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INTRODUCTION

• Wireless sensor network exhibits randomness

• Wireless sensor network topology is a graph

• Triangulation is a subgraph of the topology

• Triangulation mesh is very important for 
many applications of sensor networks:
geometry-based routing, localization, coverage, 
segmentation, data segmentation
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(a) A 2D network graph. (b) Triangulation under ideal CDG.
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(c) CDG (k=1): not planar.
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(d) CDM (k=1): planar but not triangulated.
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(e) Failed triangulation. (f) CDG (k=2): triangulated but coarse.

Fig. 2. Illustration of challenges in triangulation, where the circles indicate sensor nodes and the dashed lines are communication links. The solid black lines
illustrate virtual edges, which are realized by corresponding paths shown as solid grey lines. In subfigure (b), the red lines depict Voronoi cells. In subfigures
(c)-(f), the nodes with the same color belong to the same Voronoi cell, while the large circles (i.e., A-E) stand for landmarks.

subset of nodes as “landmarks” where any two landmarks
are about 2k-hops apart, where k is a given constant. A node
is associated to its closest landmark, resulting in a landmark
Voronoi complex (LVC). The respective dual of LVC, i.e.,
the combinatorial Delaunay graph (CDG), is obtained by
connecting two landmarks by a virtual edge if a pair of their
associated nodes are neighbors (i.e., their Voronoi cells share a
side). In the ideal case where the nodal density is high and the
Euclidian distances from a node to its nearby landmarks are
known, CDG is a triangulated virtual backbone (see Fig. 2(b)).
Under practical settings, however, CDG is not even planar,
because multiple sensors associated with different landmarks
may be adjacent to each other, leading to cross edges in CDG
(as shown in Fig. 2(c) where AC intersects BD and BE).
To planarize CDG, each landmark sends a packet to a neigh-

boring landmark through the shortest path. Two landmarks
are said to be connected by a virtual edge if and only if the
following two conditions are satisfied. First, all of the nodes
visited by the packet and their 1-hop neighbors are associated
to these two landmarks only. Second, assume the packet is sent
from Landmark i to Landmark j. Then the packet must visit
the nodes associated with Landmark i first, and then followed
by the nodes associated with Landmark j, without interleaving.
The resulting subgraph is a Combinatorial Delaunay Map
(CDM). It is proven that CDM is a planar graph under the
Quasi-UDG communication model with 1≥ !≥ 1/

√
2 [14].

However CDM is not always triangulated. Polygons with
more than three edges may exist (see Polygon ABCDE in
Fig 2(d)). To this end, heuristics are proposed in [2] and
[3] to construct triangulated subgraphs by adding appropriate
virtual edges in CDM. More specifically, if a landmark, e.g.,
Landmark i, has a non-connected neighboring landmark (e.g.,

Landmark j), it sends a connection packet to the latter. The
packet will be dropped if it reaches an intermediate node that is
already on the shortest path between two connected landmarks,
in order to avoid cross virtual edges. If the connection packet
arrives at Landmark j, a virtual edge can be safely added.
While the above scheme appears reasonable and has been

employed to produce triangulated virtual backbone in several
works, it does not ensure successful triangulation in polyno-
mial time. For example, if a virtual edge is added between
Landmarks A and C in Fig. 2(e), no other virtual edges can be
further added, resulting in a failure in triangulation. None of
the available heuristics [2], [3] can identify the appropriate
sequence in adding virtual edges. Instead, they reduce the
probability of failures by increasing k (i.e., by selecting a set
of sparse landmarks). The larger the k, the bigger the Voronoi
cells, and thus the lower the probability that multiple sensors
associated with different landmarks are adjacent to each other.
As a result, cross edges become rare in CDG (as demonstrated
in Fig. 2(f)). In practice, k is usually set to 3 ∼ 5 or higher.
Therefore, the triangulation is rather coarse, unsatisfactory for
applications that require fine network graph features.

III. TRIANGULATION FOR 2D NETWORKS
In this section, we introduce the proposed triangulation

algorithm for 2D networks.

A. Definitions
By following traditions, we represent a wireless sensor

network by a graph G(V,E), where V denotes the set of
nodes and E the set of edges in the network. To facilitate
our exposition, we first introduce several basic definitions.
Definition 1: The node neighbor set (NNS) of a node

includes all of its one-hop neighboring nodes.
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INTRODUCTION

• We proposed a distributed triangulation 
algorithm

• works for any arbitrary 2D sensor networks 
without communication model constraint, 
and we prove the correctness of the 
algorithm in 2D sensor networks

• tolerates some measurement errors

• also works for 3D open or closed surfaces
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TRIANGULATION ALGORITHM

• Basic idea

• Each triangulation mesh edge will associate 
with two triangles, except boundary edge 

• If we add extra edges into triangulation 
mesh, they will change this association

• The association can be used to identify 
these extra edges.
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TRIANGULATION ALGORITHM

• Definitions

• node neighbor set (NNS), Nv(i)={h,k,l,m}

• edge neighbor set (ENS), Ne(eij)=Nv(i)∩Nv(j)={k,l,m}

• refined edge neighbor set (RNS), Re(eij)={l,m}

• edge weight, W(eij)=2, W(ehk)=2

• associated edge neighbor set
(AENS), A(eij)={eil, eim, ejl, ejm}

• equivalent edges, eij, elm

• critical edge, ekj

4

Let Nv(i) denote the NNS of Node i. For example, Nv(i) =
{h,k, l,m, j} and Nv( j) = {k, l,m,n, i} for Nodes i and j in
Fig. 3(a), respectively.
Definition 2: The edge neighbor set (ENS) includes the

common one-hop neighbors of the two end nodes of an edge.
The ENS of Edge ei j is denoted by Ne(ei j). For example,

Ne(ei j) = Nv(i)∩Nv( j) = {k, l,m}, for Edge ei j in Fig. 3(a).
Definition 3: The refined edge neighbor set (RENS) of an

edge includes a subset of nodes in the ENS of the edge, such
that each triangle formed by the edge and a node in its RENS
does not contain any node in its ENS.
More specifically, let Re(ei j) denote the RENS of Edge ei j.

