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Abstract—GPS spoofing is a great threat to the safety of
transportation systems as well as other systems that rely on
GPS for navigation. This paper proposes a novel computer vision
based approach for GPS spoofing detection, termed SEquential
dashcam-based vEhicle localization frameworK (SEEK). SEEK
utilizes vehicle dashcam images to identify a vehicle’s true
location and detects possible GPS spoofing attacks through
verifying if the reported GPS locations of the vehicle are correct.
However, it is nontrivial to use dashcam images for vehicle
localization due to multiple challenges caused by real-world
driving, including the complicated lighting/weather conditions,
season/timing variations of the images, large blockage ratio
in the images, and varying driving speeds. SEEK features
a unique design with novel schemes to address complicated
lighting/weather conditions, transform images to align with
season changes, reduce blockage, and adopt a sequential image
matching scheme. The performance evaluation shows that SEEK
significantly outperforms the previous GPS spoofing detection
scheme, and achieves a detection accuracy of up to 94%.

Index Terms—GPS spoofing, deep learning, vehicle localiza-
tion, image matching

I. INTRODUCTION

Today the Global Positioning System (GPS) service has
been widely used in a variety of applications such as
smartphones, wearable devices, and almost all transportation
systems, including autonomous vehicles. They all rely on
GPS to benefit from location-based services, e.g., naviga-
tion, truck/vehicle monitoring, reporting self-location in an
emergency or for rescue, etc. While GPS has become widely
used today, it is rather vulnerable to spoofing attacks, and
the consequence is often catastrophic or life-threatening. GPS
spoofing attacks can be easily launched via a portable and
low-cost software defined radio, such as HackRF [1], to
attack the GPS devices embedded in a wide range of systems
[2]–[10]. Attackers can launch various GPS spoofing attacks
by broadcasting a crafted GPS signal with a higher power
than the authentic signal from GPS satellites. Nearby GPS-
enabled devices would then receive the fake GPS signal due
to its stronger power and are under the control of the GPS
spoofer/attacker. An external attacker can launch the GPS
spoofing attack by tailgating and fooling a target vehicle to a
different route toward an unsafe location. Moreover, an escape
driver, as shown in Fig. 1, can send a spoofed GPS signal
to the GPS tracker on a commercial vehicle or ride-hailing
vehicles such as Uber or Lyft, to fake a normal trajectory,
while the malicious driver takes the vehicle and/or passengers
to an unsafe location [3].

Due to its potentially catastrophic consequence, GPS spoof-
ing attacks have motivated various studies for effective coun-

termeasures. For example, the works in [11]–[13] proposed
cryptography techniques to encrypt the signals from satel-
lites with a secret key. The authors in [14]–[18] proposed
approaches to detect GPS spoofing attacks by examining the
received GPS signal through anomaly detection on the signal
waveform, or the calculation of the signal angle of arrival
[19]–[21]. However, these approaches either require a massive
upgrade to the existing GPS infrastructure or modifications of
the GPS receiving devices, which does not seem a practical
solution in the near future. Instead of resolving the issue
of GPS reception, some works shed lights on using other
devices, such as motion sensors in transportation systems, to
assist GPS navigation [23]–[25], but did not propose concrete
algorithms or schemes. At last, [22] followed this direction
and proposed a deep learning based detection method through
reconstructing the true vehicle trajectory from inertial sensors
such as the accelerometer and gyroscope. Nevertheless, due to
the limitation on the accuracy of the commercial accelerometer
and gyroscope, it faces challenges in detecting a spoofing
attack if the spoofed trajectory is carefully crafted, and thus,
the inertial sensor data appear similar to those of the authentic
vehicle moving trajectory.

Driven by the lack of a practical and effective solution to
GPS spoofing detection, in this paper, we propose a computer
vision based framework to detect GPS spoofing by taking
advantage of a commonly installed device in vehicles – dash-
cam. Dashcams are widely used today to provide vehicle and
road safety, e.g., documenting accidents for settling insurance
claims, challenging traffic tickets, recording thieves to the
vehicle, alerting lane departure and possible collision to assist
drivers, etc. The proposed framework extracts dashcam images
and uses them to identify the real location of the vehicle based
on some reference images. Then it detects a GPS spoofing
attack by checking if the vehicle is driving on the reported
GPS route.

In the literature, there have been some studies recently
on a relevant problem, image geo-localization through im-
age retrieval. The cross-view image matching (CVM) geo-
localization [28]–[33] uses geo-tagged satellite images to
identify the location of a given ground image, by scanning
the satellite image database to find the images that look
close to the query image. The geo-location associated with
the retrieved satellite image is then used to be the location
of the query image. To maintain a good accuracy in CVM,
a panorama view of the ground image is typically required
to make sure most objects, especially landmark objects, in
the satellite image also appear in the query ground image.



