∈ Rn(n+1)

+ .

However, both the production possibilities and the consumption possibilities in this economy

are assumed to have a special character:

(1) The X-goods are “joint products” in any firm’s production process: A production plan

for a firm is an (n + 1)-tuple (z,q) = (z, q1, . . . , qn) ∈ Rn+1
+ , where z is the amount of the

private good the firm uses as input and qi is the output of commodity Xi, but the firm has the

technological constraint q1 = q2 = · · · = qn. This is exactly like the classical joint products

mutton and wool that are produced by raising sheep.

(2) Consumer i’s consumption set is {(xi1, . . . , xin, yi) ∈ Rn+1
+ | j 6= i ⇒ xij = 0} — i.e.,

Consumer i can consume only the goods Xi and Y . So while Consumer i’s utility function

ui is technically defined on the domain Rn+1
+ , we can more intuitively write ui as defined

on bundles (xi, yi) ∈ R2
+. Therefore we can simplify the notation, defining an allocation to

consumers as a 2n-tuple (xi, yi)
n
1 ∈ R2n

+ .

Now a Lindahl equilibrium is just a Walrasian equilibrium of this joint-product economy.

Specifically (and assuming for simplicity that there is just a single producer/firm, which is

a price-taker), a Walrasian equilibrium is a price-list (p̂1, . . . , p̂n, p̂y) ∈ Rn+1
+ , a consumption

allocation (x̂i, ŷi)
n
1 ∈ R2n

+ and a production plan (ẑ, q̂1, . . . , q̂n) ∈ Rn+1
+ that satisfy

(U-max) ∀i : (x̂i, ŷi) maximizes ui(xi, yi) subject to p̂ixi + yi 5 ẙi + θiπ(ẑ, q̂)

(π-max) (ẑ, q̂) maximizes π(z, q1, . . . , qn) =
∑n

i=1 p̂iqi − p̂yz subject to q1 = · · · qn = f(z)

(M-Clr) ∀i : x̂i = q̂i and ẑ +
∑n

i=1 ŷi 5
∑n

i=1 ẙi, with equality if p̂y > 0.



Therefore the First Welfare Theorem applies: if the utility functions and production functions

satisfy the usual assumptions, then the equilibrium allocation will be Pareto efficient.

But Arrow’s model also makes it clear that the Walrasian models’s price-taking assumption

for consumers is unrealistic here: for each of the distinct goods Xi there is only one person

on the demand side of the market. The only person who cares about the good Xi is person

i. It’s clearly unrealistic to assume that any of the participants will take their own price (or

Lindahl cost share) as given. This was Arrow’s motivation for modeling things this way —

to clarify this point.
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Game Forms and Mechanism Design

Recall that a game is an n-tuple (Si, πi)
n
i=1, where

Si is i’s strategy or action set (i = 1, . . . , n),

πi : S1 × · · · × Sn → R is i’s payoff function (i = 1, . . . , n).

A game form is a way to model the rules of a game, or an institution, independently of the

players’ utility functions over the game’s outcomes. The notion of a game form is an important

idea for mechanism design (also called institution design or market design).

Definition: Let X be a set of possible outcomes. A game form for X consists of

(1) n action sets S1, . . . , Sn , and

(2) an outcome function ϕ : S1 × · · · × Sn → X .

Definition: Given an outcomes set X and

(1) a game form (S1, . . . , Sn;ϕ) for X, and

(2) n utility functions ui : X → R over outcomes (i = 1, . . . , n) ,

the associated game or induced game is defined by the n action sets S1, . . . , Sn and the n

payoff functions
ũi(s1, . . . , sn) := ui(ϕ(s1, . . . , sn)), i = 1, . . . , n.

In our public goods model, where x is the level at which the public good is provided and yi is the

number of dollars i spends on other goods, an outcome is an (n + 1)-tuple (x, y1, . . . , yn) ∈ Rn+1
+ ,

so our outcome set is X = Rn+1
+ . Assume that the cost of the public good is given by C(x) = cx,

so marginal cost is c (for example, c is the price that’s charged for each unit of the public good).

Example: The Voluntary Contributions Mechanism (VCM) for a public good.

The VCM institution, or game form, is defined by the following action sets and outcome func-

tion:

Actions: Each person i chooses a contributionmi in the action set R+. Let m = (m1, . . . ,mn).

