
Trace-Routing in 3D Wireless Sensor Networks: A
Deterministic Approach with Constant Overhead

Su Xia
Cisco System Inc.
170 W Tasman Dr

San Jose, CA 95134
suxia.ull@gmail.com

Hongyi Wu
The Center for Advanced

Computer Studies
University of Louisiana at

Lafayette
Lafayette, LA 70503

wu@cacs.louisiana.edu

Miao Jin
The Center for Advanced

Computer Studies
University of Louisiana at

Lafayette
Lafayette, LA 70503

mjin@cacs.louisiana.edu

ABSTRACT

We propose a distributed and deterministic routing algorithm with
constant storage, communication and computation overhead, dubbed
trace-routing, for strong-connected 3D wireless sensor networks.
Its basic idea is to construct a virtual cutting plane that intersects
boundary surface to yield a trace, along which a routing path with
guaranteed delivery can be established. We prove the correctness of
trace-routing under both continuous and discrete settings. We im-
plement the trace-routing algorithm on Crossbow sensors and carry
out extensive simulations to evaluate its routing efficiency.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer-Communication
Networks—Network Architecture and Design

Keywords

Wireless Sensor Networks; 3D; Routing

1. INTRODUCTION
This work aims to achieve DeterminIStic routing with Constant

Overhead (or DISCO routing) in the emerging three-dimensional
(3D) wireless sensor networks [1–12]. DISCO is highly desired
due to the stringent resource constraints on individual nodes and
the often-needed large-scale deployment of 3D wireless sensor net-
works. Constant overhead signifies the storage, communication
and computation required for routing are bounded by a constant at
each sensor node, while deterministic routing means a routing path
can be determined without random search. The cost of employing
DISCO routing is the potentially sub-optimal routes, which are,
however, tolerable in sensor networks where data traffic is light.

The conventional table-driven routing is obviously non-DISCO,
because the size of a routing table grows with the size of the net-
work. Most on-demand routing algorithms developed for mobile
ad hoc networks result in non-constant communication overhead
for route discovery and thus are not DISCO either. On the other

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiHoc’14, August 11–14, 2014, Philadelphia, PA, USA.

Copyright 2014 ACM 978-1-4503-2620-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2632951.2632977.

hand, while the sensor network protocols that aggregate data from
sensors to sink(s) are predominantly DISCO, they do not support
generic communication between any peers in the network. The ear-
liest endeavor to achieve DISCO in large-scale peep-to-peer wire-
less sensor networks is geometric routing [13–20].

1.1 Overview of Geometric Routing
We begin our discussion on geometric routing in 2D wireless

sensor networks. Given the practical limit on radio range, the com-
munication graph of a large-scale sensor network often well pre-
serves its geometric characteristics.

In geometric greedy routing, a node always forwards a packet to
one of its neighbors closest to the destination of the packet. Geo-
metric greedy routing is distributed with constant storage, commu-
nication and computation overhead. However, geometric greedy
routing itself does not guarantee delivery of data packets, due to the
presence of local minima in the network. A node is called a local

minimum if it is not the destination but closer to the destination than
all of its neighbors. Clearly, geometric greedy routing fails at local
minima. As to be discussed in Sec. 3, local minima may appear
at either internal or boundary nodes. The former can be resolved
by using local information within two hops. Therefore, most geo-
metric routing algorithms focus on the latter, largely following two
strategies: face routing [13–20] and greedy embedding [21–27].
Face routing and its alternatives and enhancements are based on the
fact that a void in a 2D planar network is a face with a simple line
boundary. Thus a local deterministic algorithm can be employed to
search the boundary in either clockwise or counter-clockwise direc-
tion to guide the packet out of the local minimum as illustrated in
Fig. 1(a). Greedy embedding aims to embed a sensor network into
a domain without local minima such that geometric routing under
such embedding is always successful.

1.2 Challenges in 3D Geometric Routing
While increasing space dimension appears irrelevant to network

communication protocols at the first glance, surprising challenges
are observed in efforts to extend geometric routing techniques from
2D to 3D. First, none of the greedy embedding algorithms in the lit-
erature [21–27] can be generalized to 3D sensor networks. At the
same time, the boundary of a void in a 3D network is no longer a
closed curve or line segment, but a surface, rendering face routing
infeasible. More specifically, in contrast to the simple line bound-
ary in 2D that can be searched deterministically, there exist an arbi-
trarily large number of possible paths on the boundary surface to be
explored in order to escape from a local minimum in 3D (as shown
in Fig. 1(b)). As a matter of fact, a recent finding shows that there

S

void

D

(a) Face routing succeeds in 2D.

S D
?

void
?

(b) Face routing fails in 3D.

S D

void

trace

P

(c) Proposed trace-routing.

Figure 1: Exposition of challenges to extending face routing from 2D to 3D and illustration of the proposed trace-routing algorithm.

(a) Face routing succeeds in a 2D planar network where a local deterministic algorithm can be employed to search the boundary

in clockwise or counter-clockwise direction to guide the packet out of the local minimum. (b) Face routing fails in a 3D network

because there exist an arbitrarily large number of possible paths on the boundary surface to be explored in order to escape from a

local minimum. (c) The basic idea of trace-routing is to establish a cutting plan that intersects the boundary surface to yield a trace,

along which the packet can move out of the local minimum.

does not exist a deterministic algorithm to guarantee data delivery
based on local information only in general 3D networks [28].

Given the challenges in extending 2D geometric routing algo-
rithms to 3D, several approaches have been developed specifically
for 3D settings, which fall into four categories as summarized be-
low. The first category focuses on topology control [29], where
a critical communication distance is suggested to eliminate local
minima in 3D networks. However, such critical communication
distance is often too large for practical applications, given the short
sensor radio range, e.g., about 10 meters for MICAz motes.

The second category is based on dimension reduction by pro-
jecting nodes in 3D space onto 2D plane, where face routing is
applied [6, 7]. However face routing on the projected plane does
not guarantee a packet to move out of local minimum in the origi-
nal 3D network. Separately, a 4D stereographic projection scheme
is adopted in [9] for load balancing, but it does not address possible
local minima.

