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Abstract—Segmentation decomposes a network with complex
and irregular shape into a set of subnetworks, each under
a simple boundary condition without bottlenecks. It has a
wide spectrum of applications in routing, coverage, localization,
backbone construction and maintenance, and in-network data
centric storage and retrieval. To our best knowledge, this is the
first work that tackles the segmentation problem in 3D wireless
sensor networks. We propose a fully distributed 3D segmentation
scheme with mere network connectivity information. Each node
on boundary computes its injectivity radius, which reflects the
narrowness of the corresponding boundary area and thus is
employed to locate the undesired bottlenecks. A cluster of
connected boundary nodes with similar smallest injectivity radii
form a bottleneck segment. A recursive process is applied to
identify a set of such bottlenecks, which together divide the
network boundary into segments. An internal non-boundary
node simply joins the nearest segment, thus completing the
segmentation of the entire 3D sensor network. Our simulations
show that the proposed algorithm works efficiently under various
sensor network models with different boundary conditions and
noise levels, always yielding appropriate segmentation results. We
further demonstrate that segmentation can effectively promote
the performance of a range of applications in 3D wireless sensor
networks.

I. INTRODUCTION
Due to randomness in sensor deployment and possible dy-

namics during its operation, a sensor network usually exhibits
irregular shape (or boundary conditions), leading to unde-
sired intractability in many applications, especially under the
emerging 3D sensor network settings [1]–[12]. For example,
greedy routing is one of the most promising routing schemes
for wireless sensor networks, where a node makes its routing
decision by standard distance calculation based on a small set
of local coordinates only, thus achieving scalable data delivery.
However, greedy routing fails at irregular concave boundaries.
For example, there does not exist a greedy routing path from
Node A to Node B in the network shown in Fig. 1(a). This is
mainly due to the bottleneck area in the middle of the network
that creates dead-ends for greedy routing. While face routing
can be applied in 2D networks to recover such greedy routing
failures [13], [14], there is no effective, deterministic solution
for 3D networks as proven in [15]. Similarly, irregular network
shape may lead to unbalanced load in distributed in-network
data storage and query. In such systems, data are mapped to
some coordinates via a geographic hash function to enable
efficient storage and retrieval. To perform geographic hashing,
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however, a bounding box of the network must be identified
to define the range of the coordinates. If the network has
an irregular shape, a significant part of the bounding box
is empty, i.e., unoccupied by any sensors. As a result, the
boundary nodes, especially at the bottleneck areas (see the
middle part of the network illustrated in Fig. 1(a)) must store
the data hashed to nearby empty space, thus experiencing
high storage load and communication overhead (for both
data storage and retrieval). The bottlenecks in an irregular
network also introduce challenges in coverage, localization,
and backbone construction and maintenance.
The hassles due to the bottleneck areas in irregular sensor

networks naturally motivate us to decompose the network into
segments, each under a desired simple boundary condition
without bottlenecks. The problem of segmentation has been
studied in 2D sensor networks [17]. It employs a shape
segmentation scheme based on flow complex introduced in
[18]. More specifically, each boundary node initiates a flooding
packet inward the network to create flows, and a node on a
flow is assigned a flow direction. A node with no flow direction
is called a sink. It, together with other sensors that flow into it,
forms a segment. The effectiveness of the algorithm depends
on the accuracy in the computation of flows and sinks in a
discrete 2D sensor network. A great deal of special care and
delicate strategies are required as shown in [17]. Under the
discrete 3D setting with mere connectivity of a volumetric
points cloud, however, it is extremely difficult to identify and
control noises for computing flows and sinks, in order to
achieve efficient segmentation.
In this research, we propose a distributed algorithm to