Outcome function:

x = π(m) = 1
c

∑n
1 mi (i.e., x is whatever quantity the contributions

∑n
1 mi will buy);

yi = ẙi − ti, where ti = τ i(m) = mi (i.e., i’s “tax” is simply his contribution, mi) .

Thus, the outcome function is ϕ(m) = (π(m), ẙ1 − τ 1(m), . . . , ẙn − τn(m)) .

The induced game is given by the utility functions ui(x, yi), i = 1, . . . , n, so the payoff functions

in the induced game are

ũi(m1, . . . ,mn) := ui(π(m), ẙi − τ i(m)) = ui
(1

c

n∑
j=1

mj, ẙi −mi

)
, i = 1, . . . , n.
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The Nash equilibrium of the VCM institution (i.e., the NE of the associated game) is as follows:

The first-order marginal condition that characterizes individual i’s choice of mi is

(FOMC)
∂ũi

∂mi

5 0 and
∂ũi

∂mi

= 0 if mi > 0.

We have

∂ũi

∂mi

=
∂ui

∂xi

∂π

∂mi

+
∂ui

∂yi

∂(−τ i)
∂mi

= uix ·
1

c
+ uiy · (−1) =

1

c
uix − uiy.

Therefore
∂ũi

∂mi

5 0 if and only if
uix
uiy

5 c.

Therefore the FOMC above, for individual i, can be written as

uix
uiy

5 c and
uix
uiy

= c if mi > 0

i.e., MRSi 5MC and MRSi = MC if mi > 0.

Note that this is identical to the market outcome we obtained earlier, in which the public good is

provided at a level that’s less than the Pareto level: those who contribute are only those with the

largest MRSi; everyone else is a free rider; and no one will contribute if everyone has MRSi < MC

when x = 0.

Mechanism Design: The mechanism design problem is to devise an outcome function ϕ for

which the Nash equilibria (or some other specified solution) have one or more desirable properties

— for example, an outcome function for which the Nash equilibria are Pareto efficient. For our

simple public-goods model, the outcome function ϕ is the (n+1)-tuple of functions (π, τ 1, . . . , τn),

so our mechanism design problem is to devise a provision function π and tax/transfer functions τ i

for each i for which the Nash equilibrium is Pareto efficient, or better yet, is a Lindahl equilibrium

allocation.

The first institution/mechanism with Pareto efficient Nash equilibria was devised by Grove &

Ledyard. The first mechanism with Lindahl Nash equilibria was devised by Leo Hurwicz.
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Externalities and the “Coase Theorem”

The “Coase Theorem” has been one of the most influential contributions to come from

economics in the last fifty years. Its influence on the law has been especially profound.

The so-called “theorem” goes something like this:

“If property rights and liabilities for an activity are fully assigned, then an efficient outcome

will result, even in the presence of externalities. Moreover, the level at which the activity is

carried out will not depend on the particular assignment of rights and liabilities.”

An Externality Example:

Suppose one party engages in an activity that produces a benefit for itself, but which

damages other parties. Let’s suppose that the first party is a firm, whose production

activity generates profit but also pollutes the air or water, adversely affecting one or more

nearby residents, or negatively affecting the profitability of one or more nearby firms. In

the simplest case, let’s suppose that it’s just a single consumer who suffers damages from

the firm’s production. Let x denote the level of the externality-generating activity, in this

case the firm’s production; let B(x) denote the resulting benefit to the firm (its profit);

and let D(x) denote the damage to the consumer (for example, the amount he would be

willing to pay to eliminate the effects the externality imposes on him). We’re assuming here

that both the benefit and the damage are measured in dollars, and we’ll assume that the

net social benefit of operating the activity at level x is v(x) = B(x) − D(x). The socially

(Pareto) optimal level of the activity is therefore the level x at which B′(x) = D′(x), i.e.,

where the marginal benefit equals the marginal damage. Coase emphasized that the optimal

level of the damaging activity is not zero, and he described how the two parties should be

expected to bargain to an outcome in which they agree that the activity will be operated at

the optimal level, with one party paying compensation to the other — just as we described

in our public-good example of the water level in the lake.