Re(ei j) = {v | v ∈ Ne(ei j) and #i jv does not contain Node
v′, ∀v′ ∈ (Ne(ei j) − v)}. For example, Re(ei j) = {l,m} for
Edge ei j in Fig. 3(a). A node v′ can judge if it is inside a
triangle #i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
Definition 6: Two edges are called equivalent edges if they

share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent

edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
the weight of the edges in their AENS.
Definition 7: For a given edge, four edges in its AENS

may form a quadrilateral. If the edge is the only diagonal of
the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
NNS, ENS, RENS, AENS, edge weight, and critical and

equivalent edges can all be determined by local information.
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Fig. 3. Illustration of node neighbor set, edge neighbor set, refined edge
neighbor set, edge weight, associated edge neighbor set, equivalent edges, and
critical edges. For Nodes i and j in the original graph, Nv(i) = {h,k, l,m, j} and
Nv( j) = {k, l,m,n, i}. For Edge ei j in the original graph, Ne(ei j) = {k, l,m},
Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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nodes. Such check excludes a triangle from containing small
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faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
Definition 6: Two edges are called equivalent edges if they

share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent

edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
the weight of the edges in their AENS.
Definition 7: For a given edge, four edges in its AENS

may form a quadrilateral. If the edge is the only diagonal of
the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
NNS, ENS, RENS, AENS, edge weight, and critical and

equivalent edges can all be determined by local information.
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Nv( j) = {k, l,m,n, i}. For Edge ei j in the original graph, Ne(ei j) = {k, l,m},
Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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triangle #i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
Definition 6: Two edges are called equivalent edges if they

share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent

edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
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the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
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Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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v′, ∀v′ ∈ (Ne(ei j) − v)}. For example, Re(ei j) = {l,m} for
Edge ei j in Fig. 3(a). A node v′ can judge if it is inside a
triangle #i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
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share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent
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The removal of any one of them leads to the same impact on
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the quadrilateral, it is marked as a critical edge.
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because there is no diagonal in the corresponding quadrilateral.
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Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
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the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
NNS, ENS, RENS, AENS, edge weight, and critical and

equivalent edges can all be determined by local information.
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Fig. 3. Illustration of node neighbor set, edge neighbor set, refined edge
neighbor set, edge weight, associated edge neighbor set, equivalent edges, and
critical edges. For Nodes i and j in the original graph, Nv(i) = {h,k, l,m, j} and
Nv( j) = {k, l,m,n, i}. For Edge ei j in the original graph, Ne(ei j) = {k, l,m},
Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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Let Nv(i) denote the NNS of Node i. For example, Nv(i) =
{h,k, l,m, j} and Nv( j) = {k, l,m,n, i} for Nodes i and j in
Fig. 3(a), respectively.
Definition 2: The edge neighbor set (ENS) includes the

common one-hop neighbors of the two end nodes of an edge.
The ENS of Edge ei j is denoted by Ne(ei j). For example,

Ne(ei j) = Nv(i)∩Nv( j) = {k, l,m}, for Edge ei j in Fig. 3(a).
Definition 3: The refined edge neighbor set (RENS) of an

edge includes a subset of nodes in the ENS of the edge, such
that each triangle formed by the edge and a node in its RENS
does not contain any node in its ENS.
More specifically, let Re(ei j) denote the RENS of Edge ei j.

Re(ei j) = {v | v ∈ Ne(ei j) and #i jv does not contain Node
v′, ∀v′ ∈ (Ne(ei j) − v)}. For example, Re(ei j) = {l,m} for
Edge ei j in Fig. 3(a). A node v′ can judge if it is inside a
triangle #i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
Definition 6: Two edges are called equivalent edges if they

share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent

edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
the weight of the edges in their AENS.
Definition 7: For a given edge, four edges in its AENS

may form a quadrilateral. If the edge is the only diagonal of
the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
NNS, ENS, RENS, AENS, edge weight, and critical and

equivalent edges can all be determined by local information.
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critical edges. For Nodes i and j in the original graph, Nv(i) = {h,k, l,m, j} and
Nv( j) = {k, l,m,n, i}. For Edge ei j in the original graph, Ne(ei j) = {k, l,m},
Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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Let Nv(i) denote the NNS of Node i. For example, Nv(i) =
{h,k, l,m, j} and Nv( j) = {k, l,m,n, i} for Nodes i and j in
Fig. 3(a), respectively.
Definition 2: The edge neighbor set (ENS) includes the

common one-hop neighbors of the two end nodes of an edge.
The ENS of Edge ei j is denoted by Ne(ei j). For example,

Ne(ei j) = Nv(i)∩Nv( j) = {k, l,m}, for Edge ei j in Fig. 3(a).
Definition 3: The refined edge neighbor set (RENS) of an

edge includes a subset of nodes in the ENS of the edge, such
that each triangle formed by the edge and a node in its RENS
does not contain any node in its ENS.
More specifically, let Re(ei j) denote the RENS of Edge ei j.

Re(ei j) = {v | v ∈ Ne(ei j) and #i jv does not contain Node
v′, ∀v′ ∈ (Ne(ei j) − v)}. For example, Re(ei j) = {l,m} for
Edge ei j in Fig. 3(a). A node v′ can judge if it is inside a
triangle #i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
Definition 6: Two edges are called equivalent edges if they

share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent

edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
the weight of the edges in their AENS.
Definition 7: For a given edge, four edges in its AENS

may form a quadrilateral. If the edge is the only diagonal of
the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
NNS, ENS, RENS, AENS, edge weight, and critical and
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Fig. 3. Illustration of node neighbor set, edge neighbor set, refined edge
neighbor set, edge weight, associated edge neighbor set, equivalent edges, and
critical edges. For Nodes i and j in the original graph, Nv(i) = {h,k, l,m, j} and
Nv( j) = {k, l,m,n, i}. For Edge ei j in the original graph, Ne(ei j) = {k, l,m},
Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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• Lemma 1: A subgraph of G is triangulated if 
and only if every edge of the subgraph has a 
weight of two.

• Given a graph G and a triangulation subgraph 
T, extra edges are G-T

• Objective: remove all extra edges

• There are three type of extra edges, e0, e1, e2
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Fig. 4. Three types of extra edge, e0, e1, and e2, withW (e0) = 0,W (e1) = 1,
and W (e2) = 2.

!

"
# $

%
&

(a)

!