The third category adopts the divide-and-conquer strategy to com-
press geometric information required to escape from local minima
in a 3D network. To this end, tree structure or space partition is of-
ten employed. For example, a convex hull-based tree is introduced
in GDSTR-3D [10]. If a local minimum is reached, the packet is
forwarded according to the tree. As another example, a 3D partial
unit Delaunay triangulation algorithm is proposed in [5] to divide
the network space into closed subspaces such that a local minimum
can be recovered within a few subspaces only. In [30], a distributed
multi-dimensional tree structure is applied to support guaranteed
packet delivery. Separately, the Random-Walk algorithm [8] em-
ploys a spherical dual graph structure to jump out of local minima.
In all of these schemes, certain structures must be maintained by
individual sensors, which are often non-locally-deterministic or re-
quires a non-constant storage space that increases with the network
size.

The fourth category is based on mapping schemes. For exam-
ple, volumetric harmonic mapping is introduced in [31] to achieve
deterministic and guaranteed delivery in 3D sensor networks. How-
ever, a routing table must be maintained for a network that contains
more than one voids, with its size proportional to the number of
voids in the network.

Moreover, all algorithms discussed in the above four categories
suffer from network dynamics. For example, when sensor nodes
move, they must frequently update their data structures or virtual

coordinates. Such updates are usually expensive or even unattain-
able.

1.3 Contributions of This Work
As discussed above, none of the existing schemes support DISCO

routing in 3D wireless sensor networks. In this research, we con-
sider a sensor network deployed in a 3D space with one or multiple
internal holes, where sensors cannot be deployed. We show that
local minima are always on the boundaries of holes if nodal den-
sity is high, and there exists a DISCO algorithm to support rout-
ing between any pair of points in a strong-connected 3D network.
We propose a distributed and deterministic algorithm with constant
storage, communication and computation overhead, dubbed trace-
routing, to escape from local minima. Trace-routing is triggered
when a packet reaches a local minimum. It constructs a virtual cut-
ting plane that contains the local minimum and the destination and
intersects the corresponding boundary surface to yield a trace. The
trace is a closed loop that can be computed locally with constant
overhead. The packet is routed along such a trace, thus determinis-
tically moving out of the local minimum as illustrated in Fig. 1(c).

The proposed trace-routing algorithm does not demand prepro-
cessing of the global network information, neither does it require
establishing or maintaining a global data structure, which often
consumes a storage space proportional to the network size and needs
frequent update due to network dynamics. We further prove the
trace-routing algorithm guarantees data delivery in a strong-connected
3D network under both continuous and discrete settings. In a nut-
shell, trace-routing supports DISCO, thus highly efficient in large-
scale 3D sensor networks. It is worth mentioning that the proposed
trace-routing algorithm and related discussions and proofs do not
rely on any particular communication model (such as the unit ball
graph model or quasi-unit ball graph model). Only a maximum ra-
dio range is assumed, which is generally known in practical sensor
networks.

The rest of this paper is organized as follows: Sec. 2 intro-
duces the proposed trace-routing algorithm in continuous 3D do-
main. Sec. 3 presents a practical design of trace-routing and proves
its correctness under discrete 3D sensor network settings. Secs. 4
and 5 discuss simulation and experimental results. Finally, Sec. 6
concludes the paper.

B1

B2

B0

a

b

Figure 2: Boundaries and δ-

vicinities.

B1

B2

B0

s1

d1

s2

d2

pmin

s3

d3

Figure 3: Geometric greedy

routing.

p
^

d

Figure 4: Illustration of

Lemma 2.

pmin d
p0

p1 p2

p
^

P
trace1 trace2

void

Figure 5: Illustration of

Lemma 4.

2. TRACE-ROUTING IN CONTINUOUS 3D

SPACE
As shown in [28], there does not exist a universal determinis-

tic algorithm to guarantee data delivery based on local information
only in general 3D networks. Following this result, a natural ques-
tion is whether there exists a DISCO routing algorithm for a class of
practical 3D networks and how to develop a distributed algorithm
to achieve such DISCO routing. To deliver a lucid conceptual pre-
sentation and gain useful theoretic insights, we first investigate the
failures in geometric greedy routing and present our proposed al-
gorithm in a continuous 3D space. We will discuss the algorithm
under discrete 3D sensor network settings in the next section.

2.1 Greedy Routing in Continuous 3D Volume
Let’s start with several definitions that are necessary to our ex-

position and discuss the essence of geometric greedy routing in a
continuous 3D Euclidean space. Let U denote an Euclidean vol-
ume in 3D space R

3, which is enclosed by a set of boundaries
B = {Bk | 0 ≤ k ≤ K}, where B0 is the outer boundary and
Bk (k > 0) is an inner boundary of U. Let L(p, q) denote a straight
line segment from Point p to Point q, and |L(p, q)| denote its Eu-
clidean distance. Let Λk denote the area enclosed by Bk (k ≥ 0).
Obviously, U = Λ0 \ ∪Λk (1 ≤ k ≤ K}).

DEFINITION 1. Let C(s, d) be a sequence of line segments,

C(s, d) = 〈L(p0, p1), L(p1, p2), .., L(pm−1, pm)〉, where p0 = s

and pm = d. We call C(s, d) a routing path connecting s and d, if

and only if

• L(pi, pi+1) does not intersect with L(pj , pj+1), ∀ i 6= j,

i+ 1 6= j and i 6= j + 1; and

• L(pi, pi+1) does not penetrate any boundary of U,

∀ L(pi, pi+1) ∈ C(s, d).

The first condition of Definition 1 requires the routing path free
of self-intersection, while the second condition indicates that the
path must be completely contained inside U. Next we introduce
the geometric greedy routing algorithm via the following two defi-
nitions.

DEFINITION 2. We call V (p, δ) the δ-vicinity of Point p, if ∀ p̂
in V (p, δ), L(p, p̂) is completely contained in U and |L(p, p̂)| ≤ δ

where δ is a given positive real number.

Fig. 2 illustrates two examples of δ-vicinity of points at different
locations. The δ-vicinity of Point a, an internal node, is a ball
centered at a with a radius of δ, while Point b has a defected δ-
vicinity due to the nearby boundary.