Fig. 1: An illustration of the GPS spoofing attack. A ride-
hailing vehicle is driving on the path from R1 to R4 (red line).
Meanwhile, the malicious/escape driver spoofs the GPS signal
to deceive the monitoring center that the vehicle is driving on
the spoofed route (blue line).

For example, [32] mounted 12 fish eye near-infrared (NIR)
cameras on the top of a vehicle to obtain the panorama of
the ground image, which significantly increases the matching
accuracy to the corresponding geo-tagged satellite image.

While the existing CVM studies have demonstrated effective
performance in their datasets, we have found that it is rather
challenging to directly use the CVM schemes for the dashcam
image localization in our GPS spoofing detection framework,
due to the following reasons.

1) Modern vehicles usually have only one or two safety
cameras. It is inadequate to use those cameras to obtain
a panorama ground view at a given location which is
required by CVM to achieve a good accuracy [32].
Clearly, a fixed-angle query image (i.e., a dashcam
image) has a much narrower view that contains less
information compared to the panorama view of the query
image in CVM.

2) Dashcam images captured from real-world driving are
typically taken at a lower height and hence contain much
more blockage, such as due to the vehicles in the front.
In contrast, the CVM ground images are usually taken
from a 360 Camera installed on the top of the vehicle
and hence contain much less blockage. The significant
blockage reduces the amount of useful information that
appears in dashcam images.

3) The ground view images used in existing CVM studies
were typically taken in good lighting conditions. Never-
theless, real-world driving can happen in poor lighting
conditions such as rainy and night time. Dashcam im-
ages taken under such complicated lighting conditions
can significantly degrade the matching accuracy.

4) The existing CVM schemes have been designed to
utilize satellite images as references to localize ground
view images. However, a satellite image usually covers
a large area of thousands of square feet. It cannot
provide the sufficiently precise localization needed in
GPS spoofing detection for transportation systems.

5) The geo-tagged reference images are usually updated
slowly; e.g., Google Street View is usually updated every
few years. Hence there can be a significant time/season
gap between the reference and dashcam images.

In this paper, we propose novel schemes to address the
above-mentioned challenges for dashcam image localization in
real-world driving and design a framework for GPS spoofing
detection, termed SEquential dashcam based vEhicle local-
ization frameworK (SEEK) for GPS spoofing detection: (1)
To address the lack of panorama view, we propose a trip-level
sequential image matching scheme for localization, i.e., group
a sequence of dashcam images on a short trip together as a
single unit for localization. The proposed sequential approach
takes advantage of the spatial correlation of dashcam images
and also effectively addresses the varying driving behavior in
real world driving. (2) To address the second challenge, we
propose a scheme to effectively remove unwanted objects or
blockage in dashcam images, to significantly reduce blockage
and increase the amount of useful information in dashcam im-
ages. (3) To address the third challenge, we propose schemes
to address the complicated lighting conditions of dashcam
images to improve the performance of localizing them. (4)
To address the fourth challenge, we adopt the Google Street
View (GSV) database as geo-tagged reference images because
it provides a higher localization accuracy for a location of
interest (within 30 feet of a given location), which can meet the
precision requirement of GPS spoofing. (5) At last, to address
the challenge of the season/theme gap of the images, we
propose a scheme to transform the GSV reference images into
the same theme as the dashcam images through autoencoders.

In summary, the main contributions of this paper are as
follows:

1) We propose a computer vision based GPS spoofing
detection framework, SEEK, which utilizes dashcam
images to localize the true vehicle location using GSV
reference images. SEEK achieves a detection accuracy
of up to 94% for a widely used vehicle driving dataset.
To the best of our knowledge, this is the first work that
utilizes the computer vision technology to detect GPS
spoofing attacks.

2) We propose innovative schemes to address significant
challenges to use dashcam images for vehicle local-
ization, including the large blockage area in dashcam
images, the poor and complicated lighting conditions,
lack of panorama view, and the theme gap between
reference images and dashcam images.

The rest of the paper is organized as follows. Section II
describes the threat model. Section III presents our proposed
techniques for dashcam image localization in real-world driv-
ing. Section IV put all techniques together to build the SEEK
framework. Section V shows the experimental results. Finally,
Section VI concludes the paper.

