Arrow's Pricing Formula for Securities

Let S be a finite set of states of the world and let N be the index set for a finite set of consumers. Generic elements of S and N are denoted by $s \in S$ and $i \in N$. In a slight abuse of notation, we also use S and N to denote the number of elements in S and N. We assume that there is only one good; each consumer $i \in N$ is endowed with \dot{x}_{0}^{i} units of the good today and with \grave{x}_{s}^{i} units in state s tomorrow. It's convenient to think of the good as dollars. Let $\dot{\mathbf{x}}^{i}=\left(\grave{x}_{1}^{i}, \ldots, \dot{x}_{S}^{i}\right)$. A consumption plan for consumer i is a $(1+S)$-tuple $\left(x_{0}^{i}, \mathbf{x}^{i}\right) \in \mathbb{R}_{+}^{1+S}$, and an allocation is an N-tuple of plans, $\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}$. Each consumer evaluates consumption plans according to a utility function $u^{i}: \mathbb{R}_{+}^{1+S} \rightarrow \mathbb{R}$. The economy is fully described by the set S of states and by the N-tuple $\left(u^{i}, \grave{x}_{0}^{i}, \stackrel{\circ}{\mathbf{x}}^{i}\right)_{i \in N}$ of consumers.

A set of securities for this economy is an $S \times K$ matrix D. Each column of D is the $S \times 1$ returns vector or dividends vector of one of the securities: the element $d_{s k}$ specifies how many dollars one unit of security k will return tomorrow if state s occurs. Note that $d_{s k}$ may be positive, zero, or negative. The K columns of D are thus the K securities. Consumers purchase or sell units of the securities today and hold them until tomorrow, when one of the states $s \in S$ is realized and each security k returns $d_{s k}$ dollars for every unit of the security a consumer owns. We denote by y_{k}^{i} the number of units of security k purchased by consumer i; y_{k}^{i} may be positive, zero, or negative. Consumer i 's portfolio is the K-tuple $\left(y_{1}^{i}, \ldots, y_{K}^{i}\right)$, which we denote by \mathbf{y}^{i}. Note that if consumer i purchases the portfolio \mathbf{y}^{i}, then his vector of state-contingent returns will be the S-tuple $D \mathbf{y}^{i}$. (It's most convenient here to write \mathbf{y}^{i} and $D \mathbf{y}^{i}$ as $K \times 1$ and $S \times 1$ column vectors.) We denote the price of security k by q_{k}, and we write $\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right)$.

Definition: An equilibrium of the securities markets defined by the matrix D is a $(K+$ $N K+N(1+S)$)-tuple $\left(\mathbf{q},\left(\mathbf{y}^{i}\right)_{i \in N},\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}\right) \in \mathbb{R}_{+}^{K} \times \mathbb{R}^{N K} \times \mathbb{R}_{+}^{N(1+S)}$ that satisfies the utilitymaximization and market-clearing conditions:
(U-M) $\quad \forall i \in N:\left(\mathbf{y}^{i}, x_{0}^{i}, \mathbf{x}^{i}\right)$ maximizes $u^{i}\left(x_{0}^{i}, \mathbf{x}^{i}\right)$ subject to the constraints

$$
\begin{aligned}
& x_{0}^{i}+\mathbf{q} \cdot \mathbf{y}^{i} \leqq \grave{x}_{0}^{i} \quad \text { and } \\
& x_{s}^{i} \leqq \dot{x}_{s}^{i}+\sum_{k=1}^{K} d_{s k} y_{k}^{i}, \quad \forall s \in S, \quad \text { i.e., } \quad \mathbf{x}^{i} \leqq \dot{\mathbf{x}}^{i}+D \mathbf{y}^{i}
\end{aligned}
$$

(M-C) $\quad \sum_{i=1}^{N} x_{0}^{i}=\sum_{i=1}^{N} \grave{x}_{0}^{i} \quad$ and $\quad \sum_{i=1}^{N} y_{k}^{i}=0, \quad k=1, \ldots, K$.

Examples: Our "Extended Example of Equilibrium Under Uncertainty" contains several examples of securities markets using this model. Part 3 of the example is a market with a single security, a credit instrument such as a saving account or a bond. Part 4 adds a second security, an insurance contract.