In fact, there is no formal difference between this situation and our earlier two-person public

good problem. Figure 1, below, depicts the “Kolm diagram” for this situation. Note that

in the core allocations the externality-generating activity is always operated at the Pareto

level, but that both the direction and the size of the compensation depend upon which party

has the right to set the level of x. In this example, then, the Coase Theorem could easily be

formalised as an actual theorem.



But the simplicity of the example also allows us to see a number of caveats, any of which

would change the Coase result, in some cases by only a little, but in others it would be

significantly changed:

(1) If the objective of either party has income effects, then the level of the activity will not

be determinate, and in particular it will depend upon which party has the right to set the

level of x and would therefore receive compensation. This effect would not typically be large.

(2) If there is a large number of individuals on either or both sides of the “market,” then

the bargaining or transaction costs can become prohibitively large, making it unlikely that a

core (or Pareto) outcome will be achieved by bargaining.

(3) If there is a large number of individuals on either side of the market, then the core, unlike in

the no-externalities case, is not small. The various core allocations will differ considerably in

the distribution of the compensations paid and/or received, further increasing the difficulties

in even achieving a core allocation.

Why has the “Coase Theorem” been so influential? Most likely it’s because Coase’s article

(“The Problem of Social Cost”) was published in the Journal of Law & Economics, and was

written in the style of law journals — no mathematical symbols or equations; every idea

presented as an actual externality that had arisen in legislative or court cases (albeit always

a two-party externality); and descriptions and citations of actual legal cases and case law on

every page. It’s had an enormous impact on the legal profession. In fact, by some measures

it’s the most-cited law review article of all time, with from 40% to 80% more citations than

the second-most-cited.

The effect of Coase’s paper has been that when microeconomics predicts that an outcome

will be inefficient (or not in the core), we’re likely to ask ourselves whether the participants

would themselves devise some means to overcome the inefficiency. In both the legal and

economics professions, the focus now tends to be on the barriers to efficient outcomes, and

why the barriers can’t be overcome. This focus on barriers to efficiency, and on whether the

barriers are likely to be overcome without intervention, is not restricted to externalities and

public goods. Other examples are incomplete markets for dealing with uncertainty; adverse

selection; and moral hazard.

Incidentally, Coase himself did not describe this idea as a theorem, and he was apparently

not happy that is was described that way. His paper pointed out that the felicitous outcome

he was describing would often not be achieved, due to the attendant transaction costs.
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Figure 1
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Externalities: Pigovian Taxes and Subsidies

We’ll model a situation in which the production of a consumption good X generates

external effects on consumers. Examples are air pollution, water pollution, noise, etc. Let x

denote quantities of the X good and let y denote dollars or quantities of a good Y that’s a

composite of all other goods. Let s denote the level of the externality.

Consumers:

There are n consumers, each represented by a utility function ui and an endowment bundle

(̊xi, ẙi). We assume that x̊i = 0 and ẙi > 0. Each consumer’s utility function has the form

ui(xi, yi, s), where s is the level of the externality. We’ll express marginal rates of substitution

in terms of the Y good. Note that the externality is “good” for consumer i if MRSi
s > 0 and

is “bad” for i if MRSi
s < 0.

Production:

There are m firms that can produce X, each one according to a production function

qj = fj(zj), where zj is the amount of the Y good firm j uses as input. Therefore we have∑m
j=1 zj =

∑n
i=1(ẙi − yi). We assume that s = q =

∑m
j=1 qj; results are the same if s = g(q).

We’ll assume that all utility functions are increasing in x and y, that all production func-

tions are increasing, and that all utility functions and production functions are continuously

differentiable and concave.

Pareto Efficiency:

The Pareto maximization problem is

max
n∑

i=1

λiu
i(xi, yi, s) subject to xi, yi, zj = 0 ∀i, j and∑

i

xi 5
∑
j

fj(zj) (σx)

∑
i

yi +
∑
j

zj 5
∑
i

ẙi (σy)∑
j

fj(zj) 5 s (σs)

The first-order marginal conditions at an interior solution are

xi : λiu
i
x = σx ∀i (1)

yi : λiu
i
y = σy ∀i (2)

s :
∑
i

λiu
i
s = −σs (3)

zj : 0 = σy + σsf
′
j(zj)− σxf ′

j(zj) (4)