II. THREAT MODEL

We consider two types of GPS spoofing attacks against the
GPS based navigation of transportation systems in real-world
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driving, 1) random GPS attack (RGA), and 2) sequential
GPS attack (SGA). RGA broadcasts a series of random (in-
correct) GPS coordinates to the target vehicle with the purpose
of confusing the GPS reception in a short period of time. RSA
can be launched easily at a road intersection or in the middle
of a road to cause a denial-of-service to the navigation system,
which may result in catastrophic consequences to the victim
vehicles, such as driving on the opposite lane or taking wrong
turns, etc.

SGA broadcasts a series of GPS coordinates that form a
fake trajectory with the goal of either hijacking the vehicle to
an unsafe location or escaping the tracking of the monitoring
center of the vehicle, such as the ride-hailing or commercial
trucking company monitoring center. To launch the GPS
spoofing attack for vehicle hijacking, an external attacker can
tailgate a target vehicle and fool its GPS navigation to a route
toward an unsafe location. Meanwhile, a GPS spoofer can also
be an “escape” driver of a ride-hailing vehicle or a commercial
truck, who broadcasts a set of GPS coordinates forming a fake
route to the GPS tracker on the vehicle, with the purpose of
hiding the real trajectory of the driver from the monitoring
center [3]. Compared to RGA, SGA is a more advanced
and complicated attack that can craft a continuous spoofing
trajectory to mislead the navigation system of a vehicle. But
it requires prior planning of a fake trip, such as start and end
points and a route following the city road networks, to cheat
the monitoring center, or an existing IMU-based GPS spoofing
detection scheme.

III. PROPOSED TECHNIQUES FOR DASHCAM IMAGE
LOCALIZATION IN REAL WORLD DRIVING

As discussed in Section I, SEEK utilizes dashcam images
to identify the location of a vehicle to detect GPS spoofing.
We have also introduced CVM and the challenges of applying
CVM directly on dashcam images for geo-localization. In this
section, we first conduct some experiments of applying CVM
on dashcam images and illustrates the challenges for dashcam
image localization. We then present our proposed schemes
to address each challenge, to significantly improve dashcam
image localization. In the next section, we put those techniques
altogether to build the SEEK framework.

The dashcam images in our experiments are from a vehicle
driving dataset called BDDG4k, with details described in
Section V-A1. BDDG4K provides a geo-tagged GSV reference
image for each dashcam image captured from four thousand
driving trajectories. As introduced in Section I, in CVM,
the image localization or image matching is through image
retrieval. Specifically, given a query image, in order to identify
the location of this image, CVM scans the entire reference
image database where all images are geo-tagged and returns
the top-matched reference image. The location of the returned
top image is then used to be the location of the query image.

Due to its dependence on image retrieval, the widely used
performance metric to evaluate CVM is the recall accuracy,
R@k, which treats it as a success if, among the k nearest
reference images returned, one is from the original image pair

of the query image. For instance, in our scenario, the dataset
BDDG4k pairs each dashcam image with a (geo-tagged) GSV
image. For a query dashcam image, CVM scans all GSV
images in the BDDG4k dataset. If the returned top image is
originally paired with the query dashcam image, then it is
treated as a success.

Table I shows the results of applying state-of-the-art CVM
methods on a widely used CVM dataset, CVUSA, and the
vehicle driving dataset BDDG4k. Note that CVM methods
usually apply the polar transformation on the satellite images
in CVUSA, which is not feasible for the BDDG4k dataset.
We observe that two recent CVM methods, TransGeo [33]
and L2LTR [30], achieve very impressive R@1 accuracy,
94.08%, and 91.99 %, respectively, on the CVUSA dataset.
However, their R@1 performance drops significantly to 46.4%
and 52.43% on the BDDG4k dataset.

TABLE I: CVM performance on CVUSA and BDDG4k
datasets by state-of-the-art CVM methods.

Method
CVUSA BDDG4k

R@1 R@5 R@1 R@5
CVM-NET [29] 22.47 49.98 10.52 21.45

SAFA [31] 81.15 94.23 35.15 38.42
L2LTR [30] 91.99 98.27 46.4 66.1

TransGeo [33] 94.08 98.36 52.43 65.06

As briefly described in Section I, there are several fac-
tors that cause the performance degradation of CVM on the
BDDG4k dataset, including lack of panorama views, block-
age in dashcam images, complicated lighting conditions, and
seasonal/theme gap. Next, we discuss each of them in details
and present our proposed schemes to address them.