"
# $

%
&

(b)

Fig. 5. Illustration of independent and dependent extra edges (indicated by
dashed lines). (a) Independent extra edges. (b) Dependent extra edges.

among them for now. The extra edge exists in three ways
as illustrated in Fig. 4, dubbed e0, e1, and e2, respectively.
An e0 edge (see Edge eim in Fig. 4(a) for example) does
not form a triangle with any triangulation edges. Its weight
is zero. Adding such an extra edge does not affect the weight
of existing triangulation edges. An e1 edge forms one triangle
with two triangulation edges (as shown in Fig. 4(b)). It has a
weight of one and increases the weight of two triangulation
edges by one. Fig. 4(c) illustrates an e2 edge, which has a
weight of two and increases the weight of four triangulation
edges by one.
Definition 9: Two extra edges are independent if they are

not in each other’s AENS.
If all extra edges are independent (see Fig. 5(a)), their

weights are 0, 1, and 2 for e0, e1, and e2 edges, respectively,
as discussed above. However, if they are not independent, the
extra edges themselves may form triangles, and thus increase
their weight (as illustrated in Fig. 5(b)).
To produce a triangulated subgraph, we must remove all

corresponding extra edges.
Theorem 1: An edge with a weight less than two must be

removed in order to produce a triangulated subgraph.
Proof: To prove the theorem, we show that an edge with

a weight less than two must be an extra edge of e0 or e1 type
and thus must be removed.
Without extra edges, the weight of a triangulation edge is

two. By taking extra edges into consideration, the weight of a
triangulation edge either remains as two or increases to three
or higher. Similarly, an e2 extra edge must have a weigh of
two or higher in G.
Therefore, an edge with a weight less than two must be

an extra edge of e0 or e1 type. Such an extra edge must be
removed in order to produce a triangulated subgraph.

Based on Theorem 1, it is safe to remove an edge whose
weight is less than two. More specifically, if an edge finds its
weight less than two, it is removed from G and each edge in
the AENS of the removed edge must decrease its weigh by
one, because it no longer forms a triangle with the removed
edge. Note that after an edge is removed, it may lead to
another edge’s weight lower than two and thus being removed
subsequently. After this step, we arrive at a subgraph of G,
denoted by G′, in which every edge has a weight no less than
two. Most e0 and e1 edges, if not all, have been removed by
now, except those in two special structures as to be discussed
in Lemmas 2 and 3.
Next, we discuss how to remove e2 edges in G′.
Theorem 2: An non-critical edge can be recognized as an

e2 edge and safely removed if all edges in its AENS have their
weight greater than two.

Proof: The theorem is twofold. First, all e2 extra edges
(or their corresponding equivalents) will be removed. Second,
a triangulation edge (or its equivalent) will be safe (i.e., not
be removed).
We prove the first part of the theorem via deduction. Let

G′(k) denote a subgraph G′ with k e2 extra edges. First, if there
is only one e2 edge in G′, it can be easily identified, since it
has a weigh of two and each edge in its AENS has a weight
of three (see Edge emh in Fig. 4(c) for example). Therefore,
the edge can be removed, and the edges in its AENS reduce
their weight by one, arriving at a triangulated subgraph where
every edge has a weight of two. Note that there may exist
multiple such edges (e.g., Edge ekn and Edge emh in Fig. 4(c))
that can be treated as an e2 extra edge and removed to yield a
equally good triangulation. We do not differentiate them. Then
we show that a subgraph with k+1 e2 edges (i.e., G′(k+1))
can be reduced to a subgraph with k e2 edges (i.e., G′(k)),
where k≥ 1. G′(k+1) can be considered as a result of adding
an extra e2 edge (denoted by e′) in G′(k). Since all edges in
G′(k) have their weight no less than two, adding e′ increases
the weight of the edges in A(e′) by one and thus become great
than two. Therefore it can be identified and removed, reducing
G′(k+ 1) to G′(k). Alternatively, any e2 edge originally in
G′(k) has the same property as e′ and thus may be removed
to reduce G′(k+ 1) to G′(k) too. Therefore all e2 edges (or
their corresponding equivalents) can be removed.
Now we prove the second part of the theorem. A triangu-

lation edge (e.g., Edge ekn in Fig. 4(c)) is always associated
with a quadrilateral formed by four edges in its AENS (i.e.,
Edges ekm, emn, enh, and ehk in Fig. 4(c)). If the triangulation
edge is the only diagonal of the quadrilateral (by assuming that
Edge emh does not exist), it is a critical edge and thus will not
be removed. Otherwise, if there are two diagonals, then they
are equivalent. If any one of them is removed, the other edge
becomes critical, and thus will be kept. As a result, either the
triangulation edge or its equivalent will not be removed.
Therefore the theorem is proven.
The subgraph obtained by the above process is denoted by

G′′. If all extra edges in G′ are e2 type, then G′′ is already a
triangulated subgraph. Now we consider the scenarios with e0
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Fig. 5. Illustration of independent and dependent extra edges (indicated by
dashed lines). (a) Independent extra edges. (b) Dependent extra edges.

among them for now. The extra edge exists in three ways
as illustrated in Fig. 4, dubbed e0, e1, and e2, respectively.
An e0 edge (see Edge eim in Fig. 4(a) for example) does
not form a triangle with any triangulation edges. Its weight
is zero. Adding such an extra edge does not affect the weight
of existing triangulation edges. An e1 edge forms one triangle
with two triangulation edges (as shown in Fig. 4(b)). It has a
weight of one and increases the weight of two triangulation
edges by one. Fig. 4(c) illustrates an e2 edge, which has a
weight of two and increases the weight of four triangulation
edges by one.
Definition 9: Two extra edges are independent if they are

not in each other’s AENS.
If all extra edges are independent (see Fig. 5(a)), their

weights are 0, 1, and 2 for e0, e1, and e2 edges, respectively,
as discussed above. However, if they are not independent, the
extra edges themselves may form triangles, and thus increase
their weight (as illustrated in Fig. 5(b)).
To produce a triangulated subgraph, we must remove all

corresponding extra edges.
Theorem 1: An edge with a weight less than two must be

removed in order to produce a triangulated subgraph.
Proof: To prove the theorem, we show that an edge with

a weight less than two must be an extra edge of e0 or e1 type
and thus must be removed.
Without extra edges, the weight of a triangulation edge is

two. By taking extra edges into consideration, the weight of a
triangulation edge either remains as two or increases to three
or higher. Similarly, an e2 extra edge must have a weigh of
two or higher in G.
Therefore, an edge with a weight less than two must be

an extra edge of e0 or e1 type. Such an extra edge must be
removed in order to produce a triangulated subgraph.

