
Adding Production to the Theory

We begin by considering the simplest situation that includes production: two goods, both of which

have consumption value, but one of which can be transformed into the other. Production can go

in only one direction: the input good can be used to produce the output good, but not vice versa.

Some simple concrete examples are oranges as input to produce orange juice; grapes as input to

produce wine; or leisure as input (where it’s called labor) to produce “stuff”.

Consumers: There are n consumers, indexed by i ∈ N = {1, . . . , n}. Consumer i’s consumption

bundle is (xi, yi) ∈ R2
+, where xi is his consumption of the input good and yi is his consumption

of the output good. Each consumer is described by a utility function ui : R2
+ → R and an initial

bundle (̊xi, ẙi) ∈ R2
+.

Producers: There are m producers (also called firms), indexed by j ∈M = {1, . . . ,m}. Producer

j’s production capabilities are described by a production function fj : R+ → R+: if producer j

uses zj units of the input good, then qj units of the output good are produced, where qj = fj(zj).

The economy is therefore described by an n-tuple
(
ui, (̊xi, ẙi)

)n
1

and an m-tuple (fj)
m
1 .

We begin by describing the feasible production-and-consumption plans, or allocations; then we’ll

describe the Pareto efficient allocations; and then we’ll describe the Walrasian equilibria.

Feasible Allocations

An allocation is a (2n+m)-tuple ((xi, yi)
n
1 , (zj)

m
1 ) ∈ R2n

+ ×Rm
+ . The feasible allocations are the

ones that satisfy these two inequalities:∑
i∈N

xi +
∑
j∈M

zj 5 x̊

∑
i∈N

yi 5 ẙ +
∑
j∈M

fj(zj).

Pareto Allocations

We continue to define a Pareto improvement as an allocation in which at least one person is

better off and no one is worse off. But what does it mean for a firm to be better off or worse off?

When should we say that a firm prefers one production plan zj, or (zj, qj), to another? The answer

is that we don’t say. We can’t, for example, use profit to rank alternative plans, because prices

are used in the definition of profit, and in our Pareto analysis we don’t assume that markets and

prices are what’s used to arrive at allocations.



So we simply don’t ascribe preferences to firms. We view the firms simply as machines, devices

for transforming the input good into the output good. The firms thereby make it possible for the

consumers to obtain allocations they wouldn’t otherwise be able to obtain. And we continue to

define welfare improvements in terms of only the consumers’ welfare. Our definitions of Pareto

improvements and Pareto efficiency are therefore the same as they were when no production was

possible. They’re defined only in terms of the consumers’ preferences.

The Pareto allocations are therefore the solutions of a new version of the problem P-Max:

max λ1u
1(x1, y1) s.t. xi, yi, zj = 0 (∀i ∈ N, j ∈M),

∑
i∈N

xi +
∑
j∈M

zj 5 x̊ : σx∑
i∈N

yi 5 ẙ +
∑
j∈M

fj(zj) : σy

ui(xi, yi) = ci (i = 2, . . . , n) : λi.

The first-order marginal conditions for a solution of this problem are

(1) xi : λiu
i
x 5 σx, with equality if xi > 0 (∀i ∈ N)

(2) yi : λiu
i
y 5 σy, with equality if yi > 0 (∀i ∈ N)

(3) zj : 0 5 σx − σyf ′j(zj), with equality if zj > 0 (∀j ∈M)

In order to give an economic interpretation of the FOMC, let’s simplify things by considering only

solutions in which all the variables and Lagrange multipliers are strictly positive, so that all the

FOMC are equations instead of inequalities. Then the conditions (1) and (2) are the familiar MRS

conditions, MRSi =
σx
σy

for each i ∈ N , which yield the Equal-MRS condition

MRS1 = MRS2 = · · · = MRSn.

When we combine this with (3) we obtain

f ′j(zj) = MRSi
xy for all i ∈ N, j ∈M.

Writing MP j for the marginal product of the input good for firm j, we can rewrite the above

condition as

MP j = MRSi
xy or as

dqi
dzi

= −dyi
dxi

for all i ∈ N, j ∈M,

— i.e., the marginal value of the x-good in terms of the y-good, in both production and consump-

tion, should be the same everywhere.
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Equivalently, we could write the equations as

1

f ′j(zj)
= MRSi

yx or as
dzi
dqi

= −dxi
dyi

for all i ∈ N, j ∈M.

The term on the left in each of the above equations is just the (real) marginal cost of the output

good — how many units of the input good are required, at the margin, to produce an additional

unit of output. So we could also write the equations as

MCj = MRSi
yx or as MCj = MV i for all i ∈ N, j ∈M,

where MV i is consumer i’s marginal value (i.e., marginal willingness to pay) for the output good,

measured in units of the input good.