A. Trip Level Matching to Address Lack of Panorama View
and Impact of Slow Driving

In Section I, we have discussed the issue of the lack of
a panorama view in dashcam images, which is critical to
achieving good performance in traditional CVM. Moreover,
there is another unique issue raised in real world driving –
there can be multiple similar images collected from a set of
nearby locations when the vehicle drives at a low speed or at
a complete stop. In this case, a nearby GSV reference image
with a different location ID may be returned by CVM when
it is applied to BDDG4k. When such a result is returned, it
is considered a failure in the R@1 performance metric, as it
represents a different GPS location, although it is very close
to the true location of the query image.

To illustrate how the slow driving behavior impacts CVM
performance, we consider a top-M (Meter) metric, which treats
it a success if the returned image is within M meters of the
query image, instead of requiring the GPS location IDs be
the same for the two images as in Table I. Table II illustrates
the top-M matching accuracy when M is set to 10 meters, 20
meters, and 50 meters, respectively. We notice the accuracy of
the best-performing method, TransGeo, improves from 52.43%
to 68.83% from R@1 to top-10 meters. This verifies our
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TABLE II: The accuracy of image matching on BDDG4k
dataset by the distance to the query image.

Method
BDDG4k

M=10m M=20m M=50 m
CVM-NET 30.4 45.31 48.3

SAFA 44.2 50.42 56.92
L2LTR 51.3 66.1 72.71

TransGeo 68.83 75.2 80.1

speculation since, with the top-M metric, a returned image
from a nearby location may also count as a success without
requiring the image at the exact location of the query image.

To address the above challenge, as well as the lack of
panorama views, we propose to conduct dashcam image
matching at the trip level, which includes a sequence of
contiguous images along a vehicle’s trajectory. This will
mitigate the impact of slow driving on image matching to
eliminate the interference introduced by the repeated or nearby
images during vehicle stopping or slow driving. It also helps
to compensate for the lack of multiple panorama images
at a given location. To process an image sequence from a
vehicle’s trajectory, we utilize the recurrent neural network
(RNN) to exploit the spatial and temporal dependencies in
a sequence. The Long Short-Term Memory (LSTM) [34] and
Gated Recurrent Unit (GRU) [35] are two popular variations of
RNN. However, we adopt GRU because it requires less GPU
memory while achieving comparable performance to LSTM.

B. Image Normalization to Address Lighting/Weather Condi-
tions

1) Impact of Lighting Condition on Image Matching: We
have found that the complicated lighting/weather condition
is one of the main factors that affect the performance of
CVM on driving datasets. To illustrate its impact, we sort the
trips in BDDG4k into four groups, Sunny, Cloudy, Rainy, and
Dark/Night, based on lighting and weather conditions.

To examine the impact of lighting conditions on the images,
we first randomly select ten trips under the Sunny condition
and ten trips under the dark lighting condition. Then we use
the feature extractor of a recent CVM method, TransGeo [33],
to obtain the feature description for both dashcam images
and GSV reference images corresponding to the trips. The
t-SNE visualization of the feature vectors of those images is
plotted in Fig. 2. We can see that the dashcam images and
GSV images have quite different clustering behaviors under
different lighting/weather conditions. Note that GSV images
are always captured in good lighting conditions. In contrast,

TABLE III: Trips distribution under various lighting/weather
conditions.

Sunny Cloudy Rainy Night Total
Train set 1409 247 68 1276 3000
Val set 475 120 22 383 1000
Total 1884 367 80 1659 4000

(a) (b)

Fig. 2: Impact of lighting condition on the images illustrated
in the feature space, a) images randomly sampled from the
daylight condition, and b) images randomly sampled from
the dark/night condition.

dashcam images are captured in diverse lighting conditions
depending on the trips. When the lighting is dark (Fig. 2(b)),
dashcam images are clustered together and far away from the
GSV reference images. When the lighting is good (Fig. 2(a)),
we notice the distance between the GSV images cluster and the
dashcam images cluster is smaller. Due to the shorter distance,
the matching between dashcam images and GSV images of the
daylight trips is more likely to succeed than for the trips in
the dark/night condition.

2) Normalization for Low-Light Images: We propose to
use the image normalization technique to address the impact
of lighting/weather conditions and improve the performance
of image matching. Image normalization is a technique in
computer vision that changes the range of pixel intensity
values to a certain range, e.g., 0 to 1. In the literature,
most studies adopt the mean and standard deviation (std) of
ImageNet for normalization, i.e., mean = [0.485, 0.456, 0.406]
in the three channels (RGB), and std = [0.229, 0.224, 0.225].

TABLE IV: Mean and Std of dashcam and GSV images under
different lighting conditions.