DEFINITION 3. A routing path C(s, d) is a geometric greedy

path (or greedy path for conciseness), denoted as C(s, d, δ), if ∀
pi on C(s, d, δ), pi+1 is the closest point in V (pi, δ) to Destination

d.

The above definition suggests a simple geometric greedy rout-
ing algorithm. It starts from the source as its current point, and
chooses the point in its current δ-vicinity that is the closest to the
destination as the next point. The process repeats until it reaches
the destination. An example of routing from Source s1 to Destina-
tion d1 is shown in Fig. 3. Note that the geometric greedy routing
algorithm may fail to find the next point, when the current point is
closer to the destination than all other points in its δ-vicinity. For-
mally we define the point where geometric greedy routing fails as
a local minimum.

DEFINITION 4. Point pmin is a local minimum for Destination

d under a given δ, if pmin 6= d and L(pmin, d) ≤ L(p, d) ∀ p ∈
V (pmin, δ).

An example of geometric greedy routing failure is illustrated in
Fig. 3 from Source s2 to Destination d2. Greedy routing often fails
when the routing path meets the boundary of an internal hole. Par-
ticularly, we have the following observation regarding geometric
greedy routing failures.

LEMMA 1. If there does not exist a geometric greedy routing

path C(s, d, δ) between s and d under a given δ, L(s, d) must in-

tersect at least one of the boundaries of U.

PROOF. We prove it by contradiction. Assume L(s, d) does not
intersect any boundary. Since s and d are points in U, L(s, d) must
be completely contained in U (otherwise it would intersect a bound-
ary). Then a greedy path C(s, d, δ) along the straight line L(s, d)
can be readily constructed according to Definition 3, contradicting
the given condition that there is no greedy path between s and d.
Thus, the lemma is proven.

Equivalent to Lemma 1, if L(s, d) does not intersect any bound-
ary of U, we can always find a greedy routing path from s to d.
It gives the sufficient condition for the existence of a greedy path.
But it is not the necessary condition, i.e., even if L(s, d) intersects
a boundary, a greedy routing path may still be established from s
to d. Fig. 3 illustrates such an example where L(s3, d3) intersects
a spherical boundary, but there exists a greedy routing path along
the spherical boundary to Destination d3. Based on Lemma 1 and
Definition 4, we arrive at the following conclusion.

LEMMA 2. Greedy routing only fails at local minimums and

local minimums are always on the boundaries of holes.

PROOF. The first part of the lemma is obvious from Defini-
tions 3 and 4. The second part of the lemma can be proven by
contradiction. Assume there is a local minimum point p̂ that is an
internal point in U (i.e., not on any boundary). Let’s draw a line
L(p̂, d). Since p̂ is an internal point, there must exist a δ such that
the intersection of L(p̂, d) and V (p̂, δ) (highlighted in red in Fig. 4)
is a line segment, on which all points are closer to d than p̂ is. This
contradicts the assumption that p̂ is a local minimum. The lemma
is proven.

B0

B1

(a) Volumes with convex
boundaries are always s-con.

B0

B1

(b) A volume with a C-shape
inner void is s-con.

B1

B2

B0

(c) A volume with complex
shapes of inner voids is s-con.

B0

B1

(d) A volume with a bowl-
shape inner void is not s-con.

Figure 6: Examples of s-con and non-s-con volumes. Each volume has a cubic outer boundary (i.e., B0) and one or two inner voids

delineated by the colored boundaries. An example of cutting planes is shown in each figure, where the shaded area(s) illustrate its

intersection with the volume.

Lemma 2 reveals an important fact: greedy routing only fails at
boundaries, inspiring us to develop a deterministic boundary navi-
gation algorithm to escape from local minimums.

2.2 Trace-Routing in Continuous 3D Volume
In a 3D space for practical sensor network deployment, the bound-

ary surfaces are closed (a closed surface is a compact one with
empty boundary) and the 3D volume is often Strong-CONnected

(s-con). Here “closed” means no “breaches” on the surface. The
s-con property is defined below.

DEFINITION 5. A 3D volume U is s-con (Strong-CON-nected),

if and only if the intersection of any plane and U is a connected

graph on the plane.

Figs. 6(a)-6(c) depict several examples of s-con 3D volumes.
Each volume has a cubic outer boundary (i.e., B0) and one or
two inner voids delineated by the colored boundaries. An exam-
ple of cutting planes is shown in each figure, where the shaded
area(s) illustrate its intersection with the volume. It is obvious that
a 3D volume with convex boundaries is always s-con as shown in
Fig. 6(a). But s-con volumes may have non-convex boundaries too.
For instance, volumes in Fig. 6(b) and Fig. 6(c) are s-con with non-
convex inner boundaries. Note that, although the plane intersects
the volume in Fig. 6(c) to yield multiple voids on the intersection
plane, the intersection itself (i.e., the shaded area) is still connected.
Therefore it is s-con. Fig. 6(d) shows an example of non-s-con
volume, with a bowl shape inner void, resulting in disconnected
components on the intersection plane (see the disconnected shaded
areas).

Although DISCO routing is not achievable in general 3D net-
works as discussed earlier, we now introduce the proposed trace-
routing algorithm, and prove that it supports DISCO routing in any
3D wireless sensor networks that are Strong-CONnected (s-con).
There exist other types of boundary surfaces in theory, but they are
rare under practical sensor network settings and thus excluded from
our discussions below.

As shown by Lemma 2, if greedy routing fails, it must stuck at
a local minimum, and such local minimum must be on a boundary
of U. Let pmin denote the local minimum where geometric greedy
routing fails, and assume pmin is on Boundary Bi. Now we con-
struct an arbitrary plane that contains L(pmin, d). It intersects Bi,
resulting in one or multiple traces. By examining the traces, we
have the following observation.

LEMMA 3. A trace on a boundary surface is a closed loop with

no self-intersection.

PROOF. If a trace is not a closed loop, the space between two
endpoints on the plane forms a breach on the surface, contradicting

pmin

d

a

b
c

h

Figure 7: Illustration of

Lemma 5.

d

pmin

cb

a

h

Figure 8: Prove of Theorem

2.

the fact of closed boundary surface. Since the trace is the inter-
section of the surface and the plane, it cannot self-intersect, given
that the surface is homeomorphic to sphere with no self-intersecting
component.

