A Distributed Triangulation Algorithm for Wireless Sensor Networks on 2D and 3D Surface

Hongyu Zhou, Hongyi Wu, Su Xia, Miao Jin, Ning Ding

The Center for Advanced Computer Studies(CACS)
University of Louisiana at Lafayette

Outline

- Introduction
- Triangulation Algorithm
- Extension to 3D Surface
- Application and Simulation Results
- Conclusion
integrated Wireless Information Network (iWIN) Lab

Introduction

- Wireless sensor network exhibits randomness
- Wireless sensor network topology is a graph
- Triangulation is a subgraph of the topology
- Triangulation mesh is very important for many applications of sensor networks:
geometry-based routing, localization, coverage, segmentation, data segmentation

Introduction

- Related work

(d) $\mathrm{CDM}(\mathrm{k}=1)$: planar but not triangulated.

(b) Triangulation under ideal CDG.

(c) CDG $(\mathrm{k}=1)$: not planar.

(f) $\mathrm{CDG}(\mathrm{k}=2)$: triangulated but coarse.
[2] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu, "Greedy Routing with Guaranteed Delivery Using Ricci Flows," in Proc. of IPSN, 2009.
[3] H. Zhou, S. Xia, M. Jin, and H. Wu, "Localized Algorithm for Precise Boundary Detection in 3D Wireless Networks," in Proc. of ICDCS, 2010. ©
integrated Wireless Information Network (iWIN) Lab

Introduction

- We proposed a distributed triangulation algorithm
- works for any arbitrary 2 D sensor networks without communication model constraint, and we prove the correctness of the algorithm in 2D sensor networks
- tolerates some measurement errors
- also works for 3D open or closed surfaces
integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Basic idea
- Each triangulation mesh edge will associate with two triangles, except boundary edge
- If we add extra edges into triangulation mesh, they will change this association
- The association can be used to identify these extra edges.

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{i j}\right)=\left\{e_{i l}, e_{i m}, e_{j l}, e_{j m}\right\}$
- equivalent edges, $e_{i j}, e_{l m}$
- critical edge, $e_{k j}$

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{i j}\right)=\left\{e_{i, 1}, e_{i m}, e_{j,}, e_{j m}\right\}$
- equivalent edges, $e_{i j}, e_{l n}$
- critical edge, $e_{k j}$

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{i j}\right)=\left\{e_{\mu, \ldots} e_{m, n} e_{j, j}, e_{m}\right\}$
- equivalent edges, $e_{i j,} e_{l n}$
- critical edge, $e_{i j}$

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{j}\right)=\left\{e_{\left.e_{1}, e_{m}, e_{j, ~}, e_{m}\right\}}\right.$
- equivalent edges, $e_{i j,} e_{l n}$
- critical edge, ef

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{i j}\right)\left\{\left\{e_{i, i}, e_{i, n}, e_{i j}, e_{i, n}\right\}\right.$
- equivalent edges, $e_{i j,} e_{l n}$
- critical edge, efy

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{i j}\right)=\left\{e_{i, 1}, e_{i m,}, e_{j,}, e_{j m}\right\}$
- equivalent edges, $e_{i j}, e_{l n}$
- critical edge, $e_{k j}$

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Definitions
- node neighbor set (NNS), $N_{v}(i)=\{h, k, l, m\}$
- edge neighbor set (ENS), $N_{e}\left(e_{i j}\right)=N_{v}(i) \cap N_{v}(j)=\{k, l, m\}$
- refined edge neighbor set (RNS), $R_{e}\left(e_{i j}\right)=\{l, m\}$
- edge weight, $W\left(e_{i j}\right)=2, W\left(e_{h k}\right)=2$
- associated edge neighbor set (AENS), $A\left(e_{i j}\right)=\left\{e_{i, 1}, e_{i m}, e_{j,}, e_{j m}\right\}$
- equivalent edges, $e_{i j}, e_{l m}$
- critical edge, $e_{l j}$

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Lemma 1: A subgraph of \boldsymbol{G} is triangulated if and only if every edge of the subgraph has a weight of two.
- Given a graph G and a triangulation subgraph T, extra edges are $G-T$
- Objective: remove all extra edges
- There are three type of extra edges, e_{0}, e_{1}, e_{2}

(a) e_{0}

(b) e_{1}

(c) e_{2}
integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Theorem 1: An edge with a weight less than two must be removed in order to produce a triangulated subgraph.

integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Theorem 2:An non-critical edge can be recognized as an e_{2} edge and safely removed if all edges in its $A E N S$ have their weight greater than two.

(c) e_{2}
integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Lemma 2: An e_{0} extra edge can exist in $G^{\prime \prime}$, only if it depends on at least two other extra edges.
- Lemma 3: An e_{1} extra edge can exist in $G^{\prime \prime}$, only if it at least depends on another extra edge.

(a) Loop chain.

(b) Non-loop chain.

(c) Same head and tail.
integrated Wireless Information Network (iWIN) Lab

Triangulation Algorithm

- Step1: Initialization. each edge calculate $N N S$, ENS, RENS, AENS, and edge weight;
- Step2: Iterative edge removal according to Theorems 1 and 2;
- Step3: Removal of e_{0} and e_{1} chains.
integrated Wireless Information Network (iWIN) Lab

Extension to 3D Surface

- Similar algorithm can be applied in a sensor network on 3D surface with minor modification in determining $R N S$ and edge weight

Application and Simulation Results

2D network

(a) Sensor network topology

(b) Finest triangulation by [2]
(c) Proposed triangulation

Application and Simulation Results

3D network with open surface

(a) Sensor network topology

(b) Finest triangulation by [3]

(c) Proposed triangulation

Application and Simulation Results

3D network with closed surface

(a) Sensor network topology

(b) Finest triangulation by [3]

(c) Proposed triangulation

Application and Simulation Results

3D network with
closed surface

(a) Sensor network topology

(b) Finest triangulation by [3]

(c) Proposed triangulation

Application and Simulation Results

2D network with distance errors
(a) Triangulation under 10% distance errors.
(b) Triangulation under
(c) Triangulation under 20% distance errors. 30% distance errors.

Application and Simulation Results

Difference Communication Models

(b) Triangulation under Quasi-UDG $(\alpha=0.4)$.

(c) Triangulation under Quasi-UDG

$$
(\alpha=0.6)
$$

(d) Triangulation under Log-normal.

Application and Simulation Results

Greedy routing based on Ricci flow in 2D networks

(a) Finest triangulation by [2]

(c) Proposed triangulation

(b) Ricci embedding

(d) Ricci embedding

Application and Simulation Results

Greedy routing based on Ricci flow in 3D networks

(a) Finest triangulation by [3]

(c) Proposed triangulation

(b) Ricci embedding

(d) Ricci embedding

Application and Simulation Results

COMPARISON OF STRETCH FACTOR IN GREEDY ROUTING.

	2D networks	3D networks
Triangulation by [2], [3]	2.065	5.417
Proposed Triangulation	1.214	1.091

Distribution of stretch factor in greedy routing

Conclusion

- In summary, we have proposed a distributed algorithm that can triangulate an arbitrary sensor network without position information.
- The algorithm can achieve the finest triangulation and tolerate distance measurement errors.
- We have proven its correctness in 2D and extended it to 3D surface.
- A range of geometry-based network algorithms can benefit from the proposed triangulation.

