
A Distributed Delaunay Triangulation Algorithm Based on
Centroidal Voronoi Tessellation for Wireless Sensor

Networks

Hongyu Zhou
zhou.hongyu@me.com

Miao Jin
mjin@cacs.louisiana.edu

Hongyi Wu
wu@cacs.louisiana.edu

The Center for Advanced Computer Studies (CACS)
University of Louisiana at Lafayette

Lafayette, LA 70503

ABSTRACT

A wireless sensor network can be represented by a graph. While
the network graph is extremely useful, it often exhibits undesired
irregularity. Therefore, special treatment of the graph is required
by a variety of network algorithms and protocols. In particular,
many geometry-oriented algorithms depend on a type of subgraph
called Delaunay triangulation. However, when location informa-
tion is unavailable, it is nontrivial to achieve Delaunay triangula-
tion by using connectivity information only. The only connectivity-
based algorithm available for Delaunay triangulation is built upon
the property that the dual graph for a Voronoi diagram is a Delau-
nay triangulation. This approach, however, often fails in practical
wireless sensor networks because the boundaries of Voronoi cells
can be arbitrarily short in discrete sensor network settings. In a sen-
sor network with connectivity information only, it is fundamentally
unattainable to correctly judge neighboring cells when a Voronoi
cell boundary is less than one hop. Consequently, the Voronoi
diagram-based Delaunay triangulation fails. The proposed algo-
rithm employs a distributed approach to perform centroidal Voronoi
tessellation, and constructs its dual graph to yield Delaunay trian-
gulation. It exhibits several distinctive properties. First, it elimi-
nates the problem due to short cell boundaries and thus effectively
avoids crossing edges. Second, the proposed algorithm is proven
to converge and succeed in constructing a Delaunay triangulation,
if the CVT cell size is greater than a constant threshold. Third, the
established Delaunay triangulation consists of close-to-equilateral
triangles, benefiting a range of applications such as geometric rout-
ing, localization, coverage, segmentation, and data storage and pro-
cessing. Extensive simulations are carried out under various 2D
network models to evaluate the effectiveness and efficiency of the
proposed CVT-based triangulation algorithm.
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1. INTRODUCTION
This work aims to develop a distributed and efficient algorithm

to construct Delaunay triangulation for wireless sensor networks.
This section first introduces the motivations, then discusses the
state-of-the-art Delaunay triangulation algorithms, followed by a
summary of the main contributions of this paper.

1.1 Motivation
A wireless sensor network can be represented by a graph, where

a node corresponds to a sensor and an edge indicates the commu-
nication link between two adjacent sensors with radio transmission
range. While the network graph itself is extremely useful, it often
exhibits undesired randomness and irregularity. Therefore, special
treatment of the graph is required by a variety of network algo-
rithms and protocols. In particular, many geometry-oriented al-
gorithms, such as geometric routing [1–4], autonomous localiza-
tion [5, 6], sensor coverage [7], network segmentation [8], and dis-
tributed data storage and processing [9], all depend on a type of
subgraph called triangulation.

In general, triangulation is a subdivision of a geometric object
into simplices. The triangulation of a discrete set of points is a sub-
division of the convex hull of the points into simplices such that any
two simplices intersect in no more than one common face and the
vertices of the subdividing simplices coincide with the points [10].
Several algorithms have been proposed for triangulation in wireless
sensor networks [1,8,11]. Obviously, while a network graph is usu-
ally nonplanar (see the crossing edges in Fig. 1(a)), a triangulation
is a planar graph, where no edges cross each other (as illustrated in
Fig. 1(b)).

Delaunay triangulation is a special triangulation defined as fol-
lows.

Definition 1. A Delaunay triangulation for a set of points on a
plane is a triangulation such that no point is inside the circumcircle
of any triangle [12].

An example of Delaunay triangulation is shown in Fig. 1(c),
where none of the circumcircles of the triangles contain a node.
On the other hand, the triangulation in Fig. 1(b) does not meet the
above definition. For instance, the circumcircle of !ABD contains
Node C. Thus it is not a Delaunay triangulation. The Delaunay
triangulation is preferred in many network algorithms, because it
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(a) A nonplanar network graph.
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(b) A triangulation of the graph.
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(c) A Delaunay triangulation of the graph.