segment 3D wireless sensor networks. It is based on a
parameter called injectivity radius, which is calculated by
each individual sensor on the network boundary. The injec-
tivity radius measures the narrowness of the corresponding
boundary area, and thus is employed to locate the undesired
bottlenecks. In particular, a cluster of connected boundary
nodes with similar smallest injectivity radii form a bottleneck
segment. A recursive process is applied to identify a set of
such bottlenecks, which together divide the network boundary
into segments. An internal non-boundary node simply joins
the nearest segment, thus completing the segmentation of
the entire 3D sensor network. While segmentation does not
completely solve all problems in 3D sensor networks that
we have discussed earlier, our simulations show that it can
effectively improve the performance of several applications
such as greedy routing and distributed in-network data storage
and query, benefitted from the smoothed boundary conditions
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(a) Triangulation of a 3D network by [12], [16]. (b) Color-coded injectivity radii. (c) The node with Rmin (highlighted in green).

(d) An expanding segment (after 3 hops). (e) An expanding segment (after 6 hops). (f) The segment after an α-expansion (in green).

(g) The result after a β-expansion. (h) The result after all α- and β-expansions. (i) Final segmentation result.

Fig. 1. Illustration of the segmentation algorithm. (a) Triangulation of a 3D sensor network constructed by [12], [16]. (b) Color-coded injectivity radii, where
the radii increase as color changes from blue to green to red. (c)-(h) Nodes with αi = FALSE and βi = FALSE are colored in blue; nodes with αi = FALSE
and βi = TRUE are colored in red; and nodes with αi = TRUE are colored in green. (i) Three segments are colored in red, yellow and green, respectively.

of individual segments. The main contributions of this work
are summarized below:

• It introduces the first effective solution to segment 3D
wireless sensor networks. It is fully distributed and based
on network connectivity information only.

• Our simulations show that the proposed algorithm is
robust. It always yields appropriate segmentation results
for a wide variety of 3D wireless sensor networks.

• We further show that segmentation can effectively pro-
mote the performance of a range of applications in 3D
wireless sensor networks.

The rest of this paper is organized as follows: Sec. II
introduces the proposed algorithms for calculating injectivity
radius and performing segmentation. Sec. III presents the
results of segmentation and its application. Finally, Sec. IV
concludes the paper.

II. PROPOSED SEGMENTATION ALGORITHM

The objective of this work is to locate the undesired
bottlenecks in a 3D wireless sensor network and accordingly

partition the network into segments with simple boundary
conditions. For example, the network model in Fig. 1(a) can
be largely divided into three segments, as colored in red,
yellow and green, respectively, as illustrated in Fig. 1(i). In
this research, we introduce a parameter named injectivity
radius for each boundary node to effectively measure the
narrowness of the corresponding boundary area and propose
a distributed algorithm to segment the network based on such
nodal injectivity radii.

A. Computation of Injectivity Radius
The injectivity radius is a key concept in Riemannian geom-

etry. Under a 3D network setting, it indicates the narrowness
of a given part of the network boundary. In this subsection,
we first present the theoretic background of injectivity radius
under a continuous setting, and then propose a distributed
algorithm for each boundary node to determine its injectivity
radius in discrete wireless sensor networks.
1) Injectivity Radius: We first introduce injectivity radius

on a continuous smooth surface, denoted by M. The injectivity
radius at Point p of M is the largest radius for which the



(a) Geodesic.

1

2

(b) Exponential map.

1

2

(c) Injectivity radius.

Fig. 2. Illustration of injectivity radius.

exponential map at p is a diffeomorphism [19]. It is defined
according to geodesic, a generalized notion of a “straight line”
in “curved spaces”. More specifically, the geodesic from Point
p to Point q (that are both on the surface) can be mapped to the
corresponding tangent line segment as illustrated in Fig. 2(a).
The tangent line segment is on the tangent plane of Point
p, and starts from Point p along a tangent direction v for a
distance equal to t : p+ tv→ q. A geodesic circle centering at
Point p can be drawn in a similar way on the surface, such
that all points on the circle have equal geodesic distance to p.
The geodesic circle is mapped to a circle on the tangent plane,
and this map is called an exponential map (see Fig. 2(b) for
two examples of exponential map at two different points on
the surface). Once the geodesic circle grows large and touches
itself, the exponential map is no longer 1-to-1 at the touching
point, and accordingly becomes non-diffeomorphic (see the
exponential map of p1 in Fig. 2(c)). The injectivity radius at
Point p of a smooth surface is defined as the largest radius for
which the exponential map at p is a diffeomorphism. Different
points on the surface have different injectivity radii, which
are determined by the geometric shape of the surface. Clearly,
points around the bottleneck areas of the surface have small
radii. For example, p1 has a smaller injectivity radius than p2
does as shown in Fig. 2(c).