Lighting Condition View Source Mean Std

Mixed Daylight
Dash [0.3383, 0.3688, 0.3790] [0.2493, 0.2600, 0.2694]
GSV [0.5228, 0.5431, 0.5502] [0.2204, 0.2261, 0.2554]

Night
Dash [0.1380, 0.1113, 0.0944] [0.1579, 0.1420, 0.1335]
GSV [0.5293, 0.5488, 0.5538] [0.2163, 0.2213, 0.2554]

However, due to the unique features of the images caused by
the diverse lighting/weather conditions in real-world driving,
the images from the vehicle driving dataset have quite different
mean and std from ImageNet. Table IV illustrates the mean and
std of the images in a widely known driving dataset, Berkely
BDD100K [36], under daylight (mixed weather) and night
condition, which are significantly different from the mean
and std of ImageNet. In addition, GSV images have similar
mean and std in both daylight and night trips as they are
actually independent of the trips and all taken at good lighting
conditions (and different times) at the GPS coordinates of the
trips. Dashcam images have a significantly lower mean/std
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(a) (b) (c)

Fig. 3: Normalization of an image in BDDG4k, a) the raw
image that was captured at a low lighting condition, b) the
normalized image with the mean and std from Table IV, and
c) the normalized image with mean/std of ImagetNet

in corresponding lighting conditions. The Berkely BDD100K
driving dataset is a highly diverse driving dataset. We expect
their mean and std are typical for vehicle driving datasets.
Hence we will adopt this mean and std for the normalization
of the images in our driving dataset.

Fig. 3 illustrates an example of image normalization for a
dashcam image from BDDG4k, using the mean and std of
ImageNet and the ones of Berkely BDD100K. We can see
that the normalized image in Fig. 3 (b) has a much higher
contrast; the buildings/landmarks and the crosswalk pattern
on the road are highlighted, which are crucial to improve per-
formance. In contrast, the original image captured in the low
lighting condition loses the detailed texture and information
of buildings and landmarks. At last, the normalized image
with ImageNet mean/std exhibits poor performance due to the
significant difference in the capturing context of the images.

C. Season Alignment of Reference Images

Due to the fact that GSV reference images are slowly
updated, typically after several years, the GSV image at the
same location of a dashcam image is often taken at a different
time/season, i.e., they have quite different themes. To bridge
the gap in the seasonal change on these two views, we propose
a season alignment technique to transform the GSV images.
We use two autoencoders to import the latent view from the
dashcam image into the GSV reference image to mimic the
theme/season of the dashcam image, while still producing
a realistic transformed image. This improves the matching
performance between the two views under various season
changes.

Fig. 4 illustrates the process of transferring season features
between two views. Two CNN-based autoencoders are trained
to learn the hidden style features from dashcam and GSV
images, respectively. The latent view is the encoded feature
vector that can be used to reconstruct the same image. For
the dashcam view, we use the dashcam decoder to decode
the latent view to reconstruct its own image in a smaller
size without the loss of critical information. In the decoding
process of the GSV reference view, we replace the latent view
from the GSV image with the one from the dashcam image
to reconstruct the GSV reference image. The output of the
reference decoder has a smaller size and, most importantly,

Fig. 4: Season alignment for GSV reference images.

combines the styles from both views and essentially aligns
the GSV image to the same season as the dashcam image.

D. Dashcam Image Blockage Removal

In a real-world driving scenario, the dashcam view can be
easily blocked by the front vehicle, objects on the windshield,
or the reflection of items on the dashboard. Therefore, com-
pared to the GSV images, which are sanitized after capturing,
dashcam images usually have a much higher blockage ratio.

We define the blockage ratio of an image as follows:

BlockageRatio =
# of pixels classified as “obstacles”

Total # of pixels
. (1)

(a) (b) (c)

Fig. 5: Blockage removal: a) original dashcam image
showing segmentation, (b) dashcam image after blockage
removal, (c) GSV reference image at the same location.

To summarize the composition of the images captured
while driving, we apply the image segmentation technique
[37] to annotate each pixel in both the dashcam image and
the corresponding GSV reference image. Fig. 5 shows a
dashcam image and the corresponding GSV image taken at
the intersection where the target vehicle is waiting behind a
silver SUV. The blue overlay covers the pixels classified as
“obstacles”. With the assistance of image segmentation, we
calculate the blockage ratios for both the dashcam image and
GSV reference image at the same location using (1). As a
result, the dashcam view in Fig. 5 has a blockage ratio of
22%, whereas the blockage ratio of the GSV reference image
at the same location is only about 2%. Fig. 5(a) shows the CDF
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(a) (b)

Fig. 6: Blockage ratio: a) CDF of blockage ratio before
blockage removal, b) blockage ratio histogram of dashcam
images before and after removing blocking objects.

of the blockage ratio of dashcam images and GSV reference
images after analyzing the whole dataset, which indicates that
more than 90% of GSV images have less than 10% blockage
ratio. On the other hand, only 40% of dashcam images have
less than 10% blockage ratio.