Figure 1: Triangulation and Delaunay triangulation of a nonplanar network graph.

tends to avoid skinny triangles by maximizing the minimum angle
in the triangulation. For instance, greedy forwarding is guaranteed
to succeed in a Delaunay triangulation except at network bound-
aries [1–4]. And better localization can be achieved based on a
Delaunay triangulation than that based on non-Delaunay triangula-
tion [5, 6]. The Delaunay triangulation with all edges equal is call
an equilateral Delaunay triangulation.

1.2 State-of-the-Art for Connectivity-Based De-
launay Triangulation

If the location information or distance measurement is available,
a Delaunay triangulation can be straightforwardly constructed [4].
However, it is nontrivial to achieve Delaunay triangulation by using
connectivity information only. Note that the triangulation method
proposed in [1, 8] is not Delaunay-guaranteed.

The only connectivity-based algorithm for Delaunay triangula-
tion in practical wireless sensor networks is built upon the property
that the dual graph for a Voronoi diagram1 is a Delaunay triangu-
lation. To this end the planarization algorithm proposed in [13]
is employed to establish an approximate Voronoi diagram. More
specifically, a node is randomly chosen as a generating point, which
claims its K-hop neighbors to form a cell. Then a node is randomly
chosen among the rest nodes as the next generating point. The pro-
cess repeats until every node in the network is either selected as a
generating point or associated with a generating point. If a node
is claimed by multiple generating points, it chooses the closest one
(in term of hop count) and joins its cell. The distance between any
two adjacent generating points is greater than K hops but no more
than 2K +1 hops.

Then, the dual graph of the approximate Voronoi diagram, called
combinatorial Delaunay graph (CDG), is constructed as follows. If
two cells are adjacent to each other, i.e., have at least one pair of
neighboring nodes (one in each cell), a virtual edge is established to
connect the corresponding generating points. Note that, while the
precisely computed dual graph of a Voronoi diagram is a Delaunay
triangulation as discussed earlier (e.g., as shown in Fig. 2(a)), the
same result no longer holds for CDG. As a matter of fact, CDG is
not even necessarily planar, as illustrated in Fig. 2(b) that shows
crossing edges. This is because the boundary of two adjacent ap-

1Given a finite set of generating points on a plane, the Voronoi dia-
gram is a partitioning of the plane with points into convex polygons
(or cells) such that each polygon contains exactly one generating
point and every point in a given polygon is closer to its generating
point than to any other [12].

proximate Voronoi cells can be shorter than one hop, and thus two
non-neighboring cells may be mistakenly considered as neighbors.
For example, as illustrated in Fig. 2(b), the shared boundary of
Cells A and B is virtually zero (with only one pair of nodes con-
nected). At the same time, a node in Cell C is directly connected
to a node in Cell D. Hence Cells C and D are deemed adjacent, re-
sulting in crossing edges. Practically, there are less crossing edges
under a larger K. However no matter how large the K (i.e., the cell)
is, the approximate Voronoi diagram cannot guarantee every cell
boundary to be greater than one hop. Therefore this scheme does
not ensure the success of Delaunay triangulation. Moreover, even a
Delaunay triangulation is successfully constructed, the formed tri-
angles are often nonuniform in terms of edge length (see Fig. 2(a)).

The crossing edges in CDG can be removed, yielding a Com-
binatorial Delaunay Map (CDM), which is planar but has polygon
holes [13]. Therefore it is not a triangulation. The algorithms pro-
posed in [1, 11] try to fill the holes to form triangles. However,
the resulting triangulation is not guaranteed to hold the Delaunay
property.

1.3 Contribution of This Work
The problem of the Voronoi diagram-based (or VD-based) algo-

rithm stems from the fact that the boundaries of Voronoi cells are
nonuniform. Particularly, some cell boundaries can be arbitrarily
short. In a sensor network with connectivity information only, it
is fundamentally unattainable to correctly judge neighboring cells
when a Voronoi cell boundary is less than one hop. Consequently,
some generating points are mistakenly connected, forming crossing
edges. As a result, the VD-based Delaunay triangulation fails. It is
worth clarifying that Delaunay triangulation can aways be achieved
if accurate location information is available. With the location in-
formation, a Voronoi diagram can be precisely computed, and ac-
cordingly its dual graph can be readily obtained by connecting the
generating points whose cells share a boundary (no matter how
short the boundary is). Such a dual graph is proven to be a De-
launay triangulation.