2) Distributed Algorithm to Estimate Injectivity Radius:
While the definition of injectivity radius on continuous surface
is given above, it remains challenging to calculate it under a
discrete sensor network setting, where individual sensors must
perform computation in a decentralized manner.
The boundary nodes of a 3D sensor field can be detected

by distributed algorithms introduced in [12], and a triangu-
lated boundary surface can be constructed correspondingly
according to [16]. An example of the triangulated boundary
surface is illustrated in Fig. 1(a). Both algorithms in [12] [16]
can work under different communication models, e.g., unit
disk graph(UDG), Quasi-UDG, and Log-normal [16]. So is
the proposed segmentation algorithm. Note that we do not
require Delaunay triangulation. In fact, we do not even need a
rigorous triangulation. A CW-complex structure [20], where a
face could be any simple n-polygon instead of a triangle, can
work effectively for the proposed segmentation algorithm. In
addition, a boundary surface is always closed for a 3D sensor
field. And given two adjacent boundary nodes on the triangular

surface, e.g., Nodes vi and v j, there is an edge with double
directions connecting them: ei j and e ji, which belong to two
neighboring triangular faces fi jk and f jil , respectively.
The proposed algorithm is outlined as follows with six steps

and exemplified in Fig. 3. To facilitate our illustration, we “cut
open” the triangulation of the 3D surface along Edge enq and
“flatten” it onto 2D. Thus Fig. 3 shows two copies of Node
n and Node q, which stand for the same nodes, respectively.
One can imagine to bend the 2D illustration and seal it along
Edge enq to reconstruct the original 3D surface.
Step (a). Each node, e.g., Node vi, is associated with a
geodesic circle boundary list (GCBL), which is denoted by
Li and initialized as Li = /0 (see Fig. 3(a)). Li represents an
approximated geodesic circle that centers at Node vi.
Step (b). Node vi randomly marks a face (e.g., Face fi jk)
that contains itself, and updates its GCBL, Li = {ei j,e jk,eki}
as highlighted in brown in Fig. 3(b). Note that when we
consider a face, all edges of the face follow the CCW (counter-
clockwise) direction.
Step (c). “Glue” the neighbor faces of Face fi jk, if they have
not been marked by Node vi. For example, to glue Face f jil , the
edge between Faces fi jk and f jil , i.e., Edge ei j, in Li is replaced
by the other two edges of f jil , i.e., eil and el j. Similarly, Faces
f jnk and fkmi are glued to Face fi jk, resulting in an updated
GCBL of Li = {eil ,el j,e jn,enk,ekm,emi}, as shown in Fig. 3(c).
Step (d). Then, Li is checked to remove any successive edges
which connect the same nodes but in opposite directions.
For example, after two iterations of gluing by Step (c),
we arrive at the results shown in Fig. 3(d), where Li =
{eip,epl,elq,eq j,e jq,eqn,enk,ekm,emo,eoi}. Thus Edges eq j and
e jq should be removed, yielding Fig. 3(e) where the GCBL
is reduced to Li = {eip,epl ,elq,eqn,enk,ekm,emo,eoi}. Note that
the first edge is considered successive to the last edge in Li.
Moreover, after a pair of edges are removed, Li is checked
again, until no such removable edges exist.
Step (e). Repeat Steps (c) and (d) to grow up the chart centered
at Node vi. The algorithm stops when two edges that connect
the same nodes appear in Li twice but are not successive,
indicating that the chart has met itself from two different
directions. For example, Edges eno and eon are identified in
Fig. 3(f), where Li = {enk,ekm,emn,eno,eop,epl ,elq,eqo,eon}.
By now, Li represents the approximated geodesic circle that
just touches itself.