And of course the marginal conditions have to be supplemented by the constraint-satisfaction

conditions ∑
i∈N

xi +
∑
j∈M

zj = x̊ and
∑
i∈N

yi = ẙ +
∑
j∈M

fj(zj).

(These are equations instead of inequalities because we assumed that σx, σy > 0.)

Robinson Crusoe (A Single Consumer):

Let’s apply our Pareto analysis to the simplest case that includes production: Robinson Crusoe.

Robinson is alone on a desert island (oddly, he looks a lot like Tom Hanks). So he’s the only

consumer. Let’s assume there’s a single production process (called “climbing palm trees”), which

can turn Robinson’s leisure/labor into coconuts. We have n = m = 1, and in this simple case we

can represent Robinson’s preferences and his production technology geometrically as in Figure 1,

and we can represent them both together, as in Figure 2.

Figure 1
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Figure 2

The Pareto maximization problem is simply Robinson’s utility-maximization problem. He’s not

maximizing utility subject to a budget constraint, but subject to the two constraints in the P-max

problem, x + z 5 x̊ and y 5 ẙ + f(z). Together, these two constraints yield the consumption-

possibilities set F in Figure 2. Assuming that Robinson’s utility function is strictly increasing, any

solution will satisfy both inequalities as equations. Converting the inequalities to equations, we

can write the problem as an unconstrained maximization problem with a single variable, z (this is

not necessary, it’s just just a trick we often use to simplify things):

max
z
u
(
x̊− z, ẙ + f(z)

)
.

The first-order condition for an interior solution is

d

dz
u
(
x̊− z, ẙ + f(z)

)
= 0 ;

i.e., − ux + f ′(z)uy = 0 ;

i.e., f ′(z) =
ux
uy

;

i.e., MP = MRS .

Fisher’s Separation Theorem:

Now suppose that Robinson would like to decentralize the allocation that maximizes his utility,

separating the production decision from the consumption decision. After his man Friday appears

(or is it Wilson?), he might even arrange to have the decisions made by different people — Wilson
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choosing the production plan and Robinson himself choosing the consumption bundle. It seems as

if he could do that by using markets and prices. He needs to find prices px and py at which

• as production manager, Robinson (or his man Wilson) will be led to choose the right z

by maximizing profit, and

• as consumption manager (“buyer”), Robinson will be led to choose the right bundle

(x, y) by maximizing u(·) subject to the budget constraint defined by the prices px and

py .

“Fisher’s Separation Theorem” says that separating production decisions from consumption deci-

sions in this way, using markets and prices, will yield the same level of welfare as if we centralized

the decision. Nothing is lost by decentralizing/separating, the decisions. (Irving Fisher actually

stated his “theorem” for investment and portfolio decisions being made separately from the con-

sumption decisions that are made by the owners of firms or portfolios. And it’s not really a theorem

in the technical sense. But in our context here, it’s really just the First Welfare Theorem, for the

Walrasian model when it includes production.)

The significance of Fisher’s separation concept for doing microeconomics is that even if an indi-

vidual is making production/investment decisions and also consumption decisions, we model that

individual as if he were two separate decision-makers — a producer, or firm, on the one hand,

and a consumer on the other hand. Even if Robinson doesn’t have Wilson to make his production

decisions, we still model Robinson separately as a firm and as a consumer.

But does this work? Does the First Welfare Theorem still hold when the model includes produc-

tion?

Accounting for Profit

In order to elicit the right production plan z by using prices px and py and directing his firm to

maximize profit, Robinson will obviously have to choose prices that satisfy

px
py

=
σx
σy

= f ′(z),

where σx and σy are the Lagrange multiplier values at the solution of the P-max problem. But as

Figure 3 suggests, the budget constraint with these prices,

pxx+ pyy 5 pxx̊+ pyẙ,

might not allow the consumer-Robinson to choose a bundle (x, y) as large as the one that maximizes

Robinson’s utility among all feasible bundles. This is because the average rate of transformation in

Figure 3 is larger than the marginal rate of transformation. There’s a “surplus,” a positive profit.
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Figure 3

Let’s return to the case where n and m can be greater than 1, and try writing down a definition

of Walrasian equilibrium when there’s production.