To address the challenge of large blockage areas in dashcam
images, for each dashcam image, we use a tool called auto-
mated object remover [38] that combines Semantic segmen-
tation and EdgeConnect architectures to remove specified ob-
jects in images. By filtering out the objects that are considered
“obstacles” such as vehicles, vans, and trucks, we can provide
a cleaner image with less blocking area. Fig. 6(b) illustrates
the histogram of blockage ratio in the dashcam images before
and after blockage removal. Clearly, the blockage in dashcam
images can be significantly removed. For instance, in Fig. 5(b),
we can see that the silver SUV that blocks the center of the
image has been removed, which restored the yellow building
at the corner and is expected to improve the dashcam-GSV
matching performance.

IV. SYSTEM ARCHITECTURE OF SEEK

After introducing the proposed techniques for dashcam
image localization, in this section, we put them all together
to describe the proposed GPS spoofing detection framework
SEEK, which is built upon the proposed schemes in the
preceding section.

A. System Overview

Fig. 7 illustrates the SEEK framework, which is composed
of two Siamese-type pipelines. Each pipeline is composed of
the four component schemes we have developed in the preced-
ing section, Image Normalization, Blockage Removal, Season
Alignment, and Trip Level matching. The fundamental idea
of SEEK is to compare the vehicle’s real-time dashcam image
sequence with the GSV reference image sequence queried at
the GPS locations reported by the vehicle GPS receiver. The
two pipeline designs can effectively project the spatial features
learned from each pipeline into a shared space. SEEK can
be deployed on different platforms to detect possible GPS
spoofing attacks. For example, it can be implemented on the
vehicle or the remote monitoring center of ride-hailing apps,
such as Uber or Lyft. It is carried out by the following steps:

Fig. 7: The architecture of the SEEK framework.

1) a driving vehicle records its GPS location from the GPS
receiver, and its dashcam takes video, which is essentially a
sequence of images, 2) the GPS locations and the dashcam
images are synchronized by the time, 3) the vehicle either
sends the GPS locations and dashcam images/video to a local
or remote spoofing detector, 4) the spoofing detector queries
the GSV reference images by the reported GPS locations using
Google API, 5) the spoofing detector feeds both dashcam
image sequence and GSV reference image sequence to SEEK
and obtains the detection result; if the binary classifier outputs
Yes, i.e., dashcam images match the GSV images, then there
is no spoofing, and otherwise, there is spoofing.

B. Image Transformation

As discussed in the previous section, images need to be
properly processed/transformed to address the challenges of
complicated lighting conditions, large blockage areas, and sea-
son/theme gaps between dashcam and GSV images. Therefore,
the three image transformation techniques proposed in the
preceding section are applied to the dashcam and GSV images
coming into the two pipelines. Specifically, we first normalize
the images by using the mean and std extracted from the
driving dataset. Then we apply image segmentation [37] to
decompose the image and identity the objects in the image that
need to be removed. After the unwanted objects have been re-
moved, we further feed the dashcam image into an autoencoder
(“Dashcam Encoder”) to compress the image into the feature
space (encoding), from which it can be reconstructed to the
original image (decoding) but has a smaller dimension. The
GSV images follow a similar procedure, but it takes the latent
space of the dashcam view into the “Reference Decoder” to
reconstruct an image with the seasonal theme of the dashcam
view as well as a smaller size. After the images are properly
transformed by those techniques, they are ready to be fed to
the sequential layers for trip level matching.

C. Sequential Trip Level Image Matching

The proposed trip level image matching can effectively
utilize the spatial and temporal dependencies among an image
sequence of vehicle driving and compensate for the lack
of panorama view. We first feed the transformed images to
a feature extractor that learns the spatial feature of each
individual image in a sequence. Let xd

n and xgn (xdn, xg
n ∈

R|Ln|×D) denote the output of the feature extractor for a
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given transformed dashcam image sequence and GSV image
sequence, where D is the embedding size which is 1024 in
this paper. They represent the stack of feature vectors from
the two image sequences, respectively. In this paper, we test
three candidates for the feature extractor: VGG-16 [40], and
two feature extractors from L2LTR [30] and TransGeo [33].
Note that CVM models are usually structured in a Siamese-
like network. One of the sub-networks can be used as a feature
extractor.