If we draw a line segment from pmin to d, L(pmin, d) must
intersect Bi at two or more points including pmin, as shown in
Fig. 5. Let p0 denote one of such intersection points, which is the
closest to pmin. Clearly, p0 must be closer to d than pmin is, since
it is on the line segment between pmin and d.

LEMMA 4. In an s-con volume, the trace containing pmin must

also contain p0 and there is a loop-free path from pmin to p0 along

this trace.

PROOF. Obviously pmin and p0 must belong to some trace(s).
According to the way of constructing the plane, L(pmin, d) must
intersect one or multiple traces, yielding a sequence of intersection
points on L(pmin, d). Now let us look at the trace that contains
pmin, denoted by Γpmin

. Since L(pmin, d) starts from pmin that
is on Boundary Bi and goes toward the inside of Bi, it cannot reach
another point before it meets Γpmin

again. Let p̂ denote this inter-
section point as shown in Fig. 5. Since p̂ is the first such intersec-
tion point, it is the closest to pmin. Clearly, p̂ must be co-located
with p0 introduced earlier. Therefore, we have proven pmin and p0
must be on the same trace.

As shown by Lemma 3, a trace is a closed loop with no self-
intersection. Thus it is straightforward to choose a loop-free route
along the trace in either clockwise or counterclockwise direction to
route from pmin to p0.

Till now we are ready to formally introduce the trace-routing
algorithm and prove its correctness as follows.

THEOREM 1. There exists a deterministic algorithm with con-

stant storage, communication and computation overhead, which

can always successfully navigate the routing path out of local min-

imums in an s-con volume.

PROOF. First we construct a simple algorithm, dubbed trace-

routing as follows. When geometric greedy routing reaches a local
minimum pmin on Boundary Bi, it chooses a cutting plane that is
determined by pmin, Destination d, and another random point p̂.
The plane intersects Bi, yielding a trace that contains pmin. The
routing path advances along the trace in clockwise or counterclock-
wise direction until it reaches a point that is closer to Destination d

than pmin is. Then geometric greedy routing follows.
Now we prove the correctness of the algorithm. According to

Lemma 4, there must exist at least one point (i.e., p0) on the trace
containing pmin, which is closer to Destination d than pmin is.
Since the trace is a closed loop with no self-intersection, if one
starts from pmin and navigates along the trace in clockwise or
counterclockwise direction, it will visit all points on the trace ex-
actly once before it returns back to pmin. Therefore the routing
path must reach p0, from which it can escape from the local mini-
mum.

Trace-routing is clearly deterministic as evident by the descrip-
tion of the algorithm itself. Next, we show its storage, communica-
tion and computation overhead are all constant. The algorithm re-
quires each node to maintain the coordinates of itself and its neigh-
bors only, and to pass merely a constant amount of information (i.e.,
the cutting plane defined by three points pmin, p̂, and d) along the
routing path. Assume the routing path reaches Point p. The trace
segment around p can be found by computing the intersection of
the cutting plane and the boundary surface in V (p, δ). Thus, the
routing decision is made locally with a constant computation com-
plexity.

In summary we have proved the existence of a local deterministic
algorithm with constant storage, communication and computation
overhead that can always successfully move out of local minimums
in an s-con volume.

Theorem 1 reveals salient properties of trace-routing, which sup-
ports efficient and distributed implementation under practical sen-
sor network settings to be discussed next.

3. TRACE-ROUTING IN DISCRETE 3D NET-

WORKS
While trace-routing has been introduced above to escape from

local minimums, it remains challenging to adapt the concepts and
ideas to a practical sensor field. In contrast to the continuous 3D
Euclidean volume considered in Sec. 2, a sensor network is under
a discrete setting, which presents an approximation of the 3D vol-
ume only, rendering part of the earlier discussed methods and re-
sults invalid. For example, sensor nodes rarely reside perfectly on
the trace computed in a continuous space, calling for approximated
solutions. Furthermore, the routing algorithm must be distributed
in sensor networks. However, the deployment of sensor nodes ex-
hibits randomness and their radio transmissions are often irregular,
which together lead to new challenges to realize distributed trace-
routing and to achieve constant storage, communication and com-
putation overhead.

In this section, we examine our conclusions presented in the pre-
vious section under a discrete setting, and introduce a practical de-
sign of the trace-routing algorithm for 3D sensor networks with
internal holes. The following discussions do not rely on any par-
ticular communication model (such as the unit ball graph model or
quasi-unit ball graph model). Only a maximum transmission range
is assumed, which is generally known in practical wireless sensor
networks.

3.1 Challenges of Trace-Routing in 3D Sensor
Networks

Let us first revisit the concepts and conclusions given in Sec. 2
for continuous 3D Euclidean volume, and evaluate their validity in
3D sensor networks.

3.1.1 Tetrahedron Structure

To facilitate our exposition, we first establish a tetrahedral struc-
ture based on discrete sensors as discussed in [31]. A triangular
face in a tetrahedral structure is a boundary face if it is associated
with one and only one tetrahedron. A set of connected boundary
faces form a closed triangular boundary surface. In the following
discussions, a “boundary” refers to a triangular boundary surface.

3.1.2 Local Minimums

Lemma 2 has shown that local minimums are always on the
boundaries of holes in a continuous 3D Euclidean volume. Un-
fortunately, this result no long holds in discrete settings, where lo-
cal minimums may appear at not only boundary but also internal
sensors. However, the internal local minimums can be resolved by
using local information only as revealed by the following lemma.

LEMMA 5. Given an internal local minimum pmin, the routing

path can move out the local minimum by using local information

in 2δ-vicinity of pmin, where δ is the maximum radio transmission

range.

PROOF. Based on the tetrahedron structure, a greedy routing
path can be established according to faces [31]. More specifically,
when the routing path reaches an internal local minimum pmin,
a line segment from pmin to Destination d can be computed by
pmin. The line segment passes through a sequence of faces in the
tetrahedron structure. Let’s consider the first such face, denoted
by Face(a, b, c), where a, b, and c are vertex nodes (as illustrated
in Fig. 7). Obviously, Face(a, b, c) must be closer to the destina-
tion compared to the current face, i.e., Face(pmin, a, b). Clearly,
Face(a, b, c) is within two-hop neighborhood of pmin. As a result,
the routing path can move out of the local minimum by using local
information in 2δ-vicinity of pmin.