Based on Theorem 1, it is safe to remove an edge whose
weight is less than two. More specifically, if an edge finds its
weight less than two, it is removed from G and each edge in
the AENS of the removed edge must decrease its weigh by
one, because it no longer forms a triangle with the removed
edge. Note that after an edge is removed, it may lead to
another edge’s weight lower than two and thus being removed
subsequently. After this step, we arrive at a subgraph of G,
denoted by G′, in which every edge has a weight no less than
two. Most e0 and e1 edges, if not all, have been removed by
now, except those in two special structures as to be discussed
in Lemmas 2 and 3.
Next, we discuss how to remove e2 edges in G′.
Theorem 2: An non-critical edge can be recognized as an

e2 edge and safely removed if all edges in its AENS have their
weight greater than two.

Proof: The theorem is twofold. First, all e2 extra edges
(or their corresponding equivalents) will be removed. Second,
a triangulation edge (or its equivalent) will be safe (i.e., not
be removed).
We prove the first part of the theorem via deduction. Let

G′(k) denote a subgraph G′ with k e2 extra edges. First, if there
is only one e2 edge in G′, it can be easily identified, since it
has a weigh of two and each edge in its AENS has a weight
of three (see Edge emh in Fig. 4(c) for example). Therefore,
the edge can be removed, and the edges in its AENS reduce
their weight by one, arriving at a triangulated subgraph where
every edge has a weight of two. Note that there may exist
multiple such edges (e.g., Edge ekn and Edge emh in Fig. 4(c))
that can be treated as an e2 extra edge and removed to yield a
equally good triangulation. We do not differentiate them. Then
we show that a subgraph with k+ 1 e2 edges (i.e., G′(k+ 1))
can be reduced to a subgraph with k e2 edges (i.e., G′(k)),
where k≥ 1. G′(k+1) can be considered as a result of adding
an extra e2 edge (denoted by e′) in G′(k). Since all edges in
G′(k) have their weight no less than two, adding e′ increases
the weight of the edges in A(e′) by one and thus become great
than two. Therefore it can be identified and removed, reducing
G′(k+ 1) to G′(k). Alternatively, any e2 edge originally in
G′(k) has the same property as e′ and thus may be removed
to reduce G′(k+ 1) to G′(k) too. Therefore all e2 edges (or
their corresponding equivalents) can be removed.
Now we prove the second part of the theorem. A triangu-

lation edge (e.g., Edge ekn in Fig. 4(c)) is always associated
with a quadrilateral formed by four edges in its AENS (i.e.,
Edges ekm, emn, enh, and ehk in Fig. 4(c)). If the triangulation
edge is the only diagonal of the quadrilateral (by assuming that
Edge emh does not exist), it is a critical edge and thus will not
be removed. Otherwise, if there are two diagonals, then they
are equivalent. If any one of them is removed, the other edge
becomes critical, and thus will be kept. As a result, either the
triangulation edge or its equivalent will not be removed.
Therefore the theorem is proven.
The subgraph obtained by the above process is denoted by

G′′. If all extra edges in G′ are e2 type, then G′′ is already a
triangulated subgraph. Now we consider the scenarios with e0

5

!

"
# $

%
&

(a) e0

!

"
# $

%
&

(b) e1

!

"
# $

%
&

(c) e2

Fig. 4. Three types of extra edge, e0, e1, and e2, with W(e0) = 0,W(e1) = 1,
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Fig. 5. Illustration of independent and dependent extra edges (indicated by
dashed lines). (a) Independent extra edges. (b) Dependent extra edges.

among them for now. The extra edge exists in three ways
as illustrated in Fig. 4, dubbed e0, e1, and e2, respectively.
An e0 edge (see Edge eim in Fig. 4(a) for example) does
not form a triangle with any triangulation edges. Its weight
is zero. Adding such an extra edge does not affect the weight
of existing triangulation edges. An e1 edge forms one triangle
with two triangulation edges (as shown in Fig. 4(b)). It has a
weight of one and increases the weight of two triangulation
edges by one. Fig. 4(c) illustrates an e2 edge, which has a
weight of two and increases the weight of four triangulation
edges by one.
Definition 9: Two extra edges are independent if they are

not in each other’s AENS.
If all extra edges are independent (see Fig. 5(a)), their

weights are 0, 1, and 2 for e0, e1, and e2 edges, respectively,
as discussed above. However, if they are not independent, the
extra edges themselves may form triangles, and thus increase
their weight (as illustrated in Fig. 5(b)).
To produce a triangulated subgraph, we must remove all

corresponding extra edges.
Theorem 1: An edge with a weight less than two must be

removed in order to produce a triangulated subgraph.
Proof: To prove the theorem, we show that an edge with

a weight less than two must be an extra edge of e0 or e1 type
and thus must be removed.
Without extra edges, the weight of a triangulation edge is

two. By taking extra edges into consideration, the weight of a
triangulation edge either remains as two or increases to three
or higher. Similarly, an e2 extra edge must have a weigh of
two or higher in G.
Therefore, an edge with a weight less than two must be

an extra edge of e0 or e1 type. Such an extra edge must be
removed in order to produce a triangulated subgraph.

Based on Theorem 1, it is safe to remove an edge whose
weight is less than two. More specifically, if an edge finds its
weight less than two, it is removed from G and each edge in
the AENS of the removed edge must decrease its weigh by
one, because it no longer forms a triangle with the removed
edge. Note that after an edge is removed, it may lead to
another edge’s weight lower than two and thus being removed
subsequently. After this step, we arrive at a subgraph of G,
denoted by G′, in which every edge has a weight no less than
two. Most e0 and e1 edges, if not all, have been removed by
now, except those in two special structures as to be discussed
in Lemmas 2 and 3.
Next, we discuss how to remove e2 edges in G′.
Theorem 2: An non-critical edge can be recognized as an

e2 edge and safely removed if all edges in its AENS have their
weight greater than two.