Tentative Definition: A Walrasian equilibrium is a triple(
(p̂x, p̂y), (ẑ)m1 , (x̂i, ŷi)

n
1

)
∈ R2

+ × Rm
+ × R2n

+

that satisfies

(U-max) ∀i ∈ N : (x̂i, ŷi) maximizes ui subject to

(BC) p̂xxi + p̂yyi 5 p̂xx̊i + p̂yẙi

(π-max) ∀j ∈M : ẑj maximizes πj(zj) := p̂yfj(zj)− p̂xzj∑n
1 x̂i +

∑m
1 ẑj 5

∑n
1 x̊i, with equality if p̂x > 0

(M-clr) ∑n
1 ŷi 5

∑n
1 ẙi +

∑m
1 fj(ẑj), with equality if p̂y > 0 .

Note that for any prices px and py, any allocation that satisfies the budget constraints (BC) for

each consumer i ∈ N will satisfy

px

[∑
xi −

∑
x̊i

]
+ py

[∑
yi −

∑
ẙi

]
5 0.

When there’s no production, this is just Walras’ Law.
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If total profits happen to be positive, as in Figure 3, i.e., if

m∑
j=1

[
pyfj(zj)− pxzj

]
> 0 ,

then we have

px

[∑
xi −

∑
x̊i

]
+ py

[∑
yi −

∑
ẙi

]
−
[
py
∑

fj(zj)− px
∑

zj

]
< 0

i.e.,

(∗) px

[∑
xi +

∑
zj −

∑
x̊i

]
+ py

[∑
yi −

(∑
ẙi +

∑
fj(zj)

)]
< 0 .

If we write

Ex :=
∑

xi +
∑

zj −
∑

x̊i and Ey :=
∑

yi −
(∑

ẙi +
∑

fj(zj)
)

for the amounts by which the allocation
(
(xi, yi)i∈N , (zj)j∈M

)
exceeds the available resources, then

(∗) is the inequality

(∗∗) pxEx + pyEy < 0 .

This has two implications for Walrasian equilibrium and Pareto efficiency:

• An allocation that satisfies (∗∗) can’t be Pareto efficient with efficiency prices (σx, σy)

proportional to (px, py) because Pareto efficiency requires that σxEx + σyEy = 0 (by

summing the two Constraint Satisfaction conditions for Pareto efficiency). Therefore,

a Walrasian equilibrium can’t be Pareto efficient.

• A price-list (px, py) and an allocation
(
(xi, yi)

n
1 , (zj)

m
1

)
that satisfy (∗∗) can’t be a

Walrasian equilibrium (according to the tentative definition we’ve given), because they

can’t satisfy both of the (M-Clr) market-clearing conditions in the definition: the two

conditions together imply that pxEx + pyEy = 0. Therefore a Walrasian equilibrium

can’t exist.

The first implication is certainly not good news. But the second implication suggests that there

may be something wrong with our tentative definition of Walrasian equilibrium. The problem

clearly involves profit: when it’s positive, it seems to cause a violation of Walras’ Law.

Recall that the feasible allocations are the ones that satisfy the two inequalities∑
i∈N

xi +
∑
j∈M

zj 5 x̊ and
∑
i∈N

yi 5 ẙ +
∑
j∈M

fj(zj) .
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Writing these as equations (i.e., assuming that both goods are fully utilized), and writing the sums

as simply x, y, x̊, ẙ, z, q, we have

x+ z = x̊ and y = ẙ + q .

These are simply accounting identities for the two goods. For any prices px and py, then, we have

pxx+ pxz = pxx̊ and pyy = pyẙ + pyq .

Combining the two equations yields

pxx+ pyy = pxx̊+ pyẙ +
(
pyq − pxz

)
;

i.e.,

Value of consumption = Value of the endowment + Net value of production activity.

We’ve converted the accounting identities for quantities of the two goods into a single accounting

identity for the value of the goods — which is Walras’ Law when there’s production. If profit,

pyq − pxz , is positive, then the total value of consumers’ endowment is not large enough, by

itself, to pay for the entire value of the goods available after production has taken place. Total

consumption (x, y) will satisfy either x < x̊−z or y < ẙ+q, or both, as in Figure 3. Consumers’

income, pxx̊+ pyẙ , therefore has to be augmented by the firms’ profits: we have to account for

the distribution of profits (the “surplus value”) arising from production in our Walrasian model of

allocation via markets and prices.

We typically account for profit by assuming it all goes to consumers. In the Walrasian model we

assume that consumers own shares of the firms’ profits: θij denotes consumer i’s share of firm j’s

profit (with 0 5 θij 5 1 for all i and j, and
∑

i∈N θij = 1 for each j ∈M) .

We alter the tentative definition of Walrasian equilibrium we gave earlier by changing the budget

constraint of each consumer i ∈ N to

p̂xxi + p̂yyi 5 p̂xx̊i + p̂yẙi +
∑
j∈M

θijπj(ẑj) ,

where πj(zj) := p̂yfj(zj)− p̂xzj is firm j’s profit as a function of its production plan zj.