According to Lemma 5, we slightly modify the greedy routing
algorithm to let each node check its two-hop neighborhood to iden-
tify the closest node to the destination, thus eliminating internal
local minimums. Note that, the modified algorithm does not help
to escape from boundary local minimums, which are yet to be ad-
dressed by the proposed trace-routing.

3.1.3 Traces

As discussed in Sec. 2.2, a trace on an inner boundary is a closed
loop without self-intersection. It can be computed by using local
information. But in a discrete setting, sensors rarely reside per-
fectly on the computed trace. To this end, we redefine traces under
discrete settings as follows.

DEFINITION 6. In a discrete 3D space, a trace formed by a

given plane and a boundary consists of a sequence of line segments

on the boundary surface, which intersect the plane and are con-

nected end-to-end to form a loop.

LEMMA 6. Given a tetrahedral structure of the 3D sensor net-

work and a plane that intersects a triangular boundary surface of

the tetrahedral structure, a closed-loop trace can be constructed

deterministically.

PROOF. For a given tetrahedral structure of the 3D sensor net-
work, the faces on the boundary of an internal hole form a closed
and connected triangular surface. A plane intersects the triangular
boundary surface at a set of triangular faces, denoted by Φ. For
each face f ∈ Φ, it must have at least two edges intersecting the
plane. Since each edge is shared by two faces on the triangular
boundary surface, Face f must have at least two neighboring faces
in Φ. Therefore, the faces in Φ are connected to form a closed
strap. It is thus straightforward to select a sequence of edges on
such faces, which intersect the plane, to build a closed loop, i.e. the
trace.

Based on Lemma 6, we have the following result that shows the
correctness of trace-routing.

THEOREM 2. A deterministic routing path can be identified by

following the trace constructed according to Lemma 6 to escape

from local minimums.

PROOF. To prove this theorem, we show that there exists at least
one node on the trace, which is closer to the destination than the lo-
cal minimum (i.e., pmin) is. Similar to our discussion under the
continuous setting, if we draw a line segment from pmin to Desti-
nation d, L(pmin, d) must intersect the boundary surface at one or
more points besides pmin. Let h denote one of such intersection
points that is the closest to pmin, and assume h is on an arbitrary
face, e.g., Face(a, b, c) as illustrated in Fig. 8. Clearly, L(a, b),
L(b, c) and L(a, c) are no greater than the maximum radio range
r because they are connected in the communication graph. Since
h is on Face(a, b, c), L(a, h), L(b, h) and L(c, h) must be no
greater than r either. At the same time, L(pmin, a), L(pmin, b),
L(pmin, c) and L(pmin, h) are all greater than r, since there is
a hole between pmin and Face(a, b, c). Thus we have L(a, d)
< L(a, h) + L(h, d) ≤ r+L(h, d) < L(pmin, h) + L(h, d) =
L(pmin, d). Therefore a is closer to d than pmin is. Similarly,
b and c are closer to d than pmin is. Note that at least one edge of
Face(a, b, c) must be on the trace constructed according to Lemma 6.
Therefore one can always find a node on the trace closer to d than
pmin is. The theorem is thus proven.

Theorem 2 shows trace-routing is deterministic and always suc-
ceeds in discrete sensor networks. Moreover, similar to the proof of
Theorem 1, its storage, communication and computation overhead
are all bounded by a constant.

3.2 Proposed Trace-Routing Algorithm in 3D
Sensor Networks

The basic idea of trace-routing is to move clockwise or coun-
terclockwise around the trace constructed by Lemma 6, which is
a closed loop and thus can navigate out of local minimums. The
discussions so far have assumed known boundary nodes and trian-
gular boundary surfaces. Next we show that such information can
be acquired locally with constant overhead or is unnecessary at all
in practice.

3.2.1 Boundary Awareness

We adopt the boundary detection algorithm proposed in [32],
which is localized, requiring information within one-hop neigh-
borhood only for each node to determine if it is on a boundary.
Therefore, when greedy routing fails at a local minimum pmin, the
boundary detection algorithm [32] is employed to identify bound-
ary nodes in the δ-vicinity of pmin as input for the trace-routing
algorithm.

3.2.2 Triangular Boundary Surface

The tetrahedron structure and triangular boundary surfaces are
assumed to facilitate our discussions in Sec. 3.1, especially the
proof of Lemmas 5 and 6. However, it is unnecessary to explicitly
construct them for the implementation of trace-routing. The algo-
rithm can simply choose one of the boundary nodes in its neighbor-
hood as the next hop along the trace. More specifically, the trace-
routing algorithm is outlined in Algorithm 1. It is initiated when
a greedy routing path reaches a local minimum pmin. It defines a
plane based on pmin, d and an arbitrary node p in the δ-vicinity of
pmin. Let ∆ denote the plane. The algorithm then enters an iter-
ative process. In each iteration, a boundary node in the δ-vicinity
of the current node (i.e., pcur) is identified to be the next node (i.e.,
p̂) along the trace. To keep the next node as close to the ideal trace
(computed under continuous setting) as possible and to advance
along the trace as fast as possible, p̂ is chosen such that L(pcur, p̂)
intersects Plane ∆ and forms the largest angle with L(ppre, pcur),
where ppre is the previous hop node on the routing path. The itera-
tive process repeats until it reaches a node closer to the destination
than pmin is, i.e., |L(pcur, d)| < |L(pmin, d)|.

It is clear that Algorithm 1 only results in constant storage, com-
munication and computation overhead. It does not demand pre-
processing of the global network information, neither does it re-
quire establishing or maintaining a global data structure, which of-
ten consumes a storage space proportional to the network size and
needs frequent update due to network dynamics. Thus it is highly
efficient for large-scale 3D sensor networks.