It is obviously desired to build a Voronoi diagram with uniform
cell boundaries, so as to maximize the minimum boundary length.
This observation motivates a new triangulation algorithm based on
centroidal Voronoi tessellation (CVT).

Definition 2. A centroidal Voronoi tessellation (CVT) is a spe-
cial Voronoi diagram, where the generating point of each Voronoi
cell is also its mean (i.e., center of mass) [14].
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Figure 2: Comparison between the dual graphs of Voronoi diagram and CVT. (a) The dual graph of a precisely computed Voronoi
diagram. (b) The dual graph with crossing edges of an approximate Voronoi diagram under discrete sensor network settings. (c)
CVT has uniform cell boundaries and thus its dual graph forms a Delaunay triangulation with close-to-equilateral triangles.

The proposed algorithm employs a distributed approach to per-
form centroidal Voronoi tessellation, and constructs its dual graph
to yield Delaunay triangulation. It exhibits several distinctive prop-
erties. First, it eliminates the problem due to short cell boundaries
and thus effectively avoids crossing edges, significantly improving
the probability to successfully establish a Delaunay triangulation in
comparison with its VD-based counterpart. Second, as shown by
Theorems 1 and 2, the proposed algorithm can always converge and
succeed in constructing a Delaunay triangulation, if the CVT cell
size is greater than a constant threshold. Third, the established De-
launay triangulation consists of close-to-equilateral triangles, ben-
efiting a range of applications such as geometric routing [1–4], au-
tonomous localization [5,6], sensor coverage [7], network segmen-
tation [8], and distributed data storage and processing [9].

The rest of this paper is organized as follows: Sec. 2 intro-
duces the proposed CVT-based Delaunay triangulation algorithm
and proves its convergence and correctness when the cell size is
greater than a constant threshold. Sec. 3 presents simulation re-
sults. Finally, Sec. 4 concludes the paper.

2. PROPOSED CVT-BASED TRIANGULA-
TION ALGORITHM

This section presents the proposed CVT-based triangulation al-
gorithm and proves its convergence and correctness when the cell
size is greater than a constant threshold.

The proposed algorithm consists of three phases. First, it sam-
ples the generally distributed network to yield a uniform nodal den-
sity. Second, it iteratively builds an approximate CVT. Finally it
obtains the dual graph of the CVT to construct the Delaunay trian-
gulation.

2.1 Single-Hop Voronoi Diagram Sampling
As shown in Definition 2, the generating point of a CVT cell

is the centroid of the cell. In order to build uniform cells, which
induce a Delaunay triangulation with equilateral triangles, the net-
work must have a uniform density function [14]. However, a gen-
eral sensor network can be non-uniformly distributed, due to the
lack of precise nodal deployment and the nondeterministic sensor
failures and link dynamics. To this end, a sampling process is em-
ployed. It essentially builds a Voronoi diagram with small, constant

(a) Non-uniformed topology. (b) Sampled subgraph.

Figure 3: Single-hop Voronoi diagram sampling that yields uni-
form nodal density.

cell size (e.g., one hop). The generating points of the Voronoi dia-
gram have a uniform density, and thus serving as the ideal input for
CVT construction.

More specifically, let an undirected graph G = {V,E} represent
a wireless sensor network, where V is the set of sensor nodes and
E is the set of communication links. A node can be in one of the
three possible states, i.e., a cell generating point, a cell member, or
undetermined. Each node is initialized as the undetermined state.
It starts a random back-off timer. If it is in the undetermined state
when the timer expires, it changes its state to a generating point,
and informs its undetermined one-hop neighbors to change their
states to cell member. The process terminates when every node in
the network becomes either a generating point or a cell member.
Two generating points are adjacent if a pair of their cell members
(one in each cell) are one-hop neighbors. The generating points
are largely uniformly distributed, where any two adjacent generat-
ing points are at least one hop and at most three hops away from
each other. Let G′ = {V ′,E ′} be the sampled subgraph, where V ′

consists of the generating points and E ′ are the virtual links that
connect adjacent generating points.