Proof: The theorem is twofold. First, all e2 extra edges
(or their corresponding equivalents) will be removed. Second,
a triangulation edge (or its equivalent) will be safe (i.e., not
be removed).
We prove the first part of the theorem via deduction. Let

G′(k) denote a subgraph G′ with k e2 extra edges. First, if there
is only one e2 edge in G′, it can be easily identified, since it
has a weigh of two and each edge in its AENS has a weight
of three (see Edge emh in Fig. 4(c) for example). Therefore,
the edge can be removed, and the edges in its AENS reduce
their weight by one, arriving at a triangulated subgraph where
every edge has a weight of two. Note that there may exist
multiple such edges (e.g., Edge ekn and Edge emh in Fig. 4(c))
that can be treated as an e2 extra edge and removed to yield a
equally good triangulation. We do not differentiate them. Then
we show that a subgraph with k+ 1 e2 edges (i.e., G′(k+ 1))
can be reduced to a subgraph with k e2 edges (i.e., G′(k)),
where k≥ 1. G′(k+1) can be considered as a result of adding
an extra e2 edge (denoted by e′) in G′(k). Since all edges in
G′(k) have their weight no less than two, adding e′ increases
the weight of the edges in A(e′) by one and thus become great
than two. Therefore it can be identified and removed, reducing
G′(k+ 1) to G′(k). Alternatively, any e2 edge originally in
G′(k) has the same property as e′ and thus may be removed
to reduce G′(k+ 1) to G′(k) too. Therefore all e2 edges (or
their corresponding equivalents) can be removed.
Now we prove the second part of the theorem. A triangu-

lation edge (e.g., Edge ekn in Fig. 4(c)) is always associated
with a quadrilateral formed by four edges in its AENS (i.e.,
Edges ekm, emn, enh, and ehk in Fig. 4(c)). If the triangulation
edge is the only diagonal of the quadrilateral (by assuming that
Edge emh does not exist), it is a critical edge and thus will not
be removed. Otherwise, if there are two diagonals, then they
are equivalent. If any one of them is removed, the other edge
becomes critical, and thus will be kept. As a result, either the
triangulation edge or its equivalent will not be removed.
Therefore the theorem is proven.
The subgraph obtained by the above process is denoted by

G′′. If all extra edges in G′ are e2 type, then G′′ is already a
triangulated subgraph. Now we consider the scenarios with e0
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among them for now. The extra edge exists in three ways
as illustrated in Fig. 4, dubbed e0, e1, and e2, respectively.
An e0 edge (see Edge eim in Fig. 4(a) for example) does
not form a triangle with any triangulation edges. Its weight
is zero. Adding such an extra edge does not affect the weight
of existing triangulation edges. An e1 edge forms one triangle
with two triangulation edges (as shown in Fig. 4(b)). It has a
weight of one and increases the weight of two triangulation
edges by one. Fig. 4(c) illustrates an e2 edge, which has a
weight of two and increases the weight of four triangulation
edges by one.
Definition 9: Two extra edges are independent if they are

not in each other’s AENS.
If all extra edges are independent (see Fig. 5(a)), their

weights are 0, 1, and 2 for e0, e1, and e2 edges, respectively,
as discussed above. However, if they are not independent, the
extra edges themselves may form triangles, and thus increase
their weight (as illustrated in Fig. 5(b)).
To produce a triangulated subgraph, we must remove all

corresponding extra edges.
Theorem 1: An edge with a weight less than two must be

removed in order to produce a triangulated subgraph.
Proof: To prove the theorem, we show that an edge with

a weight less than two must be an extra edge of e0 or e1 type
and thus must be removed.
Without extra edges, the weight of a triangulation edge is

two. By taking extra edges into consideration, the weight of a
triangulation edge either remains as two or increases to three
or higher. Similarly, an e2 extra edge must have a weigh of
two or higher in G.
Therefore, an edge with a weight less than two must be

an extra edge of e0 or e1 type. Such an extra edge must be
removed in order to produce a triangulated subgraph.

Based on Theorem 1, it is safe to remove an edge whose
weight is less than two. More specifically, if an edge finds its
weight less than two, it is removed from G and each edge in
the AENS of the removed edge must decrease its weigh by
one, because it no longer forms a triangle with the removed
edge. Note that after an edge is removed, it may lead to
another edge’s weight lower than two and thus being removed
subsequently. After this step, we arrive at a subgraph of G,
denoted by G′, in which every edge has a weight no less than
two. Most e0 and e1 edges, if not all, have been removed by
now, except those in two special structures as to be discussed
in Lemmas 2 and 3.
Next, we discuss how to remove e2 edges in G′.
Theorem 2: An non-critical edge can be recognized as an

e2 edge and safely removed if all edges in its AENS have their
weight greater than two.

Proof: The theorem is twofold. First, all e2 extra edges
(or their corresponding equivalents) will be removed. Second,
a triangulation edge (or its equivalent) will be safe (i.e., not
be removed).
We prove the first part of the theorem via deduction. Let

G′(k) denote a subgraph G′ with k e2 extra edges. First, if there
is only one e2 edge in G′, it can be easily identified, since it
has a weigh of two and each edge in its AENS has a weight
of three (see Edge emh in Fig. 4(c) for example). Therefore,
the edge can be removed, and the edges in its AENS reduce
their weight by one, arriving at a triangulated subgraph where
every edge has a weight of two. Note that there may exist
multiple such edges (e.g., Edge ekn and Edge emh in Fig. 4(c))
that can be treated as an e2 extra edge and removed to yield a
equally good triangulation. We do not differentiate them. Then
we show that a subgraph with k+ 1 e2 edges (i.e., G′(k+ 1))
can be reduced to a subgraph with k e2 edges (i.e., G′(k)),
where k≥ 1. G′(k+1) can be considered as a result of adding
an extra e2 edge (denoted by e′) in G′(k). Since all edges in
G′(k) have their weight no less than two, adding e′ increases
the weight of the edges in A(e′) by one and thus become great
than two. Therefore it can be identified and removed, reducing
G′(k+ 1) to G′(k). Alternatively, any e2 edge originally in
G′(k) has the same property as e′ and thus may be removed
to reduce G′(k+ 1) to G′(k) too. Therefore all e2 edges (or
their corresponding equivalents) can be removed.
Now we prove the second part of the theorem. A triangu-

lation edge (e.g., Edge ekn in Fig. 4(c)) is always associated
with a quadrilateral formed by four edges in its AENS (i.e.,
Edges ekm, emn, enh, and ehk in Fig. 4(c)). If the triangulation
edge is the only diagonal of the quadrilateral (by assuming that
Edge emh does not exist), it is a critical edge and thus will not
be removed. Otherwise, if there are two diagonals, then they
are equivalent. If any one of them is removed, the other edge
becomes critical, and thus will be kept. As a result, either the
triangulation edge or its equivalent will not be removed.
Therefore the theorem is proven.
The subgraph obtained by the above process is denoted by

G′′. If all extra edges in G′ are e2 type, then G′′ is already a
triangulated subgraph. Now we consider the scenarios with e0
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and e1 edges remaining in G′′.
Lemma 2: An e0 extra edge can exist in G′′, only if it

depends on at least two other extra edges.
Proof: As discussed earlier, an e0 edge has a weight of

zero, if it doesn’t depend on other extra edges. When it is
dependent on another extra edge, or in other words, it is in
the AENS of another extra edge, its weight is increased by
one. Since the weight of every edge in G′′ must be no less
than 2, the e0 extra edge must at least depend on two other
extra edges.
Lemma 3: An e1 extra edge can exist in G′′, only if it at

least depends on another extra edge.
Proof: Similar to the proof of Lemma 2.