Algorithm 1: Trace-Routing Algorithm

Input: Local minimum pmin, Destination d;
1 Define Plane ∆ based on pmin, d and an arbitrary node

p ∈ V (pmin, δ);
2 pcur ← p, ppre ← pmin;
3 while |L(pcur, d)| ≥ |L(pmin, d) do

4 Identify a boundary node p̂ ∈ V (pcur, δ) such that
L(p̂, pcur) intersects Plane ∆ and forms the largest angle
with L(ppre, pcur);

5 ppre ← pcur; pcur ← p̂;

3.3 Peer-to-Peer Routing in 3D Wireless Sen-
sor Networks

In summary, when a packet is routed from Source s to Destina-
tion d, it first follows geometric greedy routing until a local mini-
mum is reached. Then it employs trace-routing to move out of the
local minimum. When the packet arrives at a non-local-minimum
node, it switches to greedy routing again. The process repeats until
the packet arrives at Destination d. Examples of the routing paths
are illustrated in Fig. 1(c) and Figs. 9.

4. SIMULATION RESULTS
We have implemented the proposed trace-routing algorithm (de-

noted by “TR”) and two other state-of-the-art 3D wireless sensor
network routing algorithms, namely GDSTR-3D [10] and HVE
(harmonic volumetric embedding) [31], for performance evaluation
and comparison. Since HVE works in networks with one hole only,
we focus on the comparison between TR and GDSTR-3D in most
simulation scenarios. Various 3D sensor networks with different
sizes (ranging from 1,800 to 11,000 nodes) and shapes are simu-
lated. Fig. 9 illustrates three examples, where the inner boundary

(a) Model 1 (Seabed Network).

S

d

(b) A sample path in Model 1.

(c) Model 2 (Space Net-
work).

d

S

(d) A sample path in Model
2.

(e) Model 3 (Underwater Net-
work).

S

d

(f) A sample path in Model 3.

Figure 9: The left column shows 3D sensor network models

and the right column illustrates sample routing paths in each

model. The sensors on the boundary of holes are highlighted in

different colors. The blue segments indicate greedy forwarding,

while the red segments follow trace-routing.

nodes are highlighted to delineate the holes in the networks. Sen-
sors are randomly distributed. While our proposed scheme does
not rely on a particularly communication model, we carry out sim-
ulations based on unit ball graph and quasi-unit ball graph models,
with an average nodal degree between 10 to 18. Our simulations
show that the proposed scheme works well for networks with a
nodal degree greater than 7 (which represents a sparse network in
three dimensional space).

4.1 Stretch Factor
As discussed in previous sections, TR, GDSTR-3D and HVE

all ensure successful delivery. Therefore we focus on stretch fac-
tor in performance evaluation. The stretch factor of a route is the
ratio of the actual routing path length to the shortest path length.
20,000 pairs of nodes are randomly selected to calculate the av-
erage stretch factor for each network model. The following table
compares the average stretch factors of GDSTR-3D and TR in dif-
ferent networks. The results of HVE are not included because it can
be applied for networks with one hole only, where its stretch fac-
tor is around 1.52. Both algorithms achieve good and comparable
stretch factor (less than 1.3) in all network models. GDSTR-3D is
more sensitive to the hole size and the number of holes, exhibiting
higher stretch factors under Models 2-4. This is mainly because
that the GDSTR-3D uses two trees rooted at two furthest away
nodes. When there are multiple holes or complex shape holes, the

[1.0−1.05) [1.05−1.1) [1.1−1.15) [1.15 −1.2) [1.2−1.50) [1.5−2.0) [2.0−2.5) > 2.50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Routing Path Stretch

P
e

rc
e

n
t

o
f

T
o

ta
l
R

o
u

ti
n

g
 P

a
th

s
 (

x
1

0
0

%
)

TR

GDSTR−3D

Figure 10: Stretch under UDG.

local minimum recovery procedure that follows one of the two trees
often results in significantly stretched routing paths in comparison
with corresponding shortest paths. Moreover, under complex and
multiple hole settings, there are more overlapped convex hull par-
titions, which cause longer paths during the tree routing phase. In
a contrast, TR follows the geometric boundary of the holes in local
minimum recovery, resulting in a stable stretch factor in average.

Models 1 2 3 4 5 6 Ave.

TR 1.05 1.09 1.04 1.21 1.08 1.11 1.10

GDSTR-3D 1.14 1.23 1.29 1.25 1.07 1.19 1.20

The distribution of stretch factor is illustrated in Fig. 10. As can
be seen, more than 50% routing paths have their stretch factor lower
than 1.15 under both schemes. Compared with TR, the stretch fac-
tor distribution of GDSTR-3D has a noticeable shift to the right
side with more routes experiencing a stretch factor of 1.2 or higher.

As discussed in the previous sections, TR and GDSTR-3D do not
rely on any particular transmission model. Here we test them under
a general “QUASI-UBG" model, where two nodes are connected if
their distance is less than d; or disconnected if their distance is be-
yond the maximum transmission range r; or have a probability of
p to be connected if their distance is between d and r. We vary d
and p, and compare the performance of TR and GDSTR-3D. Both
schemes support perfect data delivery rate. Their stretch factors are
shown in Fig. 11. We observe that the stretch factor of GDSTR-
3D increases fast with the decrease of d, because the connections
between nodes become more random, leading to more overlap be-
tween convex hulls. Consequently, a non-optimal branch is more
frequently chosen to establish a routing path, resulting in a higher
stretch factor. On the other hand, TR only increases stretch factor
moderately due to the lower nodal density.

4.2 Overhead and Stability
TR does not require any global information to be stored by in-

dividual nodes. Each node only collects its 1-hop neighbor infor-
mation, which is proportional to nodal degree, i.e., the density of
the network, which is usually regarded as constant for a given net-
work setting. The information necessary for greedy forwarding is
simply the destination ID and location. The information needs for
trace-routing is the plane defined by the destination, local mini-
mum, and another arbitrary node. The computation overhead in-
cludes the identification of boundary neighbors and the next hop
on the trace, which is proportional to the nodal degree as well. So

1

0.8

0.6

0.4

0.2

0

0.9

0.7

0.5
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Parameter d of QUASI−UBG ModelProbability P of QUASI−UBG Model

A
v
e
ra

g
e
 S

tr
e
tc

h
 o

f
R

o
u

ti
n

g
 P

a
th

s

TR p=0.5

GDSTR−3D p=0.5

TR p=0.7

GDSTR−3D p=0.7

TR p=0.9

GDSTR−3D p=0.9

Figure 11: Stretch under Quasi-UDG.

both communication and computation overhead are bounded by a
small constant (i.e., nodal degree). GDSTR-3D constructs two con-
vex hull-based trees, where each node aggregates the locations of
its children by using 2D convex hulls. Its time complexity and
communication cost are dominated by the computation of 2D con-
vex hulls (i.e., O(n log n)), while the per node storage cost can be
close to a constant after compression.