If every firm’s fj is continuous and concave, then with this new definition of equilibrium for our

one-input one-output model with production, it’s straightforward to use the same methods we’ve

used before, when there was no production, to establish the existence of an equilibrium as well as

the two welfare theorems.
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For the more general case, with ` goods, a firm may have many inputs and many outputs, and

a particular good might be an input for some firms and an output for others. We can no longer

represent a firm’s production technology (its feasible production plans) by a production function,

because a given input vector will in general yield many different possible output vectors. Instead,

we represent a firm’s technology by a production set Yj ⊆ R`: Yj is the set of all production

plans (input-output `−tuples yj) that the firm is able to carry out, and the firm chooses one of

the plans yj ∈ Yj. We use the convention that yjk > 0 means that firm j is (net) producing good k

as an output, and yjk < 0 means that firm j is (net) using good k as an input. Consequently, firm

j’s profit from a production plan yj is its revenue from its outputs minus the cost of its inputs:

πj(yj) := p · yj =
∑
k∈O

pkyjk +
∑
k∈I

pkyjk =
∑
k∈O

pkyjk −
∑
k∈I

pk(−yjk) ,

where O is the set of goods that appear as outputs in yj and I is the set of goods that appear as

inputs in yj. (Since O and I depend upon yj, I should actually write O(yj) and I(y|).)

This gives us the following two definitions:

Definition: A private ownership economy is a list E =
(
(ui, x̊i)i∈N , (Yj)j∈M , (θij)N×M

)
where

for all i ∈ N and all j ∈M ,

ui : R`
+ → R, x̊i ∈ R`

+, Yj ⊆ R`
+, 0 5 θij 5 1, and

∑
i′∈N

θi′j = 1 .

Definition: A Walrasian equilibrium of an economy E =
(
(ui, x̊i)i∈N , (Yj)j∈M , (θij)N×M

)
is

a triple
(
p̂, (x̂i)N , (ŷ

j)M
)
∈ R`

+ × Rn`
+ × Rm` that satisfies

(U-max) ∀i ∈ N : x̂i maximizes ui subject to p̂ · xi 5 p̂ · x̊i +
∑

j∈M θijπ(yj)

(π-max) ∀j ∈M : ŷj maximizes π(yj) := p̂ · yj subject to yj ∈ Yj

(M-clr) For k = 1, . . . , `:
∑n

1 x̂i
k 5

∑n
1 x̊i

k +
∑m

1 ŷj
k, with equality if p̂k > 0 .

What about the existence and Pareto efficiency of equilibrium? If each consumer’s preference is

locally nonsatiated, our proof of the First Welfare Theorem can be straightforwardly augmented

with producers and still goes through. In the one-input-one-output case, if the consumers and firms

all have well-defined and continuous demand and supply functions over all price-lists p ∈ R2
+:

• We don’t need to make any change at all in our two-good proof of existence of equilibrium;

we simply need to recognize that the market excess demand function will now be the

sum of consumers’ demand functions, minus the firms’ supply functions.

• If the functions are all differentiable, then we can use the same calculus proofs of the

two welfare theorems as we’ve already given, augmenting them with firms.
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Of course, this still leaves open the issues of existence and the Second Welfare Theorem if there

are more than two goods, or if the behavioral functions may not be single-valued or may not be

defined when some prices are zero. These are issues we’ll take up later in the course, after we’ve

developed the necessary mathematical tools.

Constant Returns to Scale

Scale properties of production sets (firms’ technological capabilities) are important. Here we

address only constant returns to scale.

Definition: A production set Y has constant returns to scale if it satisfies the condition

if y ∈ Y and α ∈ R+, then αy ∈ Y .

Suppose p is the prevailing market price-list. If a firm has constant returns to scale and there is

any production plan y in its production set Y that yields positive profit p ·y at these prices, then

every scaled-up plan αy for any α > 1 will be feasible for the firm and will yield a larger profit,

αp · y. Therefore this firm does not have any profit-maximizing production plan at these prices

— the firm cannot satisfy the profit-maximization hypothesis. However, constant returns to scale

guarantees that the plan 0 — engaging in no productive activity — is in Y , and the plan 0 yields

zero profit. Combining these two facts tells us that if a firm with constant returns to scale does

have a profit-maximizing production plan y, then

• the firm’s profit is zero, and

• every scaled-up or scaled-down plan αy is also profit-maximizing — and therefore a

constant-returns-to-scale firm will not have a unique profit-maximizing production

plan.

For a firm with constant returns to scale, then, we needn’t be concerned about the distribution of

its profit as we were above.
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