To keep their weight no less than two, the e0 and e1 edges
must depend on each other in G′′ by forming a “chain”. There
are two types of chains, namely loop and non-loop chains (as
shown Fig. 6). A loop chain consists of all e0 edges, forming
a loop as shown in Fig. 6(a). In a non-loop chain, the head
or tail edge of the chain must be e1, because it only has one
dependent extra edge. An example of the non-loop chain in
illustrated in Fig. 6(b): e jm− emi− ein, which is in a pattern
of e1− e0− e1. A non-loop chain has a minimum length of
two edges. In addition, Fig. 6(c) shows a special case of the
non-loop chain, where the head and tail are the same e1 edge
(i.e., Edge e jm).
It is easy to identify a chain (either loop or non-loop).

Except the e1 edge in a non-loop chain that serves as both
head and tail (e.g., Edge e jm in Fig. 6(c)), an edge in a chain
has a weight of two, and at least one edge in its AENS has
its weigh equal to two and another edge in its AENS has its
weigh greater than two. Therefore, we can start from one such
edge, and expand the chain by adding another edge with the
same property and in the AENS of (i.e., dependent to) an edge
already in the chain, and so on and so forth, until no additional
edges can be added.

If the identified chain has a length of two or longer, all edges
in the chain are removed. Similar to our earlier discussions,
once an edge is removed, its relevant edges update their weight
accordingly. As a specific case, the e1 edge that serves as both
head and tail of a non-loop chain (as shown in Fig. 6(c)) will
be left alone as a separate e1 edge with a weight of one, after
other edges in its chain are removed. Therefore, it removes
itself, according the Theorem 1.

C. Algorithm
The theory discussed above provides a clear guideline for

our algorithm development. The proposed algorithm is fully
distributed. Each edge performs the following operations:
Step 1. Initialization. During initialization, each edge com-
municates with its neighbors to acquire local information to
determine its NNS, ENS, RENS, AENS, edge weight, critical
edge and equivalent edges.
Step 2. Iterative edge removal. After initialization, each edge
checks if itself should be removed according to Theorems 1
and 2. This is an iterative process, because the removal of an
edge may affect its neighboring edges (including all of their
parameters discussed above). We assume that two dependent
edges are not removed at exactly the same time via a local
signaling scheme, to avoid inconsistency.

• An edge removes itself and informs its neighbors of the
removal if it finds its weight less than two.

• An edge removes itself and informs its neighbors of the
removal if it is an non-critical edge and all edges in its
AENS have their weight greater than two.

• An edge updates its weight whenever there is a change
in its AENS.

Step 3. Removal of e0 and e1 chains. The remaining extra
edges not removed in Step 2 are e0 and e1 edges that form
chain(s). A chain is identified according to its properties
revealed by Lemmas 2 and 3 and relevant discussions in
Sec. III-B. All edges in the chain with a length of two or
longer are e0 and e1 edges and thus removed. At the same
time, a remaining edge updates its weight and removes itself
if its weight becomes less than two.
The time complexity of the algorithm depends on the iter-

ations in Step 2. Since an iteration removes at least one edge
and no edges are added during the process, the complexity is
O(n), where n is the number of nodes in the network.

IV. TRIANGULATION FOR 3D SURFACE NETWORKS
The triangulation algorithm discussed above can be ex-

tended to a wireless network deployed on a 3D surface.
However, although a small chart of smooth 3D surface is
intrinsically the same as the 2D plane in theory, the former
introduces additional challenges in the calculation of edge
weight under practical network settings. More specifically,
to determine the RENS and accordingly the edge weight
correctly, one needs to judge if a triangle contains any nodes.
Under a 2D setting, it excludes a big triangle that contains
nodes (see !i jk illustrated in Fig 3(a)), intrinsically ensuring
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• Step3: Removal of e0 and e1 chains.



integrated Wireless Information Network (iWIN) Lab

EXTENSION TO 3D SURFACE

• Similar algorithm can be applied in a sensor 
network on  3D surface with minor 
modification in determining RNS and edge 
weight

6

! !

"

#

$ %

&

'

(a) Loop chain.

!

"
#

"

!

"

(b) Non-loop chain.

! !

#

$ %

$

(c) Same head and tail.

Fig. 6. Illustration of non-loop and loop chains.

i

j

k

l

(a) Node l and !i jk form a tetra-
hedron.

i

j

k

l

l'

(b) Project Node l onto the plane
of !i jk.

Fig. 7. Illustration of projection in 3D surface networks.

and e1 edges remaining in G′′.
Lemma 2: An e0 extra edge can exist in G′′, only if it

depends on at least two other extra edges.
Proof: As discussed earlier, an e0 edge has a weight of

zero, if it doesn’t depend on other extra edges. When it is
dependent on another extra edge, or in other words, it is in
the AENS of another extra edge, its weight is increased by
one. Since the weight of every edge in G′′ must be no less
than 2, the e0 extra edge must at least depend on two other
extra edges.
Lemma 3: An e1 extra edge can exist in G′′, only if it at

least depends on another extra edge.
Proof: Similar to the proof of Lemma 2.

To keep their weight no less than two, the e0 and e1 edges
must depend on each other in G′′ by forming a “chain”. There
are two types of chains, namely loop and non-loop chains (as
shown Fig. 6). A loop chain consists of all e0 edges, forming
a loop as shown in Fig. 6(a). In a non-loop chain, the head
or tail edge of the chain must be e1, because it only has one
dependent extra edge. An example of the non-loop chain in
illustrated in Fig. 6(b): e jm− emi− ein, which is in a pattern
of e1− e0− e1. A non-loop chain has a minimum length of
two edges. In addition, Fig. 6(c) shows a special case of the
non-loop chain, where the head and tail are the same e1 edge
(i.e., Edge e jm).
It is easy to identify a chain (either loop or non-loop).