SEEK uses a recurrent neural network (RNN) to keep track
of the feature representation learned in a sequential manner
while the vehicle is in motion. As discussed in the preceding
section, SEEK adopts a popular variant of RNN, GRU, due to
its more efficient design. SEEK uses a stacked GRU structure
with two layers, and the hidden unit is chosen to be 512. The
dropout layer [41] and batch normalization [42] are adopted
to reduce the internal covariate shift among time steps.

D. Binary Classification Layer

The outputs of the two pipelines of SEEK, rd = R(xd
n)

and rg = R(xg
n), are the fixed-length vectors that represent

the features learnt from each sequence. The final objective
is to identify if the series of reference images obtained from
the reported GPS locations match the same series of real-time
vehicle dashcam images from the same trip. Hence, the last
layer of SEEK is a binary classification layer. We adopt the
BCELoss defined below as the loss function.

LBCE = −[yn · log(∆i) + (1− yn) · log(1−∆i)], (2)

where i ∈ {1, 2, ...,N}, and ∆i = |rdi − rgi | represents the
difference between two feature vectors rdi and rgi , and yn is the
label of the input sequence pair. BCELoss creates a criterion
that measures the Binary Cross Entropy between the target
and the output. We also add a sigmoid layer in the network to
limit the output to a range between 0 and 1. The classification
output yn = 1 indicates the dashcam image sequence and the
GSV image sequence are from the same trip. Otherwise, if
yn=0, the two sequences are not from the same trip, i.e., there
is a GPS spoofing attack.

V. PERFORMANCE EVALUATION

In this section, we carry out experiments to evaluate the
performance of the proposed SEEK framework on GPS spoof-
ing detection. We first introduce the dataset we use for the
experiments, then discuss the experiment settings, and at last
present the results.

A. Dataset

1) Vehicle Driving Dataset: In the literature, a widely used
vehicle driving dataset is the Berkley diverse driving video
database, BDD100K [36], which consists of 100,000 vehicle
driving videos from diverse locations under different weather
conditions and different times of the day. Each video records
a driving trajectory of about 40 seconds long, 720p, and 30
fps. The videos also include GPS/IMU information to show
approximate vehicle driving trajectories.

As can be seen from the SEEK architecture, unlike CVM,
SEEK does not utilize image retrieval from the reference
image database for localization of the query image. Instead,
SEEK compares the query image (sequence) and the reference
image (sequence), and finds if they match each other to detect
GPS spoofing attacks. Hence, in addition to the dashcam
images in BDD100K, we also need the corresponding GSV
reference images at the reported GPS locations of the dashcam
images. To this end, we expand the BDD100K dataset by
adding the GSV reference images.

Specifically, for the dashcam images, we sample the driving
video clips in BDDK100k [36] at the sampling rate of 1
Hz, which matches the sampling rate of the GPS information
in BDD100K. Then we use the Google Street-View (GSV)
Static API [43] to obtain the geo-tagged GSV reference image
roughly aligned with the GPS location of each dashcam image
in the same heading direction. Note that both the alignment
of a dashcam image with the GPS location recorded by cell-
phones and the alignment of a GSV image to this GPS location
are approximate. Usually, the closest GSV images are a few
meters or a few tens of meters away from the referenced GPS
location. We have sampled 4 thousand video clips from the
BDD100k dataset, i.e., 4000 trips. Each trip lasted about 40
seconds, as described earlier. In total, from those trips, we
obtain 152,667 image pairs with various weather and lighting
conditions. We call the resulting dataset as BDDG4k.

2) Spoofing data generation: The BDD100K dataset does
not have GPS spoofing samples. We also have not found other
practical public driving datasets with GPS spoofing samples.
To bridge this gap, we manually generate GPS spoofing
data samples for BDDG4k. Given different GPS spoofing
attack models, the generated GPS spoofing samples need to
accurately represent the attack behaviors based on the existing
sequences in BBDG4k. We introduce a parameter α ∈ [0, 1]
to describe the strength of the GPS spoofing attack or the
percentage of spoofed GPS coordinates in a trip. When α = 0,
there is no spoofing attack at all. If α = 1, then all GPS
coordinates in a trip trajectory are spoofed by the attacker.