An example of sampling is shown in Fig. 3(b), where the nodes
are uniform, in comparison with the nonuniform original graph
Fig. 3(a).

2.2 CVT Construction
Based on the sampled subgraph G′, the CVT is constructed via a

distributed, iterative process. It starts with an arbitrary Voronoi di-



agram with a cell size of K-hops, which can be established accord-
ing to the method introduced in Sec. 1.2. Let T = {T1,T2, ...,Tm}
denote the set of tessellations (or cells) and L = {L1,L2, ...,Lm}
the corresponding generating points of the initial Voronoi diagram.
They will be updated by repeating the following two steps.

(1) Cells construction: The nodes in G′ are associated with their
closest generating points to form tessellations. Given Node ni, its
closest generating point is

L(ni) = arg min
Lj∈L

D(ni,L j), (1)

where D(ni,L j) denotes the hop distance between ni to L j. The
nodes associated with the same generating point form a tessellation
Tj = {ni ∈ G′|L(ni) = L j}. Let |Tj| denote the number of nodes in
Tj . The colored cells in Fig. 4(a) show the initial tessellation.

(2) Centroid Calculation: The generating point of each cell is
updated to the current centroid of the cell. More specifically, every
node learns its hop distance to every other node in the same cell via
localized flooding (within its cell). Then each node calculates the
standard deviation of such distances. For example, given Node ni

in Cell Tj, its standard deviation σi is determined by the following
equations:

σi =

√

1

|Tj|−1 ∑
nk∈Tj

(D(ni,nk)−D j)2, (2)

where D j is the mean of distances between any two nodes in Cell
Tj , i.e.,

D j =
2

|Tj|(|Tj|−1) ∑
np,nq∈Tj

D(np,nq). (3)

The node with the minimal standard deviation is the approximate
centroid of the tessellation and selected as the new generating point,
i.e,

L j = arg min
nk∈Tj

σk. (4)

The above calculation involves all nodes in the cell (i.e., Tj).
In fact, given the uniformly distributed nodes (after sampling), the
centroid can be determined according to the cell boundary that de-
picts the shape of the cell. The boundary nodes of the cell can be
easily identified. If a node is on the network boundary or has a
neighbor node that belongs to a different cell, it is a cell bound-
ary node. The centroid calculation can be carried out with reduced
computing time, communication overhead and energy consumption
by simply replacing Tj in Eqs. (2)-(4) with the set of cell bound-
ary nodes. The boundary-based approximation yields similar CVT
construction as to be demonstrated in Sec. 3.

Once the new generating points are determined, the cells are up-
dated accordingly as discussed in the previous step.

Fig. 4 illustrates the evolution of the cells while the above steps
repeat. As can be seen, the cells become more uniform after more
iterations. The process terminates when the generating points re-
main unchanged. Fig. 4(d) shows the final CVT.

The iterative process always converges as shown by the follow-
ing theorem.

Theorem 1. The proposed CVT construction algorithm con-
verges.

PROOF. For a given cell j, both |Tj| and D j are constant. Thus,
CVT construction intrinsically aims to minimize the following op-
timal function J(T,L):

J(T,L) = ∑
i∈G′

(D(ni,L(ni)))
2. (5)

K

B

A

Figure 5: An ideal CVT consists of regular hexagons.

Assume J is not minimal, one can either fix generating points L to
adjust the nodes’ association to reduce J(T,L) just like cells con-
struction, or fix cell nodes C to select new generating points as the
centroids. Both processes are monotonically decreasing J(T,L).
When J(T,L) reaches the minimal value, the cells T and generat-
ing points L converge at the same time. As a matter of fact, the
CVT construction algorithm is a coordinate descent algorithm with
guaranteed convergence.

While it is difficult to derive a theoretic bound for the number it-
erations in order to reach the convergence, the algorithm converges
very fast in practice. For example, merely four to five iterations
are needed in most cases according to the simulation results to be
presented in Sec. 3.