Example: Suppose there are only two states, $s=H$ and $s=L$, and one security, which returns a in state H and b in state L. By choosing y, the number of units of the security he will buy at today's security price q, a consumer can vary x_{H} and x_{L}, but not independently:

$$
\left[\begin{array}{c}
x_{H}-\stackrel{\grave{x}}{H} \\
x_{L}-\dot{x}_{L}
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right] y \quad \text { and } \quad x_{0}=\dot{x}_{0}-q y .
$$

Thus, giving up y units of consumption today will only allow him to augment his consumption tomorrow by multiples of (a, b) across the two states.

Now suppose there's a second security, which returns c in state H and d in state L. If (c, d) is a multiple of (a, b), then nothing is gained by the introduction of the second security: choosing amounts y_{1} and y_{2} of the two securities still augments one's consumption tomorrow only by multiples of (a, b). But if (a, b) and (c, d) are not multiples of one another - i.e., if they're linearly independent - then for any state-contingent consumptions x_{H} and x_{L} tomorrow, the equation

$$
\left[\begin{array}{c}
x_{H}-\grave{x}_{H} \\
x_{L}-\grave{x}_{L}
\end{array}\right]=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

has a solution $\left(y_{1}, y_{2}\right)$. Thus, in this case, state-contingent consumption tomorrow can be augmented by any amounts $x_{H}-\stackrel{\circ}{x}_{H}$ and $x_{L}-\stackrel{\circ}{x}_{L}$ by giving up some amount of consumption today in order to purchase some amounts y_{1} and y_{2} of the two securities. More securities would not add anything, but would not hurt either: as long as the securities returns matrix has two linearly independent columns (securities), any state-contingent consumptions can be achieved. More generally, with S states, the securities returns matrix D must have S linearly independent columns - i.e., we must have $\operatorname{rank} D=S$. We could equivalently say that the securities must span the space \mathbb{R}^{S}.

It seems intuitive that this spanning condition will be necessary and sufficient to ensure that the securities markets achieve the same outcome as with complete Arrow-Debreu contingent claims markets - that an equilibrium allocation attained via securities markets will coincide with an Arrow-Debreu allocation. We now verify this intuition.

To simplify notation, let's temporarily substitute z_{0} for $x_{0}-\dot{x}_{0}$ and z_{s} for each $x_{s}-\dot{x}_{s}$. The key to establishing the equivalence of equilibrium outcomes is the individual consumer's budget constraints: we show that if the securities span \mathbb{R}^{S}, then both market structures present the consumer with exactly the same budget sets at their respective equilibrium prices. In our z notation, the consumer's Arrow-Debreu budget constraint is $z_{0}+\mathbf{p} \cdot \mathbf{z}=0$. We wish to be able to show that at some security prices \mathbf{q} the constraint $z_{0}+\mathbf{q} \cdot \mathbf{y}=0$, together with the fact that $\mathbf{z}=D \mathbf{y}$, makes exactly the same set of $\left(z_{0}, \mathbf{z}\right)$'s available as the constraint $z_{0}+\mathbf{p} \cdot \mathbf{z}=0$ does.

The following proposition establishes that this is so if the securities span \mathbb{R}^{S} and if their prices are related to the contingent claims prices \mathbf{p} according to $\mathbf{q}=\mathbf{p} D$. The proposition then leads to the subsequent theorem which establishes the equivalence between the securities markets equilibrium and the Arrow-Debreu equilibrium.

Proposition: Let $\mathbf{p} \in \mathbb{R}^{S}$; let D be an $S \times K$ matrix; let $\mathbf{q}=\mathbf{p} D \in \mathbb{R}^{K}$; and let

$$
\begin{aligned}
& A=\left\{\left(z_{0}, \mathbf{z}\right) \in \mathbb{R}^{1+S} \mid z_{0}+\mathbf{p} \cdot \mathbf{z}=0\right\} \text { and } \\
& B=\left\{\left(z_{0}, \mathbf{z}\right) \in \mathbb{R}^{1+S} \mid \exists \mathbf{y} \in \mathbb{R}^{K}: z_{0}+\mathbf{q} \cdot \mathbf{y}=0 \text { and } \mathbf{z}=D \mathbf{y}\right\}
\end{aligned}
$$

If $\operatorname{rank} D=S$, then $A=B$.