Equations (1) and (2) yield

∀i :
uix
uiy

=
σx
σy
, i.e., MRSi

x =
σx
σy
, (5)

and equations (2) and (3) yield

σy

n∑
i=1

uis
uiy

= −σs, i.e.,
n∑

i=1

MRSi
s =

σs
σy
. (6)

Equations (4) can be rewritten as

∀j : (σx − σs)f ′
j(zj) = σy, i.e.,

σx
σy
− σs
σy

=
1

f ′
j(zj)

. (7)

Combining equations (5), (6), and (7), we have

∀i, j : MRSi
x = MCj −

n∑
h=1

MRSh
s . (∗)

Recall that MRSi
s < 0 if the externality is bad for consumer i and MRSi

s > 0 if the

externality is good for consumer i. Therefore the sum
∑n

1 MRSi
s represents the net marginal

benefit of the externality, aggregated over all consumers. If
∑n

1 MRSi
s < 0, then the marginal

conditions (∗) tell us that Pareto efficiency requires each consumer’s marginal value for the

x-good to be equal to the good’s marginal social cost — the marginal cost of producing

another unit of it, plus |
∑n

1 MRSi
s|, the aggregate marginal damage the consumers suffer

from producing another unit of the x-good. On the other hand, if the net effect of the

externality is positive — i.e.,
∑n

1 MRSi
s > 0 — then Pareto efficiency requires that each

consumer’s marginal value for the good be less than its marginal production cost by the net

amount of the marginal indirect benefit consumers receive via the externality,
∑n

1 MRSi
s.

The Pigovian Tax:

Now suppose the net marginal externality associated with producing the x-good is negative

— i.e.,
∑n

1 MRSi
s < 0 — and suppose that in the market for the x-good all the consumers

and producers are price-takers. At an equilibrium, then, we would have MRSi = px = MCj

for each consumer i and each firm j. Therefore too much of the x-good is being produced

(recall that each ui is increasing in x and y, so each MRSi
x is decreasing in x): everyone’s

marginal value for the good is less than its social cost of production MCj −
∑n

i=1MRSi
s =

MCj + |
∑n

i=1MRSi
s|, so Pareto efficiency requires that production be reduced.

As a solution to this inefficiency, the early-20th-century English economist A.C. Pigou de-

veloped what we now call a Pigovian tax. Let t denote the level of a per-unit tax imposed

on purchases of the x-good, and let t be equal to −
∑n

i=1MRSi
s, the net marginal damages

2



generated by the marginal unit of the x-good produced, at the Pareto efficient level of pro-

duction and consumption. Now we should expect a consumer to purchase the good to the

point where her MRSi is equal to px + t — i.e., MRSi = MCj + |
∑n

i=1MRSi
s|, thereby

satisfying the efficiency condition (∗). If the externality is beneficial —
∑n

1 MRSi
s > 0 — we

still set t = −
∑n

i=1MRSi
s, so in this case t is a per-unit subsidy paid to purchasers of the

x-good.

Note that in either case — a negative or a positive externality — it’s straightforward to

balance the budget. In the case of a negative externality the aggregate of all the taxes

collected,
∑n

i=1 tixi, can be rebated to consumers as lump-sum per capita payments. In the

case of a positive externality, consumers can be charged a lump-sum per capita tax (for

example) to finance the per-unit subsidies, which total
∑n

i=1 |tixi|.

Determining
∑n

1 MRSi
s :

The Pigovian analysis leaves open the question of how we can determine, or at least

estimate, the value of
∑n

1 MRSi
s. An approach called contingent valuation has been

developed to accomplish this. The contingent valuation procedure first samples the relevant

population: the individuals in the sample are asked to report how much (in dollar terms)

they would value some particular increase or decrease in the amount of the externality s.

This tells us the MRSi
s for each individual i in the sample. Then the sample is used to

calculate an estimate of
∑n

1 MRSi
s, based on the demographics of the sample.

There is an obvious problem with this procedure, however. If the individuals are paid an

amount that is based on their reported MRSi
s, they will have an incentive to report very

large negative values of MRSi
s, in order to receive large payments. On the other hand, if

they’re not paid, each person’s incentive is to report an MRSi
s that will move the level of s

in the direction he prefers, given his belief about the values of MRSs reported by others in

the sample.
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