2.3 Delaunay Triangulation
After CVT is constructed, its dual graph is established by con-

necting every two adjacent generating points with a virtual edge.
Two generating points are adjacent if at least one pair of their cell
members (one in each cell) are neighbors in G′. An example of the
dual graph is illustrated Fig. 4(d).

The following theorem formally shows that the proposed algo-
rithm can always construct a Delaunay triangle mesh, if the cell
size is greater than a constant threshold. Without loss of generality,
the maximum radio transmission range is normalized to one in the
following discussions.

Theorem 2. Given an asymptotically deployed wireless sensor
network, the centroidal Voronoi tessellation (CVT) with a cell size
greater than 15 always yields a Delaunay triangulation.

PROOF. As introduced in Sec. 2.1, a sampling process (that re-
sults in a constant density function) is employed before the cen-
troidal Voronoi tessellation. Accordingly, every cell of CVT is a
regular hexagon (see Fig. 5) if the nodal density approaches in-
finity (i.e., the continuous case) and the network is asymptotically
deployed with no boundaries [15]. The distance between any two
neighboring centroids is

√
3K, where K is the hexagon edge length

or the cell radius. The dual of the CVT is a Delaunay triangle mesh
that consists of equilateral triangles [14]. For convenience, such a
CVT is referred as the ideal CVT and the corresponding Delaunay
triangle mesh is referred as the ideal triangulation in the following
discussions.

Under a discrete sensor network setting, the proposed algorithm
yields an approximate CVT, where the tessellation is performed ac-
cording to hop counts instead of real distance. Thus, the actual cell



(a) Initial Voronoi diagram. (b) Result after two iterations. (c) Result after four iterations. (d) Final result.

Figure 4: CVT-Based Delaunay Triangulation Algorithm. It starts with an arbitrary Voronoi diagram (depicted in (a)), and refines
the cells by a small number of iteration (see (b) and (c)) to yield the final CVT cells (shown in (d)). The dual graph of the CVT cells
is a close-to-equilateral Delaunay triangulation.
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Figure 6: Illustration for the proof of Theorem 2. The length
of PQ reaches minimum when the two generating points are
farthest away from each other (i.e., at A′ and B′) and the cell
size is the smallest (i.e., K −1).

size is in the range of (K −1,K]. Given such an approximate CVT
cell, a node is not always available at its real centroid. For exam-
ple, Fig. 6 illustrates two adjacent cells, with their real centroids at
A and B, respectively. The actual generating point of a cell could
be anywhere within 1-hop range of the real centroid, as delineated
by the small dashed circle around A or B. Similar to the continuous
setting, the proposed algorithm obtains the dual of the approximate
CVT, aiming to produce a triangle mesh.

The rest of the proof shows that, when K is greater than a con-
stant, the approximate CVT induces the same triangle mesh as the
ideal triangulation, with neither extra edges nor missing edges.

First, if an extra edge is added into the ideal triangulation, it
must result in a crossing edge [12]. To ensure free of crossing
edges in the dual of the approximate CVT, the boundary between
the two cells must be greater than the radio transmission range (i.e.,
1). Otherwise, the cells on the two sides of AB (i.e., Cells C and
D) might be mistakenly considered as neighboring cells since their
nodes can be connected, leading to a crossing edge CD (see a sim-
ilar example in Fig. 2(b)). To this end, the proof intends to ex-
amine the worst case scenario that results in the shortest boundary
between Cells A and B. The worst case occurs when the two gen-
erating points are farthest away from each other (i.e., at A′ and B′

in Fig. 6) and the cell size reaches minimum (i.e., K − 1). Let P
and Q denote the intersections of the two cells under the worst
case, and E denote the intersection of AB and PQ. Obviously,
‖B′E‖=

√
3K/2+1 and ‖B′P‖= K −1. Let the boundary greater

than one, i.e.,

‖PQ‖= 2
√

‖B′P‖2 −‖B′E‖2 > 1. (6)

The inequality holds when and only when K is greater than 15.06.
Therefore, if K > 15, the dual graph of the approximate CVT in-
cludes no extra edges compared with the ideal triangulation.