 









 

(a) Triangulation graph. Li = /0.
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(f) Li =
{enk ,ekm,emn ,eno,eop,epl ,elq,eqo,eon}.

Fig. 3. The proposed distributed algorithm for calculation of injectivity radius. To facilitate our illustration, we “cut open” the triangulation of the 3D surface
along Edge enq and “flatten” it onto 2D. Thus each figure shows two copies of Node n and Node q, which stand for the same nodes, respectively.

Step (f). Node vi can easily find its hop-count distance to each
of the nodes involved in Li. The largest value among such hop-
count distances serves as the approximated injectivity radius
of Node i, denoted by Ri. For example, in Fig. 3(f), the longest
such hop-count distance is 2 (between Nodes vi and vq). Thus,
Ri = 2.
Every boundary node runs the above algorithm by itself to

obtain its approximated injectivity radius. Fig. 1(b) gives an
example to illustrate the radii of the boundary nodes of a 3D
wireless sensor network. It is color-coded, where radii increase
as color changes from blue to green to red.

B. Segmentation Based on Injective Radius
Based on the injectivity radii of boundary nodes, the basic

idea for segmentation is to identify a cluster of connected
boundary nodes with similarly smallest injectivity radii to
form a bottleneck segment. A recursive process is applied to
identify a set of such bottlenecks, which together divide the
network boundary into segments. An internal non-boundary
node simply joins the nearest segment, thus completing the
segmentation of the entire 3D sensor network.
Each boundary node, e.g., Node vi, is associated with three

parameters: SIDi, αi, and βi. SIDi represents the segment
ID of Node vi. αi is a boolean variable to indicate whether
Node vi has been marked as a bottleneck or not. βi is also a
boolean variable that signifies if Node vi should be excluded
from further processing by the algorithm as to be elaborated
below. The three parameters are initialized as SIDi = −1,
αi = FALSE , and βi = FALSE .
The proposed algorithm then follow the steps outlined

below, with the example in Fig. 1 to facilitate our discussion.
Step (a) Identification of minimum radius. Let Φ = {vi|αi =
FALSE,βi= FALSE}. Note that Φ consists of boundary nodes

only. The node in Φ with the minimum radius (denoted by
Rmin) is identified via a controlled flooding process. More
specifically, each boundary node in Φ floods its injectivity
radius to other boundary nodes on the surface of the network.
At the same time, it records the currently known smallest
radius (denoted by R̂min) according to the packets it receives.
If a boundary node receives a flooding packet with a radius
greater than R̂min, it simply drops it. Clearly, the node with the
minimum radius (denoted by vo) can identify itself when the
controlled flooding process terminates. For example, Fig. 1(c)
shows vo highlighted in green.

Step (b) α-expansion. Node vo initiates a segment by setting
SIDo as its own ID and αo = TRUE . It then expands the
segment by merging any neighboring node whose radius is
no greater than Rmin + δ into its segment, where δ is a
small constant. Such a node, e.g., Node vi, is marked by
setting αi = TRUE and SIDi = SIDo. Once Node vi joins the
segment (i.e., is marked), it checks its neighbors and repeats
the above process until no nodes can be merged into the
segment. Figs. 1(c)-1(f) illustrate the process of α-expansion
of a segment, which is highlighted in green.

Step (c) Identification of segment boundary. Node vi with
αi = TRUE is on the boundary of its segment if it has at least
one neighbor that is not marked as a node in the segment (e.g.,
see the green nodes that are next to the blue area in Fig. 1(f)).
A trivial signaling protocol can be devised to identify such
segment boundaries and the average radius of the nodes on
each segment boundary. If a segment has only one boundary,
it must be at a tip of the network, and doesn’t need to be
considered as a separate segment for now. As a result, a node
in such a segment, e.g., Node vi, simply sets SIDi = −1,
αi = FALSE , and βi= TRUE . Having βi= TRUE is to keep it



(a) Color-coded radii. (b) Before refinement. (c) After refinement.