Location information is required in both TR and GDSTR-3D,
which is, however, often subject to errors in practical sensor net-
work settings. Fig. 12 depicts the results of TR and GDSTR-3D
under different localization errors. We consider a path fails if its
stretch factor exceeds 6.0. The delivery ratio of GDSTR-3D drops
much faster than TR, because the location errors on individual nodes
are aggregated in establishing the convex hull tree, increasing the
chance to search into an incorrect tree branch. Since TR uses only
local information only, the localization errors do not spread out.
Therefore TR exhibits desired stability against localization errors.
For example, under 30% errors, it still keeps its delivery ratio over
94%, while GDSTR-3D can deliver merely 81% of data.

4.3 Network Dynamics
Since TR does not rely on any global network structure, it is

adaptive to network dynamics (e.g., sensors’ movement). Here we
evaluate the performance of TR, GDSTR-3D and HVE in mobile
3D sensor networks. We assume the holes are obstacles in the field
where sensor nodes cannot access, and assume a simple random
waypoint mobility model. More specifically, each node chooses a
random position within a distance of ρ as its new position, where
ρ is the maximum moving range during a time interval t. We let
ρ = 0.2r in our simulations. In each time interval, we measure
the delivery ratios of three algorithms based on 10, 000 pair of ran-
domly chosen nodes. Similar to the above discussion, a path is
deemed unsuccessful if its stretch factor exceeds 6.0. The simu-
lation lasts for 20 time intervals. As can be seen in Fig. 13, TR
achieves a stable delivery ratio which is very close to 1 as ex-
pected, since the geometric shape of the network remains the same,
even though the nodes change their positions. The failed routes,
which are rare, are caused by the irregularity distribution of bound-
ary nodes that results in very low node density in a local area. In
a sharp contrast, the delivery ratios of GDSTR-3D and HVE de-
creases dramatically after 9 intervals, because the convex hull tree
for GDSTR-3D and tetrahedron mesh for HVE become outdated,
providing wrong routing information.

0% 5% 10% 15% 20% 25% 30% 40% 50%
0.5

0.6

0.7

0.8

0.9

1

Location Errors (x r)

D
e
liv

e
ry

 R
a
ti
o

TR

GDSTR−3D

Figure 12: Delivery ratio against location errors.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time Intervals

D
e

liv
e

ry
 R

a
ti
o

TR

GDSTR−3D

HVE

Figure 13: Delivery ratio under network dynamics.

5. EXPERIMENTS
We have also implemented the TR algorithm on Crossbow MI-

CAZ motes (MPR2400CA). We set up a small testbed with 98
motes, where the maximum transmission range is set to around 4.5
inches for easy configuration of network topology. We place the
motes uniformly around the boundary of a cubic hole of 20× 20×
20 inches and manually measure the relative coordinates of each
mote. The distance between neighboring motes is 4 inches and
the nodal degree is around 4, as shown in Fig 14. Since all motes
are boundary nodes, we skip boundary identification in our imple-
mentation. Each mote keeps a table to store its neighboring motes’
coordinates, which is an very small array (4 × 4 in size), which
contains node ID and 3D-coordinates. The exchange of neighbor-
ing information is done during the bootstrap phase, which takes less
than 20 seconds. The TR algorithm involves mostly vectors opera-
tions, such as cutting plane identification, intersection between line
segment and plane, and calculation of angle between two vectors,
which are very convenient to implement on MICAZ motes. A data
packet contains a dummy data segment (of 512 bytes), the IDs and
coordinates of the source and destination, and a flag to indicate cur-
rent routing method (i.e., greedy or trace-routing). If trace-routing
is employed, the data packet also includes the ID and coordinates
of the local minimum node, and the cutting plane (represented as
Ax + By + Cz + D = 0 where A, B, C and D are computed
only once at the local minimum node based on the coordinates of

Figure 14: Experiment setup based on MicaZ motes.

the local minimum, the destination and an arbitrary neighboring
node). The total overhead per packet is 52 bytes. We select 40
pairs of motes on different sides of the hole and transmit 50 pack-
ets for each route. All data packets are successfully delivered from
source to destination in our experiment as expected, with an aver-
age stretch factor of 1.06.

6. CONCLUSION AND FUTURE WORKS
We have proposed trace-routing, a distributed and deterministic

routing algorithm with constant storage, communication and com-
putation overhead for 3D wireless sensor networks. Its basic idea is
to construct a virtual cutting plane that intersects boundary surface
to yield a trace, along which a routing path with guaranteed delivery
can be established. We have proven the correctness of trace-routing
under both continuous and discrete settings. We have implemented
trace-routing on Crossbow sensors and carried out extensive simu-
lations to evaluate its routing efficiency.

Acknowledgements.

Hongyi Wu is partially supported by NSF CNS-1018306 and CNS-
1320931. Miao Jin is partially supported by NSF CCF-1054996,
CNS-1018306 and CNS-1320931.

7. REFERENCES

[1] J. Allred, A. B. Hasan, S. Panichsakul, W. Pisano, P. Gray,
J. Huang, R. Han, D. Lawrence, and K. Mohseni,
“SensorFlock: An Airborne Wireless Sensor Network of
Micro-Air Vehicles,” in Proc. of SenSys, pp. 117–129, 2007.

[2] J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “Challenges:
Building Scalable Mobile Underwater Wireless Sensor
Networks for Aquatic Applications,” IEEE Network, Special

Issue on Wireless Sensor Networking, vol. 20, no. 3,
pp. 12–18, 2006.