Second, since PQ is greater than one, Cells C and D are dis-
connected, i.e., there does not exist a path between C and D that
involves the nodes in the two cells only. If Cells A and B are not
connected either, there must exist a void (i.e., a hole) in the mid-
dle of the four cells. The hole forms a network boundary [16],
which contradicts to the assumption of asymptotic sensor deploy-
ment with no boundaries. Hence, Cells A and B must be neighbors,
inducing Edge AB in the dual of the approximate CVT.

Therefore, if K > 15, the dual graph of the approximate CVT is
the same as the ideal triangulation, i.e., a Delaunay triangle mesh.

Note that Theorem 2 only shows a provable sufficient condi-
tion for Delaunay triangulation. It is not always necessary to have
K > 15 to establish a Delaunay triangle mesh. When K ≤ 15,
although without a proof, it is intuitively obvious that the pro-
posed algorithm yields better triangulation in comparison with its
VD-based counterpart. More specifically, it results in close-to-
equilateral triangles. The uniform edge length reduces the prob-
ability of crossing edges as discussed in Sec. 1. This observation is
verified by simulation results to be presented in the next section.

2.4 Time Complexity and Communication Cost
The proposed Delaunay triangulation algorithm has a linear time

complexity and communication cost (measured by messages sent)
with respect to the size of the network. A brief analysis is summa-
rized below.

First, the single-hop Voronoi diagram sampling has a time com-
plexity of O(n), where n is the total number of nodes in the net-
work. As each node communicates with its neighbors only, the
communication cost is also O(n).

In every iteration of CVT construction, each cell has a time com-
plexity and communication cost of O(m2), where m is the num-
ber nodes in a cell. Since all cells are processed simultaneously,
the network-wide time complexity remains O(m2), but the over-
all communication cost becomes O(cm2), where c is the number
of cells. Obviously, O(cm) = O(n), hence O(cm2) = O(nm). For
a given cell size (i.e., K) and nodal density, m is bounded by a
constant. Therefore, O(nm) = O(n). Moreover, the proposed al-
gorithm adopts a constant number of iterations (e.g., four iterations
that are enough to yield satisfied results).

Finally, the time complexity and communication cost for dual
graph construction are both O(k).

In summary, the overall time complexity and communication
cost of the Delaunay triangulation algorithm are dominated by O(n).



(a) An oval-shape network. (b) Finest triangulation by VD (k = 15). (c) Finest triangulation by CVT (k = 12).

(d) An m-shape network. (e) Finest triangulation by VD (k = 16). (f) Finest triangulation by CVT (k = 13).

(g) An 8-shape network (with 2 holes). (h) Finest triangulation by VD (k = 15). (i) Finest triangulation by CVT(k = 12).

Figure 7: Example of 2D networks that demonstrate the proposed CVT-based algorithm produces finer triangulations than the
VD-based algorithm does.

3. SIMULATIONS RESULTS
In order to evaluate the effectiveness and efficiency of the pro-

posed CVT-based triangulation algorithm, extensive simulations
have been carried out under various 2D network models. The sen-
sor nodes are randomly deployed in each network. The proposed
algorithm does not depend on any specific communication model.
This simulation adopts a general model, with merely a constraint
on the maximum radio transmission range, which is normalized
to one. It is similar to the most general Quasi-UDG model. Quasi-
UDG determines connectivity according to a parameter α< 1. Two
nodes are disconnected if they are separated by a distance greater
than one, or connected if their distance is less than α, or connected
with a probability if their distance is between α and one. In this
simulation, α is set to 0. The performance of the proposed CVT-
based algorithm is compared against its VD-based counterpart, in
terms of crossing edge rate, the deviation of triangle edge length,
and the success rate of Delaunay triangulation construction.

3.1 Triangulation Granularity
First, simulations are performed to compare the granularity of

triangulations produced by the proposed CVT-based algorithm and
its VD-based counterpart. Several sample networks are illustrated

in Fig. 7, in oval, m-shape, and 8-shape, respectively. As discussed
in Sec. 2, the cell size K is crucial for both algorithms, dictating
the possibility of having crossing edges. K must be large enough
to ensure the free of crossing edge, and thus a valid Delaunay tri-
angulation.

The simulation intends to find the minimum K under both al-
gorithms, which induce a successful triangulation. A small K is
highly desired because it represents the original network with finer
granularity. The simulation results show that the CVT-based algo-
rithm always yields a finer triangulation (with smaller K) than the
VD-based algorithm does (see the second and the third columns of
Fig. 7).