Fig. 4. Refinement of segments. (a) The color-coded radii, where the values of radii increase as color changes from blue to green to red. (b) Before refinement,
three segments are colored in yellow, purple and green, respectively. (c) Two segments remain after refinement.

from being reselected again in the next round of the algorithm,
aiming to identify another bottleneck.
Step (d) β-expansion. If a segment has two boundaries (e.g.,
the segment shown in green in Fig. 1(f)), the nodes on each
segment boundary perform a hop-by-hop β-expansion. More
specifically, assume Node vi is on a segment boundary with
an average radius of R̄. If Node vi (with αi = TRUE) has a
neighbor Node v j with α j = FALSE and Rj > R̄, then Node
v j sets β j = TRUE . After all nodes on the segment boundary
have completed such one-hop expansion, the newly identified
nodes with β j = TRUE are treated as new boundary nodes.
The average radius (i.e., R̄) is updated, and the above process
repeats, until no further expansion is possible (e.g., because
there is no neighboring node whose radius is greater than R̄).
The result of this step is illustrated in Fig. 1(g), where the red
areas indicated the nodes with β j = TRUE after β-expansion.
Step (e) Assignment of segment ID. Steps (a)-(d) repeats
based on updated Φ, until Φ= /0. Till now, Node vi has either
αi = TRUE (e.g., a node highlighted in green in Fig. 1(h))
or αi = FALSE and βi = TRUE (such as a node highlighted
in red in Fig. 1(h)). The former has already been assigned
to a segment, with a known segment ID. For the latter, its
segment is yet to be determined. To this end, Node vi with
αi = FALSE temporarily sets its node ID as its segment ID,
and sends it to other nodes via controlled flooding similar
to what we have discussed in Step (a). Such a flooding
packet is dropped by any marked node (i.e., a node with
αi = TRUE), and thus limited within a connected set of
nodes with αi = FALSE only. Each node in this set records
the lowest node ID as its segment ID. Fig. 1(i) shows three
segments yielded by the algorithm, which are colored in red,
yellow and green, respectively.
Step (f) Segmentation of internal nodes. Till now, the network
boundary has been segmented. An internal node simply assigns
itself to its nearest segment on the boundary surface. In
other words, it finds the nearest boundary node, and joins the
segment of the latter.

C. Time Complexity and Communication Cost
The proposed segmentation algorithm has a linear time

complexity and communication cost (measured by messages
sent) with respect to the size of the network. More specifically,

the boundary nodes are detected by the algorithm introduced
in [12] with a complexity of O(k3) and communication cost
of O(k), where k is the average nodal degree (i.e., the average
number of neighbors per node). The triangulation mesh of
the boundary can be constructed with a complexity of O(m)
and communication cost of O(m2), where m is the number of
boundary nodes [16]. Since the injectivity radius is calculated
by individual nodes on the boundary in a decentralized manner,
it introduces a complexity of O(m) and communication cost
of O(m2). Finally, the time complexity and communication
cost of the algorithm for segmentation and refinement are both
O(n), where n a total number of nodes in the network. Given
k# m# n, the overall time complexity and communication
cost of the segmentation algorithm are dominated by O(n).

D. Further Discussions

We have successfully applied the proposed algorithm to
various network models to demonstrate its effectiveness (see
Sec. III for examples). In this subsection, we discuss several
observations gained from our implementation, which are in-
sightful and lead to improvement of segmentation results.
1) Noise in Estimated Injectivity Radius: The performance

of segmentation highly depends on the accuracy of injectivity
radii. The injectivity radius can be accurately calculated for
each point on a continuous smooth surface. Under a discrete
setting, however, it becomes extremely challenging to obtain
a precise injectivity radius because a geodesic between two
nodes can only be approximately measured by hop counts
along their shortest path. As illustrated in Fig. 3, the final
Li is not a perfect circle that centers at Node vi, and thus the
injectivity radii are inaccurate and discontinuous. In general,
higher accuracy of injectivity radii can be achieved under a
denser and more uniform triangulation.
2) Noise Filtering: Based on the above observation, we

