More than one commodity: Spot markets

So far we've assumed that there is only one commodity at each period and in each state. Now let's redefine the model for multiple commodities. Let C denote both the set and the number of commodities, indexed by $c \in C$.

The presence of multiple commodities at $t=0$ (i.e., today) requires nothing that we haven't already done: we simply replace the single consumption variable $x_{0} \in \mathbb{R}_{+}$with the bundle $\mathbf{x}_{0}=$ $\left(x_{0 c}\right)_{c \in C} \in \mathbb{R}_{+}^{C}$, and add a price-list $\mathbf{p}_{0}=\left(p_{0 c}\right)_{c \in C} \in \mathbb{R}_{+}^{C}$ of today's prices. But the presence of multiple commodities tomorrow introduces something new: spot markets and spot prices.

With only one commodity, no markets would be open tomorrow - there would be nothing to trade for that single commodity - so the only economic activity tomorrow would be delivery and consumption of the single commodity (contingent on which state has occurred). But if more than one commodity will be available when tomorrow arrives, we should expect that markets for the commodities will exist and trade will take place. The markets will be spot markets, in which transactions and delivery will take place "on the spot" - at the spot prices that are current tomorrow.

Of course, in the Arrow-Debreu contingent claims model these spot markets don't exist: all transactions take place today, at today's contingent-claim prices, for delivery tomorrow, contingent upon which state of the world has occurred. Therefore the elements of the Arrow-Debreu model with C commodities are:

Consumption plans: $\mathbf{x}_{\mathbf{0}} \in \mathbb{R}_{+}^{C}$ and $\mathbf{x}_{\mathbf{1}} \in \mathbb{R}_{+}^{S \times C}$.
Prices: $\mathbf{p}_{\mathbf{0}} \in \mathbb{R}_{+}^{C}$ and $\mathbf{p}_{\mathbf{1}} \in \mathbb{R}_{+}^{S \times C}$.
The consumer's budget constraint: $\mathbf{p}_{\mathbf{0}} \cdot \mathbf{x}_{\mathbf{0}}+\mathrm{p}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{1}} \leqq \mathrm{p}_{\mathbf{0}} \cdot \stackrel{\circ}{\mathbf{x}}_{\mathbf{0}}+\mathbf{p}_{\mathbf{1}} \cdot \dot{\mathrm{x}}_{\mathbf{1}}$.
If we let $l=C+S C$, we simply have the standard Walrasian model: l markets, with prices $\mathbf{p} \in \mathbb{R}_{+}^{l}$ and consumers' plans (bundles) $\mathbf{x} \in \mathbb{R}_{+}^{l}$, and with the single budget constraint $\mathbf{p} \cdot \mathbf{x} \leqq \mathbf{p} \cdot \dot{\mathbf{x}}$.

The elements of the Arrow securities-and-spot-markets model are:
Consumption plans: $\mathbf{x}_{\mathbf{0}} \in \mathbb{R}_{+}^{C}$ and $\mathbf{x}_{\mathbf{1}} \in \mathbb{R}_{+}^{S \times C}$.
Commodity prices today: $\mathbf{p}_{\mathbf{0}} \in \mathbb{R}_{+}^{C}$.
Securities: $\mathbf{d}_{k} \in \mathbb{R}^{S}, \quad k=1, \ldots, K$.
Security prices today: $\mathbf{q} \in \mathbb{R}_{+}^{K}$.
Spot prices tomorrow: $\overline{\mathbf{p}} \in \mathbb{R}_{+}^{S \times C}$ - i.e., $\overline{\mathbf{p}}_{s} \in \mathbb{R}_{+}^{C}, \quad \forall s \in S$.
Security holdings (portfolios): $\mathbf{y} \in \mathbb{R}^{K}$.
Budget constraint today: $\mathbf{p}_{\mathbf{0}} \cdot \mathbf{x}_{\mathbf{0}}+\mathbf{q} \cdot \mathbf{y} \leqq \mathbf{p}_{\mathbf{0}} \cdot \mathrm{x}_{\mathbf{0}}$.
Budget constraints tomorrow: $\overline{\mathbf{p}}_{s} \cdot \mathbf{x}_{\mathbf{s}} \leqq \overline{\mathbf{p}}_{s} \cdot \stackrel{\circ}{\mathbf{x}}_{s}+\sum_{k=1}^{K} d_{s k} y_{k}, \quad \forall s \in S$.