Proof:

Note that if $\mathbf{z}=D \mathbf{y}$ then $\mathbf{p} \cdot \mathbf{z}=\mathbf{p} \cdot(D \mathbf{y})=(\mathbf{p} D) \cdot \mathbf{y}=\mathbf{q} \cdot \mathbf{y}$. We show that $A \subseteq B$ and $B \subseteq A$.
(i) Let $\left(z_{0}, \mathbf{z}\right) \in A$. Since $\operatorname{rank} D=S$, there is a $\mathbf{y} \in \mathbb{R}^{K}$ that satisfies $\mathbf{z}=D \mathbf{y}$. Since $z_{0}+\mathbf{p} \cdot \mathbf{z}=0$ (because $\left(z_{0}, \mathbf{z}\right) \in A$) and $\mathbf{p} \cdot \mathbf{z}=\mathbf{q} \cdot \mathbf{y}$ (because $\mathbf{z}=D \mathbf{y}$), we have $z_{0}+\mathbf{q} \cdot \mathbf{y}=0$, and therefore $\left(z_{0}, \mathbf{z}\right) \in B$.
(ii) Let $\left(z_{0}, \mathbf{z}\right) \in B$. Then, according to the definition of B, there is a $\mathbf{y} \in \mathbb{R}^{K}$ that satisfies both $z_{0}+\mathbf{q} \cdot \mathbf{y}=0$ and $\mathbf{z}=D \mathbf{y}$. Therefore $\mathbf{p} \cdot \mathbf{z}=\mathbf{q} \cdot \mathbf{y}$, and it follows that $z_{0}+\mathbf{p} \cdot \mathbf{z}=0$, and therefore $\left(z_{0}, \mathbf{z}\right) \in A$. \|

Theorem: Let D be an $S \times K$ securities returns matrix that satisfies rank $D=S$, and let $\mathbf{q}=\mathbf{p} D$. If $\left(\mathbf{p},\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}\right)$ is an Arrow-Debreu equilibrium for the economy $E=\left(S,\left(u^{i},\left(\dot{x}_{0}^{i}, \stackrel{\circ}{\mathbf{x}}^{i}\right)\right)_{i \in N}\right)$, then there is a profile $\left(\mathbf{y}^{i}\right)_{i \in N}$ of portfolios for which $\left(\mathbf{q},\left(\mathbf{y}^{i}\right)_{i \in N},\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}\right)$ is an equilibrium of the securities markets defined by D for the economy E. Conversely, if $\left(\mathbf{q},\left(\mathbf{y}^{i}\right)_{i \in N},\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}\right)$ is a securities-markets equilibrium, then $\left(\mathbf{p},\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}\right)$ is an Arrow-Debreu equilibrium for E.

Remark: Note that the allocation $\left(x_{0}^{i}, \mathbf{x}^{i}\right)_{i \in N}$ is the same in both equilibria - i.e., everyone's state-contingent consumption is the same in both equilibria.

Proof of the Theorem: This is a simple corollary of the preceding proposition. For each $i \in N$, we let $x_{0}^{i}-\grave{x}_{0}^{i}$ and $\mathbf{x}^{i}-\dot{\mathbf{x}}^{i}$ play the roles of z_{0} and \mathbf{z} in the proposition. The set A in the proposition is therefore the set of plans $\left(x_{0}^{i}, \mathbf{x}^{i}\right)$ available to consumer $i-$ consumer i 's budget constraint at the equilibrium price-list \mathbf{p} in the Arrow-Debreu equilibrium, and the set B is the set of plans available to him at the securities prices $\mathbf{q}=\mathbf{p} D$ in the corresponding securities markets. If rank $D=S$, then the two sets of available plans $\left(x_{0}^{i}, \mathbf{x}^{i}\right)$ are identical, and the consumer will therefore choose the same plan when facing either price-list. Therefore the utility-maximization and market-clearing conditions are satisfied in one case if and only if they are satisfied in the other case. ||

