Trace-Routing in 3D Wireless Sensor Networks: A Deterministic Approach with Constant Overhead

Su Xia, <u>Hongyi Wu</u>, and Miao Jin School of Computing and Informatics University of Louisiana at Lafayette

2D PLANE, 3D VOLUME, AND 3D SURFACE SENSOR NETWORKS

□ Sensor network settings

- □ 2D plane: crop sensing in fields or wildlife tracking on plains
- □ 3D volume: underwater or space reconnaissance
- 3D surface: seismic monitoring on ocean floors or in mountainous regions

ROUTING IN LARGE SCALE 3D SENSOR NETWORKS

□ Routing algorithm must be scalable

- Constraints in storage and computation capacities at individual sensor nodes
- □ Large scale in sensor quantity
- Goal: realizes DeterminIStic routing with Constant Overhead (or DISCO routing) in 3D networks
 - Constant overhead: signifies the storage, communication and computation required for routing are bounded by a constant at each sensor node
 - Deterministic and guaranteed: a routing path can be determined without random search, to guarantee packet delivery between any pair of nodes

OUR MAIN CONTRIBUTIONS

- The conventional table-driven routing is obviously non-DISCO
 - because the size of a routing table grows with the size of the network
- Most on-demand routing algorithms developed for mobile ad hoc networks are not DISCO either
 - because they result in non-constant communication overhead for route discovery
- Protocols that aggregate data from sensors to sink(s) are predominantly DISCO,
 - do not support generic communication between any peers in the network

GREEDY ROUTING

- ☐ The earliest endeavor to achieve DISCO in large-scale peep-topeer wireless sensor networks is geometric routing [13-20]
- □ What is geometric greedy routing?
 - ☐ A node always forwards a packet to one of its neighbors, which is the closest to the destination of the packet
- Why geometric greedy routing?
 - Both computation complexity and storage space bounded by a small constant
 - □ Scalable to large networks with stringent resource constraints on individual nodes

- Face routing (alternatives/enhancements)
 - Exploit the fact that a void in a 2D planar network is a face with a simple line boundary
 - Surprising challenges for extending to 3D although increasing space dimension appears irrelevant to network protocol

- Topology control a critical communication range is suggested to avoid local minimum [29]: theoretically sound but the critical communication range is often too large for practical sensor networks
- Dimension reduction—project to a 2D plane to apply face routing [6,7]: <u>no guarantee</u> (face routing on projected plane does not ensure a packet to actually move out of void in the 3D network)

□ Structures-based

- 3D partial unit Delaunay triangulation [5]: divide the network into closed subspaces such that a local minimum recovered within a few subspaces only
- □ GDSTR-3D [10]: If a local minimum is reached, forward packet along a spanning tree of convex hulls
- Distributed multi-dimensional tree structure [30]
- □ Random walk under a spherical dual graph structure [8]
- Certain structure must be maintained by individual sensors, which are often <u>non-locally-deterministic</u> [8][5] or requires <u>non-constant storage space</u> [10][30]

Greedy embedding [21-27]

- Provides theoretically sound solutions to ensure the success of greedy routing
- Unfortunately, none of the greedy embedding algorithms can be extended from 2D to general 3D networks
- Proven results [28]
 - There does not exist a deterministic algorithm that can guarantee delivery based on local information only in general 3D networks

HARMONIC MAP APPROACH (MOBIHOC'II)

(a) A 3D sensor network (Network model 1).

(b) Local minimums in nodal greedy routing.

(c) Unit tetrahedron cells (UTCs).

(d) Volumetric Harmonic mapping.

(e) A greedy routing path in mapped domain.

(f) A greedy routing path in original network.

CONTRIBUTIONS

□ Realizes DISCO

- Constant overhead: signifies the storage, communication and computation required for routing are bounded by a constant at each sensor node
- Deterministic and guaranteed: a routing path can be determined without random search, to guarantee packet delivery between any pair of nodes
- □ Conflicts with the proven result? No.
 - □ Works for networks with no or one hole only

TRACE-ROUTING

- □ U: an Euclidean volume in 3D space, which is enclosed by a set of boundaries $B = \{B_k | 0 \le k \le K\}$, where B_0 is the outer boundary and B_k (k > 0) is an inner boundary of U.
- \Box L(p, q): a straight line segment from Point p to Point q.

DEFINITIONS

DEFINITION 1. Let C(s,d) be a sequence of line segments, $C(s,d) = \langle L(p_0,p_1), L(p_1,p_2), ..., L(p_{m-1},p_m) \rangle$, where $p_0 = s$ and $p_m = d$. We call C(s,d) a routing path connecting s and d, if and only if

- $L(p_i, p_{i+1})$ does not intersect with $L(p_j, p_{j+1})$, $\forall i \neq j$, $i+1 \neq j$ and $i \neq j+1$; and
- $L(p_i, p_{i+1})$ does not penetrate any boundary of U, $\forall L(p_i, p_{i+1}) \in C(s, d).$

DEFINITION 2. We call $V(p, \delta)$ the δ -vicinity of Point p, if $\forall \hat{p}$ in $V(p, \delta)$, $L(p, \hat{p})$ is completely contained in U and $|L(p, \hat{p})| \leq \delta$ where δ is a given positive real number.