Except the e1 edge in a non-loop chain that serves as both
head and tail (e.g., Edge e jm in Fig. 6(c)), an edge in a chain
has a weight of two, and at least one edge in its AENS has
its weigh equal to two and another edge in its AENS has its
weigh greater than two. Therefore, we can start from one such
edge, and expand the chain by adding another edge with the
same property and in the AENS of (i.e., dependent to) an edge
already in the chain, and so on and so forth, until no additional
edges can be added.

If the identified chain has a length of two or longer, all edges
in the chain are removed. Similar to our earlier discussions,
once an edge is removed, its relevant edges update their weight
accordingly. As a specific case, the e1 edge that serves as both
head and tail of a non-loop chain (as shown in Fig. 6(c)) will
be left alone as a separate e1 edge with a weight of one, after
other edges in its chain are removed. Therefore, it removes
itself, according the Theorem 1.

C. Algorithm
The theory discussed above provides a clear guideline for

our algorithm development. The proposed algorithm is fully
distributed. Each edge performs the following operations:
Step 1. Initialization. During initialization, each edge com-
municates with its neighbors to acquire local information to
determine its NNS, ENS, RENS, AENS, edge weight, critical
edge and equivalent edges.
Step 2. Iterative edge removal. After initialization, each edge
checks if itself should be removed according to Theorems 1
and 2. This is an iterative process, because the removal of an
edge may affect its neighboring edges (including all of their
parameters discussed above). We assume that two dependent
edges are not removed at exactly the same time via a local
signaling scheme, to avoid inconsistency.

• An edge removes itself and informs its neighbors of the
removal if it finds its weight less than two.

• An edge removes itself and informs its neighbors of the
removal if it is an non-critical edge and all edges in its
AENS have their weight greater than two.

• An edge updates its weight whenever there is a change
in its AENS.

Step 3. Removal of e0 and e1 chains. The remaining extra
edges not removed in Step 2 are e0 and e1 edges that form
chain(s). A chain is identified according to its properties
revealed by Lemmas 2 and 3 and relevant discussions in
Sec. III-B. All edges in the chain with a length of two or
longer are e0 and e1 edges and thus removed. At the same
time, a remaining edge updates its weight and removes itself
if its weight becomes less than two.
The time complexity of the algorithm depends on the iter-

ations in Step 2. Since an iteration removes at least one edge
and no edges are added during the process, the complexity is
O(n), where n is the number of nodes in the network.

IV. TRIANGULATION FOR 3D SURFACE NETWORKS
The triangulation algorithm discussed above can be ex-

tended to a wireless network deployed on a 3D surface.
However, although a small chart of smooth 3D surface is
intrinsically the same as the 2D plane in theory, the former
introduces additional challenges in the calculation of edge
weight under practical network settings. More specifically,
to determine the RENS and accordingly the edge weight
correctly, one needs to judge if a triangle contains any nodes.
Under a 2D setting, it excludes a big triangle that contains
nodes (see !i jk illustrated in Fig 3(a)), intrinsically ensuring

4

Let Nv(i) denote the NNS of Node i. For example, Nv(i) =
{h,k, l,m, j} and Nv( j) = {k, l,m,n, i} for Nodes i and j in
Fig. 3(a), respectively.
Definition 2: The edge neighbor set (ENS) includes the

common one-hop neighbors of the two end nodes of an edge.
The ENS of Edge ei j is denoted by Ne(ei j). For example,

Ne(ei j) = Nv(i)∩Nv( j) = {k, l,m}, for Edge ei j in Fig. 3(a).
Definition 3: The refined edge neighbor set (RENS) of an

edge includes a subset of nodes in the ENS of the edge, such
that each triangle formed by the edge and a node in its RENS
does not contain any node in its ENS.
More specifically, let Re(ei j) denote the RENS of Edge ei j.

Re(ei j) = {v | v ∈ Ne(ei j) and #i jv does not contain Node
v′, ∀v′ ∈ (Ne(ei j) − v)}. For example, Re(ei j) = {l,m} for
Edge ei j in Fig. 3(a). A node v′ can judge if it is inside a
triangle #i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.
We assume that the edges on outer boundary and inner

boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).
Definition 4: The weight of an edge is the cardinality of its

RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.
The weight of Edge ei j is denoted by W (ei j). For example,

W (ei j) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.
Definition 5: The associated edge neighbor set (AENS) of

an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.
Let A(ei j) denote the AENS of Edge ei j. Then A(ei j) =

{eik | i ∈ {i, j} and k ∈ Re(ei j)}. For example, A(ei j) =
{eil , eim, e jl , e jm} in Fig. 3(a). If Edge ei j is removed, the
weight of the edges in A(ei j) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).
Definition 6: Two edges are called equivalent edges if they

share the same AENS.
For example, Edges ei j and elm in Fig. 3(a) are equivalent

edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
the weight of the edges in their AENS.
Definition 7: For a given edge, four edges in its AENS

may form a quadrilateral. If the edge is the only diagonal of
the quadrilateral, it is marked as a critical edge.
For example, Edge ek j in Fig. 3(a) is a critical edge. If a

critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.
NNS, ENS, RENS, AENS, edge weight, and critical and

equivalent edges can all be determined by local information.
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Fig. 3. Illustration of node neighbor set, edge neighbor set, refined edge
neighbor set, edge weight, associated edge neighbor set, equivalent edges, and
critical edges. For Nodes i and j in the original graph, Nv(i) = {h,k, l,m, j} and
Nv( j) = {k, l,m,n, i}. For Edge ei j in the original graph, Ne(ei j) = {k, l,m},
Re(ei j) = {l,m}, W (ei j) = 2, and A(ei j) = {eil , eim, e jl , e jm}. Edges ei j and
elm in the original graph are equivalent edges. Edge ek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graph G.
More specifically, we have:
Objective 1: Given a graph G, if there exists a subgraph T

that is triangulated, our proposed algorithm can alway discover
a triangulation of G.
Note that G may have multiple triangulated subgraphs. The

discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graph G and developing algorithm
to identify a triangulated subgraph in G. If Objective 1 is
achieved, then as a contrapositive, we also have:
Objective 2: If the proposed algorithm fails to discover

a triangulated subgraph of G, then there does not exist a
triangulation for G.
B. Theory
Our proposed triangulation algorithm is motivated by the

property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.
Lemma 1: A subgraph of G is triangulated if and only if

every edge of the subgraph has a weight of two.
Proof:We first show the necessary condition. In a triangu-

lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.
According to Lemma 1, if any edge in a graph has a

weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.
Definition 8: For a given graph G and a triangulated sub-

graph T of G, an edge in T is called a triangulation edge,
while an edge in G−T is called an extra edge.
Each extra edge can be viewed as an “added” edge to

a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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TABLE I
COMPARISON OF STRETCH FACTOR IN GREEDY ROUTING.