propose two techniques to filter out the noise in injectivity
radii. First we introduce a small constant δ in α-expansion
(i.e., Step (b) of the segmentation algorithm). In contrast to
a continuous surface where two close points always have
similar radii, the radii of two neighboring nodes in a sensor
network may be very different. δ is employed to cope with
such discontinuity. As a rule of thumb, we set δ = 0.3Rmin
with bounds of 2≤ δ≤ 5.



(a) Model 1: seabed (color-coded radii). (b) Model 2: coalmine tunnel (color-coded radii). (c) Model 3: air port (color-coded radii).

(d) Model 1: seabed (5 segments). (e) Model 2: coalmine tunnel (8 segments). (f) Model 3: air port (12 segments).

Fig. 5. Examples of segmentation (Part I). Models 1-3 depict an underwater sensor network above undersea mountains, an underground sensor network in
coalmine tunnels, and a sensor network deployed at a modern airport, respectively. (a)-(c) The color-coded radii, where the values of radii increase as color
changes from blue to green to red. (d)-(f) Segmentation results, where a color indicates a segment.

Second, due to possible noise in radius calculation, a node
may have very different radius in comparison with its neigh-
bors. Thus a post-processing is employed after α-expansion.
More specifically, if αi = FALSE , but Node vi finds all of
its neighbors are marked, it sets αi = TRUE and joins the
segment, to filter out such noise. Similarly, if Node vo fails
to merge any neighboring nodes into its segment, it unmarks
itself by setting αo = FALSE .
3) Refinement of Segments: A segment is merged with a

neighboring segment if it consists of a very small set of nodes
and has only one boundary (i.e., has only one neighboring
segment). This scheme effectively avoids creating a small
segment at a tip of a network boundary, where a node usually
exhibits a long injectivity radius because the geodesic circle
may grow unusually large before it touches itself. For example,
the nodes in the red part in Fig. 4(a) have large radii. By
applying Steps (a)-(f) of the segmentation algorithm to this
network, we arrive at three segments illustrated in Fig. 4(b).
The segment colored in green in Fig. 4(b) is clearly unwanted.
Since it has only one boundary and consists of a small set
of nodes (in comparison with its neighboring segment), it is
merged with the neighboring segment, yielding the final results
with two segments as shown in Fig. 4(c).

III. SEGMENTATION RESULTS AND APPLICATIONS
To evaluate our proposed algorithm, we have applied it in

various network models as illustrated in Figs. 5 and 6. As can
be seen, the algorithm can always locate the bottlenecks and
accordingly partition the network into segments under desired
simple boundary condition without bottlenecks.

Segmentation effectively regulates network shape, and thus
can improve the performance of a range of applications, from
routing to backbone construction as discussed in Sec. I. In
this section, we introduce just two of such applications to
demonstrate the effectiveness of the segments obtained by our
proposed algorithm.

A. Segment-Based Routing
Greedy routing is a promising technology to achieve scal-

able data communication in wireless sensor networks. How-
ever it does not guarantee delivery under complex (especially
concave) boundary conditions. In a 2D network, face-routing
or its alternatives can be employed to recover greedy routing
failures [13], [14]. However, it has been proven that there
is no deterministic solution that can ensure successful data
delivery based on local information only in 3D networks [15].
For example, greedy routing fails to deliver data packets from
a source node located at an upper corner of the left-side
segment in Fig. 1(i) (i.e., the segment colored in red) to
a destination at an upper corner of the right-side segment
(colored in yellow), because of local minimum, i.e., a node
that is not the destination but closer to the destination than all
of its neighbors.
To address this problem, we exploit our segmentation re-

sults, where the network is divided into multiple segments
with simple boundary conditions. A graph is established,
where each vertex represents a segment and two vertices
are connected by an edge if the corresponding segments are
adjacent. Subsequently, the Dijkstra algorithm is applied based
on the graph to create a routing table, which consists of a list



(a) Model 4 (color-coded radii). (b) Model 5 (color-coded radii). (c) Model 6 (color-coded radii).