Arrow decurities witt multipue Commodities
Arrow-Debreu (Contingent enains):
Que Geos
Consumption plans: $\quad x_{0} \in \mathbb{R}_{+},\left(x_{S}\right)_{S} \in \mathbb{R}_{+}^{S} \quad x_{0} \in \mathbb{R}_{+}^{C},\left(x_{S}\right)_{S} \in \mathbb{R}_{+} x_{C}^{C C}$
Prices: $\quad\left[p_{0}=1\right]^{\perp} \quad p_{0} \in \mathbb{R}_{+},\left(P_{s}\right)_{s} \in \mathbb{R}_{+}^{s} \quad p_{0} \in \mathbb{R}_{+}^{C},\left(P_{s}\right)_{s} \in \mathbb{R}_{+}^{s \times C}$
Buaget constraint:

$$
\begin{aligned}
& \leqq \sum_{c \in c} P_{0 c^{*} o c}+\sum_{s} \sum_{c} P_{S c}{ }^{i} x_{s c}
\end{aligned}
$$

ARROW (SECuR, TiEs \& Spormarikets):

BUDGET CONSTBAINB:
$\begin{array}{lcc}\text { Tooay: } & x_{0}+q \cdot y \leqq \dot{x}_{0} & p_{0} \cdot x_{0}+q \cdot y \leqq p_{0} \cdot \dot{x}_{0} \\ \text { Tomornow: } & x_{5} \leqq \dot{x}_{5}+\sum_{k=1}^{k} y_{k} d_{5 k} & \bar{P}_{5} \cdot x_{5} \leqq-\bar{P}_{5} \cdot \dot{x}_{5}+\sum_{1}^{k} y_{k} d_{5 k}\end{array}$

ATYPICAL CONSUMER,
NOT NECESSARILY IN EQUILIBRIUM
-XAMPRE: 3 cooos, 2 Statas (Af. DuFFIE \& SONNENSEHEIN)

$$
\begin{aligned}
& \bar{P}_{R}=\left({ }_{1},,_{1}, 1\right), \quad \bar{P}_{H}=\left({ }^{*} 3,{ }^{*} 2,{ }^{*}+1\right) \\
& z_{R}=(2,2,6), z_{H}=(1,1,1) \text { a targer state- } \\
& \text { plans: } \\
& \text { plan's }
\end{aligned}
$$

$$
\begin{aligned}
& d_{1}=\left[\begin{array}{ll}
3 \\
3
\end{array}\right] \quad d_{2}=\left[\begin{array}{l}
2 \\
6
\end{array}\right] \\
& \xi=\left[\begin{array}{c}
\$ 10 \\
10 \\
6
\end{array}\right]<\begin{array}{l}
\text { TARGET } \\
\text { SDÁRE-CONTWGEMT } \\
\text { RETUROS }
\end{array}
\end{aligned}
$$

To obiain tite targer $\bar{\xi}$ U!A howirgi $y=\left(y_{1}, y_{2}\right)$ OF THE TWO SECURITIES:

SOLVE $D y=5$; i.e. $\left[\begin{array}{ll}3 & 2 \\ 3 & 6\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}10 \\ 6\end{array}\right]$.
LUE HAVE TAE SOLTHN $y=\left(y_{1}, y_{2}\right)=(4,-1)$.
Qteeking:

$$
D y=\left[\begin{array}{ll}
3 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{l}
12-2 \\
12-6
\end{array}\right]=\left[\begin{array}{c}
10 \\
6
\end{array}\right] .
$$

$\left.\right|_{f} s=R$ oceurs:
Consumer has 10 , spot marker Budget constratint is $\bar{P}_{R}-x_{R} \leqq \$ 10$

$$
\text { i.e., }{ }_{11} x_{R_{1}}+{ }_{1 x_{R 2}}+x_{R_{3}}=10
$$

Whe citoosis $\left(x_{R_{1}}, x_{R_{2}}, x_{R_{3}}\right)=(2,2,6)$, witient \cos is ϕ_{10}.
Similivery, if State $S=H$ occurs:

$$
\left.\bar{P}_{H} \cdot x_{H} \leqq \$ 6 ; \quad 3\right)(1)+\left(\$_{2}\right)(1)+\left(\pi_{1}\right)(1)=\$ 6 .
$$

Today's choice and Constrain T_{i} :

$$
\begin{aligned}
&\left(x_{0}, y\right)=\left(x_{01}, x_{02}, x_{03} ; y_{1}, y_{2}\right) \\
&\text { s.t. } \left.p_{01} x_{01}+p_{02} x_{02}+p_{03} x_{63}+q_{1} y_{1}+q_{2} y_{2}\right)_{0} \leq \sum_{C=1}^{3} p_{00} \dot{x}_{0 c} . \\
&\left(B C_{0}\right) \quad G p_{0} \cdot x_{0}+q \cdot y \leqq p_{0} \cdot \stackrel{x}{x}_{0}
\end{aligned}
$$