2D networks 3D networks
Triangulation by [2], [3] 2.065 5.417
Proposed Triangulation 1.214 1.091

networks. Several examples are given in Figs. 8 and 9. For
example, given a 2D network shown in Fig. 8(a), its triangu-
lations under [2] and our proposed algorithm are depicted in
Figs. 8(b) and 8(c), respectively, and their corresponding Racci
embeddings are shown in Figs. 8(d) and 8(e). Although greedy
routing is successful under both triangulations because Racci
flow maps their boundaries to circles (see Figs. 8(d) and 8(e)),
the routing path (indicated by the red line) is much longer
under the triangulation by [2], because it must go through the
long edges in the coarse triangulation.
We have quantitively evaluated the efficiency of greedy

routing under different triangulations. Table I compares their
stretch factor (i.e., the ratio of a greedy routing path to its
corresponding shortest path), based on pair-wise paths of the
nodes in the networks depicted in Figs. 8 and 9. As can
be seen, our proposed triangulation yields significantly lower
stretch factor in comparison with [2] or [3]. Fig. 11 illustrates
the distribution of stretch factor. Routing paths always have
low stretch factor under our triangulation, while the coarse
triangulation by [2], [3] leads to a wide spread stretch factors
up to over 10 (i.e., 10 times of the shortest path length). We
have also evaluated load distribution, where the load of a node
is signified by the number of routing paths it involves. As
shown in Fig. 12, load is more uniformly distributed under the
fine triangulation produced by our proposed algorithm, where
less nodes suffer high load, because it includes more nodes in
the triangulation and consequently the greedy routing paths,
which together partake the traffic load.

VI. CONCLUSION
In this paper we have proposed a distributed algorithm that

triangulates an arbitrary sensor network, with no constraints on
the communication model or the granularity of the triangula-
tion. We have proven its correctness in 2D, and further extend
it to 3D surface networks. Our simulation results have shown
that the proposed algorithm can tolerate distance measurement
errors, and thus work well under practical sensor network
settings and effectively promote the performance a range of
applications that depend on triangulations.
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networks. Several examples are given in Figs. 8 and 9. For
example, given a 2D network shown in Fig. 8(a), its triangu-
lations under [2] and our proposed algorithm are depicted in
Figs. 8(b) and 8(c), respectively, and their corresponding Ricci
embeddings are shown in Figs. 8(d) and 8(e). Although greedy
routing is successful under both triangulations because Ricci
flow maps their boundaries to circles (see Figs. 8(d) and 8(e)),
the routing path (indicated by the red line) is much longer
under the triangulation by [2], because it must go through the
long edges in the coarse triangulation.
We have quantitively evaluated the efficiency of greedy

routing under different triangulations. Table I compares their
stretch factor (i.e., the ratio of a greedy routing path to its
corresponding shortest path), based on pair-wise paths of the
nodes in the networks depicted in Figs. 8 and 9. As can
be seen, our proposed triangulation yields significantly lower
stretch factor in comparison with [2] or [3]. Fig. 11 illustrates
the distribution of stretch factor. Routing paths always have
low stretch factor under our triangulation, while the coarse
triangulation by [2], [3] leads to a wide spread stretch factors
up to over 10 (i.e., 10 times of the shortest path length). We
have also evaluated load distribution, where the load of a node
is signified by the number of routing paths it involves. As
shown in Fig. 12, load is more uniformly distributed under the
fine triangulation produced by our proposed algorithm, where
less nodes suffer high load, because it includes more nodes in
the triangulation and consequently the greedy routing paths,
which together partake the traffic load.

VI. CONCLUSION
In this paper we have proposed a distributed algorithm that

triangulates an arbitrary sensor network, with no constraints on
the communication model or the granularity of the triangula-
tion. We have proven its correctness in 2D, and further extend
it to 3D surface networks. Our simulation results have shown
that the proposed algorithm can tolerate distance measurement
errors, and thus work well under practical sensor network
settings and effectively promote the performance a range of
applications that depend on triangulations.
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networks. Several examples are given in Figs. 8 and 9. For
example, given a 2D network shown in Fig. 8(a), its triangu-
lations under [2] and our proposed algorithm are depicted in
Figs. 8(b) and 8(c), respectively, and their corresponding Ricci
embeddings are shown in Figs. 8(d) and 8(e). Although greedy
routing is successful under both triangulations because Ricci
flow maps their boundaries to circles (see Figs. 8(d) and 8(e)),
the routing path (indicated by the red line) is much longer
under the triangulation by [2], because it must go through the
long edges in the coarse triangulation.
We have quantitively evaluated the efficiency of greedy

routing under different triangulations. Table I compares their
stretch factor (i.e., the ratio of a greedy routing path to its
corresponding shortest path), based on pair-wise paths of the
nodes in the networks depicted in Figs. 8 and 9. As can
be seen, our proposed triangulation yields significantly lower
stretch factor in comparison with [2] or [3]. Fig. 11 illustrates
the distribution of stretch factor. Routing paths always have
low stretch factor under our triangulation, while the coarse
triangulation by [2], [3] leads to a wide spread stretch factors
up to over 10 (i.e., 10 times of the shortest path length). We
have also evaluated load distribution, where the load of a node
is signified by the number of routing paths it involves. As
shown in Fig. 12, load is more uniformly distributed under the
fine triangulation produced by our proposed algorithm, where
less nodes suffer high load, because it includes more nodes in
the triangulation and consequently the greedy routing paths,
which together partake the traffic load.

VI. CONCLUSION
In this paper we have proposed a distributed algorithm that

triangulates an arbitrary sensor network, with no constraints on
the communication model or the granularity of the triangula-
tion. We have proven its correctness in 2D, and further extend
it to 3D surface networks. Our simulation results have shown
that the proposed algorithm can tolerate distance measurement
errors, and thus work well under practical sensor network
settings and effectively promote the performance a range of
applications that depend on triangulations.
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CONCLUSION

• In summary, we have proposed a distributed 
algorithm that can triangulate an arbitrary 
sensor network without position information.

• The algorithm can achieve the finest 
triangulation and tolerate distance 
measurement errors.

• We have proven its correctness in 2D and 
extended it  to 3D surface.

• A range of geometry-based network 
algorithms can benefit from the proposed 
triangulation.  