(d) Model 4 (4 segments). (e) Model 5 (7 segments). (f) Model 6 (11 segments).

Fig. 6. Examples of segmentation (Part II). The color codes are the same as Fig. 5.

of segments and the next hops to reach them. Such a table has
a small size bounded by the number of segments, and thus
can be made available to all sensor nodes in the network.
Each sensor node is associated with its node ID and physical

or virtual coordinates similar to the setting under any typical
greedy routing protocol. In addition, it maintains its segment
ID and a gateway to each neighboring segment, where the
latter is the closest or a randomly chosen node on the shared
boundary of the two adjacent segments. Note that the local
information maintained by a sensor is bounded by a small
constant and obtained with limited signaling overhead during
network initialization only.
If both source and destination are within the same segment,

greedy routing is applied. Otherwise, the routing across seg-
ments relies on the established routing table. More specifically,
the source node looks up the routing table to find the next
segment toward the destination. Then the data packet is greed-
ily routed toward the gateway to the next segment. Whenever
it enters the next segment, the above process repeats, until
it researches the segment of the destination, where greedy
routing is applied to deliver the packet.
We have simulated the segment-based routing and evaluated

its performance based on the 3D sensor networks illustrated in
Figs. 5 and 6. As shown in Table I, segmentation significantly
improves routing success rate, because it eliminates bottle-
necks and consequently reduces the undesired dead-ends in
greedy routing, especially under the networks with complex,
concave shapes where greedy routing between most segments
clearly fails.
It is interesting to observe that the average path length is

longer under segment-based routing. This is because greedy
routing without segmentation often fails for long routes across
segments. This phenomenon is evident from Fig. 7 that shows
the success rate of routing paths with different lengths. The
segment-based routing achieves a perfect delivery rate. On
the other hand, the greedy routing without segmentation only
well support short paths. With the increase of path length
(i.e., when the source and destination become farther away
from each other), the delivery rate of greedy routing without
segmentation dramatically decreases to as low as 20%.
Finally, Fig. 8 illustrates the distribution of traffic load. Here

we assume one unit of traffic is sent between a pair of nodes.
Since the segment-based routing enables more routes through
the bottlenecks, it is natural that the nodes at bottleneck areas



TABLE I
COMPARISON OF ROUTING SUCCESS RATE.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Overall
With segmentation 100% 86% 100% 95.28% 99.92% 99.96% 99.72%

Without segmentation 96.07% 71.43% 57.69% 92.44% 62.78% 88.92% 86.69%
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Fig. 7. The segment-based routing achieves a per-
fect delivery rate, while the greedy routing without
segmentation only support short paths (Model 5).
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Fig. 8. Routing load distribution (Model 3). The
segment-based routing results in similar load distri-
bution as the greedy routing without segmentation.
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Fig. 9. In-network storage load distribution (Model
3), where segmentation leads to nicely distributed
loading factor around one, i.e., the ideal load.

must carry more traffic. However, note that although gateways
are employed to support routing across segments, the routing
paths do not have to pass through the gateways. Instead, a
packet is always routed toward the gateway. Whenever it ap-
proaches the boundary between two segments, it is forwarded
to the nearest node in the next segment, without actually
going through the gateway node. Therefore, the segment-based
routing results in similar load distribution as the greedy routing
without segmentation.