[3] X. Bai, C. Zhang, D. Xuan, J. Teng, and W. Jia,
“Low-Connectivity and Full-Coverage Three Dimensional
Networks,” in Proc. of MobiHOC, pp. 145–154, 2009.

[4] X. Bai, C. Zhang, D. Xuan, and W. Jia, “Full-Coverage and
K-Connectivity (K=14, 6) Three Dimensional Networks,” in
Proc. of INFOCOM, pp. 388–396, 2009.

[5] C. Liu and J. Wu, “Efficient Geometric Routing in Three
Dimensional Ad Hoc Networks,” in Proc. of INFOCOM,
pp. 2751–2755, 2009.

[6] T. F. G. Kao and J. Opatmy, “Position-Based Routing on 3D
Geometric Graphs in Mobile Ad Hoc Networks,” in Proc. of

The 17th Canadian Conference on Computational Geometry,
pp. 88–91, 2005.

[7] J. Opatrny, A. Abdallah, and T. Fevens, “Randomized 3D
Position-based Routing Algorithms for Ad-hoc Networks,”
in Proc. of Third Annual International Conference on Mobile

and Ubiquitous Systems: Networking & Services, pp. 1–8,
2006.

[8] R. Flury and R. Wattenhofer, “Randomized 3D Geographic
Routing,” in Proc. of INFOCOM, pp. 834–842, 2008.

[9] F. Li, S. Chen, Y. Wang, and J. Chen, “Load Balancing
Routing in Three Dimensional Wireless Networks,” in Proc.

of ICC, pp. 3073–3077, 2008.

[10] J. Zhou, Y. Chen, B. Leong, and P. Sundaramoorthy,
“Practical 3D Geographic Routing for Wireless Sensor
Networks,” in Proc. of SenSys, pp. 337–350, 2010.

[11] D. Pompili, T. Melodia, and I. F. Akyildiz, “Routing
Algorithms for Delay-insensitive and Delay-sensitive
Applications in Underwater Sensor Networks,” in Proc. of

MobiCom, pp. 298–309, 2006.

[12] W. Cheng, A. Y. Teymorian, L. Ma, X. Cheng, X. Lu, and
Z. Lu, “Underwater localization in sparse 3d acoustic sensor
networks,” in Proc. of INFOCOM, pp. 798–806, 2008.

[13] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing
with Guaranteed Delivery in Ad Hoc Wireless Networks,” in
Proc. of Third Workshop Discrete Algorithms and Methods

for Mobile Computing and Communications, pp. 48–55,
1999.

[14] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks,” in Proc. of MobiCom,
pp. 1–12, 2001.

[15] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on
Geometric Networks,” in Proc. of CCCG, pp. 51–54, 1999.

[16] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger,
“Geometric Ad-hoc Routing: Theory and Practice,” in Proc.

of The 22nd ACM Symposium on the Principles of

Distributed Computing, pp. 63–72, 2003.

[17] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case
Optimal and Average-case Efficient Geometric Ad-hoc
Routing,” in Proc. of MobiHOC, pp. 267–278, 2003.

[18] B. Leong, S. Mitra, and B. Liskov, “Path Vector Face
Routing: Geographic Routing with Local Face Information,”
in Proc. of ICNP, pp. 147–158, 2005.

[19] H. Frey and I. Stojmenovic, “On Delivery Guarantees of
Face and Combined Greedy-face Routing in Ad Hoc and
Sensor Networks,” in Proc. of MobiCom, pp. 390–401, 2006.

[20] G. Tan, M. Bertier, and A.-M. Kermarrec,
“Visibility-Graph-based Shortest-Path Geographic Routing
in Sensor Networks,” in Proc. of INFOCOM, pp. 1719–1727,
2009.

[21] C. Papadimitriou and D. Ratajczak, “On A Conjecture
Related to Geometric Routing,” Theoretical Computer

Science, vol. 344, no. 1, pp. 3–14, 2005.

[22] P. Angelini, F. Frati, and L. Grilli, “An Algorithm to
Construct Greedy Drawings of Triangulations,” in Proc. of

The 16th International Symposium on Graph Drawing,
pp. 26–37, 2008.

[23] T. Leighton and A. Moitra, “Some Results on Greedy
Embeddings in Metric Spaces,” in Proc. of The 49th IEEE

Annual Symposium on Foundations of Computer Science,
pp. 337–346, 2008.

[24] R. Kleinberg, “Geographic Routing Using Hyperbolic
Space,” in Proc. of INFOCOM, pp. 1902–1909, 2007.

[25] A. Cvetkovski and M. Crovella, “Hyperbolic Embedding and
Routing for Dynamic Graphs,” in Proc. of INFOCOM,
pp. 1647–1655, 2009.

[26] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. Gu, “Greedy
Routing with Guaranteed Delivery Using Ricci Flows,” in
Proc. of IPSN, pp. 121–132, 2009.

[27] R. Flury, S. Pemmaraju, and R. Wattenhofer, “Greedy
Routing with Bounded Stretch,” in Proc. of INFOCOM,
pp. 1737–1745, 2009.

[28] S. Durocher, D. Kirkpatrick, and L. Narayanan, “On Routing
with Guaranteed Delivery in Three-Dimensional Ad Hoc
Wireless Networks,” in Proc. of International Conference on

Distributed Computing and Networking, pp. 546–557, 2008.

[29] Y. Wang, C.-W. Yi, and F. Li, “Delivery Guarantee of Greedy
Routing in Three Dimensional Wireless Networks,” in Proc

of International Conference on Wireless Algorithms,

Systems, and Applications, pp. 4–16, 2008.

[30] S. S. Lam and C. Qian, “Geographic Routing with Low
Stretch in d-dimensional Spaces,” in Proc. of SIGMETRICS,
pp. 257–268, 2011.

[31] S. Xia, X. Yin, H. Wu, M. Jin, and X. Gu, “Deterministic
Greedy Routing with Guaranteed Delivery in 3D Wireless
Sensor Networks,” in Proc. of MobiHoc, pp. 1–10, 2011.

[32] H. Zhou, S. Xia, M. Jin, and H. Wu, “Localized Algorithm
for Precise Boundary Detection in 3D Wireless Networks,”
in Proc. of ICDCS, pp. 744–753, 2010.