As proven in Sec. 2, CVT with a cell size greater than K = 15 en-
sures a Delaunay triangulation. Note that, K = 15 is the theoretical
bound. A small K is often sufficient in practice. However, the VD-
based algorithm does not have such nice property. As a matter of
fact, it is interesting to observe that even when the VD-based algo-
rithm successfully produces a Delaunay triangulation under certain
K, it may still fail when K further increases. This is evidenced in
Fig. 8(a) that shows the crossing edge rate. The crossing edges are
the edges that intersect, i.e., are non-planar. The crossing edge rate
is defined to be the ratio between the number of crossing edges to



the total number of edges in the dual graph of VD or CVT. Obvi-
ously, the smaller the crossing edge rate, the better. A successful
Delaunay triangulation is constructed if the crossing edge rate is
zero. As can be seen, the crossing edge rate reaches and stays to be
zero after K = 12 under the CVT-based algorithm. The VD-based
algorithm, however, offers no guarantee for achieving free of cross-
ing edges. The crossing edge rate exhibits significant fluctuations
even when K is large.

It is also observed in simulation that the boundary will have some
impact on the CVT construction. The shape of the boundary cells
are more likely irregular (non-hexagon) compared with inner cells,
because the shape of boundary cells are constrained by the network
shape. Crossing edges occur more often around boundary cells.

3.2 Triangulation Regularity
In addition to granularity, it is obvious that the triangulation

produced by the CVT-based algorithm is more uniform. This is
because the CVT cells are generally more regular and uniform.
Fig. 8(b) compares the deviation of cell size under the CVT and
VD-based algorithms. As can be seen, the former achieves a con-
sistently lower deviation in cell size than the latter. This is a natural
result of CVT cell construction, which intends to improve the reg-
ularity of cells over the Voronoi diagram. Consequently, the edges
of the dual graph under the former always have a smaller deviation
than that of the latter.

The regularity of triangulation benefits a range of applications
such as geometric routing, localization, coverage, segmentation,
and data storage and processing. For example a connectivity-based
localization method is introduced in [6]. It takes triangulations as
input and applies a Ricci flow algorithm to computes the optimal
flat metric of the triangulation in order to embed the network to
plane (and accordingly determining the locations of sensors). It
has been shown in [6] that the algorithm achieves the highest lo-
calization accuracy compared with other competing methods in-
cluding multi-dimensional scaling (MDS) [17, 18] and neural net-
work based methods [19, 20] under various representative network
shapes.

This simulation intends to demonstrate the benefits of CVT-based
triangulation in support of localization. To this end, the same cell
size (i.e., K) is employed to build both VD and CVT cells to con-
struct triangulations. Two network examples are depicted in Fig. 9,
where nodes are randomly deployed with representative boundary
shapes. The triangulations serve as inputs for the same localization
algorithm. The localization result are shown in the second row of
Fig. 9, where a blue line segment is drawn for each node, start-
ing from its real coordinates marked with blue dot and ending at
the computed coordinates. The gray triangulation is based on the
computed coordinates. The longer the line segment, the lower ac-
curacy of the localization results. It is obviously noticed that the
CVT-based triangulation helps yield more accurate localization re-
sults. The quantitative average localization errors are summarized
in Table 1. The localization error is computed as the ratio of the
average node distance error (based on all edges in the network) and
the averaged transmission range. As can be seen, a significant re-
duction of error (up to 50%) is achieved by using the CVT-based
triangulation.

3.3 Comparison Cell Centroid Calculation
As discussed in Sec. 2, the calculation of cell centroid can be per-

formed according to all nodes in the cell or only boundary nodes of
the cell. Fig. 10 compares their performance. As can be seen, they
achieve similar triangulation results. However, the latter involves
only 24% of the nodes in comparison with the former, thus signifi-

Table 1: Localization errors of [6] with CVT-based and VD-
based triangulations as inputs.

C-shape Model Rectangle Model

(see Fig. 9(a)-9(b)) (see Fig. 9(c)-9(d))

VD 0.46 0.24
CVT 0.21 0.18
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Figure 11: CVT triangulation convergence (K=10).

cantly reducing the communication overhead and energy consump-
tion.