B. Segment-Based Bounding in In-network Data Centric Stor-
age and Retrieval
While it is assumed in most sensor networks that data are

collected by sensors and transmitted to sinks for storage and
further processing, in-network data centric storage has been in-
vestigated in the literature [21]–[23], aiming to reduce energy
consumed for communication and to establish a self-contained
data acquisition, storage and retrieval sensor system. In such
systems, data are consistently mapped to some coordinates via
a locality-preserving geographic hash function, which allows
efficient retrieval of data. An underlying geographic routing
protocol (e.g., [13], [14]) is employed to route data and query
packets to their corresponding nodes.
To perform geographic hashing, however, a bounding box

of the network must be identified to define the range of
coordinates to be used by the hash function. For example,
in a 2D sensor network, we usually use the smallest rectangle
that contains the network as its bounding box. Similarly, the
smallest hexahedron can be identified as the bounding box
for a 3D sensor network. Of course, other regular shapes of
bounding boxes can be employed too, in order to make the
closest match with the actual shape of the network.
A datum is hashed to a location in either 2D or 3D space

within the bounding box, and stored by the node that is closest
to the location. Clearly, if the network has an irregular shape,
a significant part of the space in the bounding box is “empty”,

i.e., unoccupied by any sensors (see Fig. 10(a) for example).
As a result, the nearby boundary nodes must store the data
hashed to such empty space, thus experiencing high storage
load and communication overhead (for both data storage and
retrieval).
To this end, we exploit the segmentation results, to employ

multiple bounding boxes with one for each segment (as shown
in Fig. 10(b)). While hexahedra are adopted in our simulation
for simplicity, more sophisticated shapes can be used in
practice, as long as they are “regular”, such that geographic
hashing can be applied. But note that, it is extremely chal-
lenging, if not impossible, to construct a single bounding box
with regular shape to tightly fit a whole network with complex
boundary conditions (e.g., the networks shown in Figs. 5-6).
We have carried out simulations to demonstrate the ef-

fectiveness of segment-based bounding in in-network data
centric storage and retrieval. An example is illustrated in
Fig. 11 to visually compare the storage load with or without
segmentation, which is color-coded with the load increasing as
color changing from blue to red. Here we only show the nodes
on the boundary of the network, which carry heavier load than
internal nodes do. As can be seen, the results with segmenta-
tion (i.e., Figs. 11(b)) are less reddish, exhibiting lower storage
load compared with the results without segmentation (i.e.,
Figs. 11(a)). A quantitative comparison of load distribution is
given in Fig. 9, where the x-axis shows the loading factor that
is defined as follows. Let the total load of the entire network
be normalized as 1. The ideal load distribution is 1/N on every
node, where N is the number of nodes in the network. The
loading factor of a node is the ratio of its actual load to the
ideal load. To illustrate the nodes that experience high load,
Fig. 9 shows the distribution of the nodes with loading factor
greater than one only. As can be seen, the loading factor is
widely spread under the case without segmentation, indicating
uneven distribution of load. Some nodes even suffer a loading
factor of 10 or higher. In a sharp contrast, the segment-based



(a) Simple bounding. (b) Segment-based bounding.

Fig. 10. (a) In the network with an irregular shape, a significant part of the
space in the simple bounding box is “empty”, i.e., unoccupied by any sensors.
(b) Segment-based bounding reduces “empty” space, and consequently lowers
the storage and communication load at the boundary nodes.

(a) Model 3 without segmentation. (b) Model 3 with segmentation.

Fig. 11. Load distribution in in-network storage. The storage load is color-
coded, where the load increases as color changes from blue to red.

approach leads to nicely distributed loading factor around one,
i.e., the ideal load.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the first effective solution to
identify bottleneck areas in a 3D wireless sensor network and
segment it into a set of subnetworks, each under a desired
simple boundary condition without bottlenecks. It is fully
distributed and based on network connectivity only. Each node
on boundary computes its injectivity radius, which reflects the
narrowness of the corresponding boundary area. Then a set
of bottlenecks are identified based on injectivity radii, which
together divide the network into segments. Our simulation has
shown that the proposed algorithm works efficiently under
various sensor networks with different boundary conditions
and noise levels, always yielding appropriate segmentation
results. We have further demonstrated that segmentation can
effectively promote the performance of routing and in-network
data centric storage in 3D wireless sensor networks.
We have focused on solid 3D networks (i.e., without internal

holes) in this paper. The network models with holes will be
studied in our future work.
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