DEFINITIONS

DEFINITION 3. A routing path C(s,d) is a geometric greedy path (or greedy path for conciseness), denoted as $C(s,d,\delta)$, if \forall p_i on $C(s,d,\delta)$, p_{i+1} is the closest point in $V(p_i,\delta)$ to Destination d.

DEFINITIONS

DEFINITION 4. Point p_{min} is a local minimum for Destination d under a given δ , if $p_{min} \neq d$ and $L(p_{min}, d) \leq L(p, d) \forall p \in V(p_{min}, \delta)$.

LEMMA 1. If there does not exist a geometric greedy routing path $C(s, d, \delta)$ between s and d under a given δ , L(s, d) must intersect at least one of the boundaries of U.

LEMMA 2. Greedy routing only fails at local minimums and local minimums are always on the boundaries of holes.

- As shown by Lemma 2, if greedy routing fails, it must stuck at a local minimum, and such local minimum must be on a boundary of U.
- Now we construct an arbitrary plane that contains L(p_{min}, d). It intersects B_i, resulting in one or multiple traces. By examining the traces, we have the following observation.

LEMMA 3. A trace on a boundary surface is a closed loop with no self-intersection.

LEMMA 4. In an s-con volume, the trace containing p_{min} must also contain p_0 and there is a loop-free path from p_{min} to p_0 along this trace.

THEOREM 1. There exists a deterministic algorithm with constant storage, communication and computation overhead, which can always successfully navigate the routing path out of local minimums in an s-con volume.

We construct a simple algorithm, dubbed trace-routing as follows:

- When geometric greedy routing reaches a local minimum p_{min} on Boundary B_i, it chooses a cutting plane that is determined by p_{min}, Destination d, and another point.
- \Box The plane intersects B_i, yielding a trace that contains p_{min}.
- The routing path advances along the trace in clockwise or counterclockwise direction until it reaches a point that is closer to Destination d than p_{min} is. Then geometric greedy routing follows.

DISCRETE SENSOR NETWORK SETTING

- While trace-routing has been introduced above to escape from local minimums, it remains challenging to adapt the concepts and ideas to a practical sensor field
- A sensor network is under a discrete setting, which presents an approximation of the 3D volume only, rendering part of the earlier discussed methods and results invalid
 - Lemma 2 has shown that local minimums are always on the boundaries of holes in a continuous 3D Euclidean volume.
 Unfortunately, this result no long holds in discrete settings
 - Sensor nodes rarely reside perfectly on the trace computed in a continuous space, calling for approximated solutions
 - ☐ The routing algorithm must be distributed without the knowledge of the global boundary information

DISCRETE SENSOR NETWORK SETTING

We first establish a tetrahedral structure based on discrete sensors as discussed in [31]

LEMMA 5. Given an internal local minimum p_{min} , the routing path can move out the local minimum by using local information in 2δ -vicinity of p_{min} , where δ is the maximum radio transmission range.

LEMMA 6. Given a tetrahedral structure of the 3D sensor network and a plane that intersects a triangular boundary surface of the tetrahedral structure, a closed-loop trace can be constructed deterministically.

DISCRETE SENSOR NETWORK SETTING

THEOREM 2. A deterministic routing path can be identified by following the trace constructed according to Lemma 6 to escape from local minimums.

Algorithm 1: Trace-Routing Algorithm

Input: Local minimum p_{min} , Destination d;

1 Define Plane Δ based on p_{min} , d and an arbitrary node $p \in V(p_{min}, \delta)$;

2
$$p_{cur} \leftarrow p, p_{pre} \leftarrow p_{min};$$

- **3 while** $|L(p_{cur}, d)| \ge |L(p_{min}, d)$ **do**
- 4 Identify a boundary node $\hat{p} \in V(p_{cur}, \delta)$ such that $L(\hat{p}, p_{cur})$ intersects Plane Δ and forms the largest angle with $L(p_{pre}, p_{cur})$;

5 $p_{pre} \leftarrow p_{cur}; p_{cur} \leftarrow \hat{p};$

SIMULATIONS RESULTS

- □ 3D sensor networks in different sizes (ranging from 1,800 to 11,000 nodes) and shapes are simulated
- Compared with GDSTR-3D [10] and HVE [31]
 - Since HVE works in networks with one hole only, we focus on the comparison between TR and GDSTR-3D in most simulation scenarios
- **Performance metrics:**
 - \Box Delivery ratio
 - □ Stretch factor (the ratio of the actual greedy routing path length to the shortest path length)

EXAMPLE ROUTING PATHS

EXAMPLE ROUTING PATHS

STRETCH FACTOR

NETWORK DYNAMICS

ROBUSTNESS TO SENSOR COORDINATES ERRORS

TRACE-ROUTING LIMITATION

- □ Work for all networks? No
- □ Guaranteed delivery for S-Con only
 - A 3D volume U is s-con (Strong-CON-nected), if and only if the intersection of any plane and U is a connected graph on the plane
- May work for Non-S-Con networks with properly chosen cutting plane

SUMMARY

- □ Investigate DISCO routing in 3D wireless sensor networks
- Does not exist a DISCO algorithm for general 3D networks
- □ Proposed Trace-Routing
 - Formally show its correctness under continuous and discrete settings
 - Numerically show its performance in terms of stretch factor and success rate under various network conditions