3.4 Convergence
The convergence of the proposed algorithm has been proven in

Sec. 2. Fig. 11 shows the convergence speed under practical imple-
mentation. The standard deviation of cell size reaches minimum
and keeps constant after about five iterations. The fast convergence
is highly desired, because it means not only shorter algorithm run-
ning delay but also lower communication overhead. In each iter-
ation, every nodes in the network must communicate with other
nodes in the same cell to determine the new generating point and
construct the CVT cell. As discussed in Sec. 2, the overall com-
munication cost of one iteration is O(nm), where m is the number
nodes in a cell (which can be deem as a constant for a given K)
and n is the number of nodes in the entire network. Apparently, a
smaller number of iterations can significantly reduce the commu-
nication overhead and energy consumption in practical sensor net-
work settings. The result also justifies the assumption of constant
number of iterations used in complexity analysis in Sec. 2.

4. CONCLUSION
A wireless sensor network can be represented by a graph. While

the network graph is extremely useful, it often exhibits undesired
randomness and irregularity. Therefore, special treatment of the
graph is required by a variety of network algorithms and proto-
cols. In particular, many geometry-oriented algorithms depend on
a type of subgraph called Delaunay triangulation. However, when
location information is unavailable, it is nontrivial to achieve De-
launay triangulation by using connectivity information only. The
only connectivity-based algorithm available for Delaunay triangu-
lation is built upon the property that the dual graph for a Voronoi
diagram is a Delaunay triangulation. This approach, however, often
fails in practical wireless sensor networks because the boundaries
of Voronoi cells can be arbitrarily short in discrete sensor network
settings. In a sensor network with connectivity information only, it
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Figure 8: Quantitative comparison of CVT-based and VD-based triangulation algorithms. As depicted in (a), the crossing edge rate
reaches and stays to be zero after K = 12 under the CVT-based algorithm, but exhibits significant fluctuations under the VD-based
algorithm even when K is large. As shown in (b) and (c), the CVT-based triangulation achieves a consistently lower deviation in cell
size and edge length than the VD-based counterpart does.

(a) VD-based triangulation for
a C-shape sensor network.

(b) CVT-based triangulation
for a C-shape sensor network.

(c) VD-based triangulation for
a rectangle-shape sensor net-
work.

(d) CVT-based triangulation
for a rectangle-shape sensor
network.

(e) Localization result for VD-
based triangulation.

(f) Localization result for CVT-
based triangulation.

(g) Localization result for VD-
based triangulation.

(h) Localization result for CV-
based triangulation.

Figure 9: Comparison of localization results with CVT-based and VD-based triangulations as inputs. A blue line segment is drawn
for each node, starting from its real coordinates marked with blue dot and ending at the computed coordinates. The gray triangu-
lation is based on the computed coordinates. The CVT-based triangulation supports more accurate localization than its VD-based
counterpart does.

(a) Dual graph of Voronoi diagram (with
crossing edges highlighted in red).

(b) CVT-based triangulation based on cell
boundary nodes.

(c) CVT-based triangulation based on all
nodes.

Figure 10: Similar triangulation result are achieved by the proposed CVT-based algorithm with either cell boundary nodes or all
nodes (K=13).



is fundamentally unattainable to correctly judge neighboring cells
when a Voronoi cell boundary is less than one hop. Consequently,
the Voronoi diagram-based Delaunay triangulation fails.

This paper has proposed a distributed algorithm that performs
centroidal Voronoi tessellation and constructs its dual graph to yield
Delaunay triangulation. It exhibits several distinctive properties.
First, it eliminates the problem due to short cell boundaries and
thus effectively avoids crossing edges. Second, the proposed algo-
rithm has been proven to converge and succeed in constructing a
Delaunay triangulation, if the CVT cell size is greater than a con-
stant threshold. Third, the established Delaunay triangulation con-
sists of close-to-equilateral triangles, benefiting a range of applica-
tions such as geometric routing, localization, coverage, segmenta-
tion, and data storage and processing. Extensive simulations have
been carried out under various 2D network models to evaluate the
effectiveness and efficiency of the proposed CVT-based triangula-
tion algorithm.
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