Tomorroon's eftoices ane constrainits:

$$
\begin{aligned}
& I_{F} S=R: \quad\left(x_{R_{1}}, x_{R 2} x_{R 3}\right) \\
& \left(B C_{R}\right) \text { s.t. } \bar{P}_{R_{1}} x_{R_{1}}+\bar{P}_{R_{2}} x_{R_{2}}+\bar{P}_{R_{3}} x_{R_{3}} \leqq \bar{P}_{R}: x_{R}+y_{1} d_{12}+y_{2} d_{R_{2}} \\
& l_{F} S=H: \quad\left(x_{H 1}, x_{H 2}, x_{H 3}\right) \\
& \left(B C_{H}\right) \quad \text { s.t. } \vec{P}_{H} \cdot x_{H} \leq \bar{P}_{H} \dot{x}_{H}+y_{1} d_{H_{1}}+y_{2} d_{H_{2}}
\end{aligned}
$$

(4) Wut he ean make ho decisions/planer all todaye, EVEN THOUGH SPOT TRANSACTIONS WIL CARRIED out tomorrow:
Ctooste $\left(x_{0}, y, x_{R}, x_{1 H}\right) \in \mathbb{R}_{4}^{3} \times \mathbb{R}^{2} \times \mathbb{R}^{3} \times \mathbb{R}^{3}$
$\left(B C_{0}\right)$ s.t
(BCR) $\quad \bar{P}_{R} \cdot x_{R} \leqq \bar{\Phi}_{R} \cdot \dot{x}_{R}+\sum_{k \in K} d_{R K} y_{k}$
(BCH) $\quad \bar{P}_{H} \cdot x_{H} \leqq \bar{P}_{H} \cdot \dot{x}_{H}+\sum_{k=1}^{K} y_{k} d_{H} k$.
(i.a., ALL tite consmaines abova).

In this example:
Arrow-Debreu (Contingent Claims):

With securities:

$$
\text { OPEN } \quad\left\{\begin{array}{l}
3 \text { MARKETS FOR TODAY'S GOODS } \\
2 \text { SECURITIES MARKETS }
\end{array}\right.
$$

GEN TO MORROW $\frac{3}{8}$ MARKETS FOR STATES GOODS (THE THAT OCCURS) 8 MARIEEIS AND PRICES (5 TODAY, 3 TOMORROW)

The only markets that open tomorrow are for THE STATES THAT ACTUALLY OCCURS.
$C=3$ And $S=2$ in THE EXAMPLE

ARROW-DEBREL: $S C=6 \quad C+S C=9 \quad$ ALL TODAY
SECURITIES: $S+C=5 \quad C+S+C=8 \quad C+S=5$ TODAY

SECURITIES ECONOMIZE ON MARKETS.
$\frac{\text { Securities Economize on Markets }}{5}$

Assume $K=S$, tie minimum number of securities necessary and sufficient to achieve Pareto EFFICIENCY.
Markets that must open:

$$
\text { Arrow-bebrau (Contingram CLAMS) : } \underbrace{C+S C}_{\text {ALL TODAY }}
$$

Comparison:

S	C	$S C$	$S+C$
2	2	4	4
3	100	300	103
100	2	200	102
1000	200	200,000	1200

$$
\underbrace{C+S+C_{\text {TOMORROW }}}_{\text {ToDAY }}
$$

WHAT HAPPENS WHEN TOMORROW ARRIVES?

Suppose Tits STATE THAT occurs is $S=R$.

Title consumer's budget constraint in our mudel is $\bar{P}_{R 1} x_{R 1}+\bar{P}_{R 2} x_{R 2}+\bar{P}_{R 3} x_{R 3} \leqq \bar{P}_{R 1} x_{R 1}+\bar{P}_{R 2} x_{R 2}+\bar{P}_{R 3} x_{R 3}+\sum_{k \in K} d_{R k} y_{k}$.

BUT THE PRICES $\bar{P}_{\text {RC }}$ ARE TODAY'S EXPECTED SPOT prices that lull occur tomorrow. An equilibrium IS A RATIONAL EXPECTATIONS ERVILIBRIVM: TODAY's EXPECTED PRICES PrC TURN out TOMORROW TO BE TIE PRICES THAT CLEAR THE MARKETS.

Some problems:
(1) EqUILIBRIUM REQUIRES THAT EVERYONE'S EXPECATIONS ARE TIE SAME - THE CORRECT expectations.
(2) Thane are no forces today to Drive expected Prices to titeir equilibrium values.
(3) MULTIPVE EQUILIBRIA ARE MUCH MORE LIKELY in THIJ CONTEXT.
(4) DisEquilibrium TYpically involves some INDIVIDUALS BECOMING BANKRUPT TOMORROW. BuT THIS DOESN'T DRIVE TJDAY's EXPEETATIONS TOWARD EQUILIBRIUM. (A CONSUMER'S PLAN TODAY IS BASED ON HIS EXPECTATION OF TOMORROW'S PR, LES.)