In our driving dataset, a trip includes both dashcam images
and the recorded GPS locations. Given a trip j, we use differ-
ent approaches to generate a GPS spoofed trip that simulates
RSA and GSA, respectively. To begin with, let the number of
GPS coordinates to be spoofed be Nsp = ⌈α×Lj⌉, where α
is described above, and Lj denotes the length of trajectory j.
Then we generate faked GPS locations to replace the Nsp GPS
locations of trip j and, accordingly, update the GSV images for
those spoofed GPS locations. In RSA, Nsp GPS locations are
randomly selected from trip j and are replaced with random
GPS points, i.e., there is no relationship between the spoofed
GPS locations. However, in SGA, we replace the last Nsp GPS
points in trip j using a segment of continuous GPS points from
a random trip (that trip needs to be longer than Nsp). With
both approaches, we generate a spoofing trip j′. The GSV and
dashcam image sequences of trip j′ form a negative pair. Note
that the dashcam images of trip j′ are the same as the original
trip j. To eliminate any bias introduced by the imbalanced
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TABLE V: Performance of SEEK compared with DeepPOSE in different lighting conditions.

Method Attack
Sunny Cloudy Rainy Dark

Acc Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1

SEEK
RGA 0.940 0.923 0.960 0.941 0.915 0.895 0.940 0.917 0.827 0.816 0.844 0.830 0.852 0.798 0.942 0.864
SGA 0.920 0.894 0.953 0.923 0.890 0.860 0.931 0.894 0.808 0.803 0.816 0.809 0.825 0.780 0.906 0.838

DeepPOSE
RGA 0.828 0.775 0.923 0.843 0.828 0.780 0.913 0.841 0.827 0.780 0.910 0.840 0.827 0.775 0.920 0.841
SGA 0.785 0.743 0.869 0.801 0.780 0.750 0.839 0.792 0.800 0.754 0.888 0.816 0.780 0.742 0.856 0.795

data in the training process, we generate the same number of
negative samples as positive samples. Here a positive sample is
a pair of dashcam and GSV image sequences of a trip without
spoofing. To guarantee the generality of the model working
in various lighting conditions, we balance the positive and
negative pairs with the same number of samples from various
lighting conditions. We generate 10k positive pairs and 10k
negative pairs for each experiment setting.

B. Experimental Settings

1) Implementation Details: SEEK is implemented in Py-
Torch [44]. Both dashcam and reference GSV images have
the original size of 256x256 and are resized to 128x128
after performing season alignment. The model is trained and
evaluated on NVIDIA A6000 GPU with 64GB GPU memory.
A two-step training process is adopted. We first train the
feature extractor on BDDG4k dataset. Then, we fix the feature
extractor and train the entire system of SEEK. The batch size
is 32, and the Adam optimizer is used with a learning rate
of 0.0001 based on the cosine scheduling. The whole training
process takes 150 epochs, in which 50 epochs are used to train
the feature extractor first, and the rest 100 epochs are used to
train the entire SEEK system for GPS spoofing detection.

2) Evaluation Metrics: We use the widely used standard
performance metrics for classification, accuracy, precision,
recall, and F1 score. As a comparative study, we compare
SEEK with DeepPOSE [22], which is the only other machine
learning based approach that can be applied to the Berkeley
BDD100K dataset. Other previous GPS spoofing detection
studies [19], [45] use totally different approaches that are
not comparable and rely on different assumptions, such as
requiring multiple GPS receivers per system and/or ground-
based sensors/infrastructure, which are not applicable in the
scenario of the BDD100K vehicle driving database we adopt.

C. Performance of GPS Spoofing Detection

1) Performance under different lighting conditions: Ta-
ble V illustrates the classification results of the proposed GPS
spoofing detector, SEEK, including accuracy, precision, recall,
and F1 score under different lighting/weather conditions, with
the attack strength α = 1, trip length L = 20s, and the
feature extractor from TransGeo. The classification accuracies
of SEEK for RGA and SGA are 94% (F1 score: 0.941)
and 92% (F1 score: 0.923), respectively, under the sunny
lighting/weather condition. The performance decreases if the
lighting condition degrades. For example, under the dark
lighting condition, the detection accuracy drops to 85% for
RGA, and 82% for SGA. Nevertheless, SEEK outperforms

TABLE VI: Performance impact of different image processing
techniques/schemes

Schemes Attack
Sunny Dark

Acc Precision Recall F1 Acc Precision Recall F1

TL only
RGA 0.723 0.719 0.733 0.726 0.601 0.599 0.612 0.605
SGA 0.711 0.708 0.717 0.713 0.596 0.595 0.602 0.598

TL + NR
RGA 0.803 0.783 0.840 0.810 0.723 0.712 0.750 0.730
SGA 0.770 0.772 0.767 0.769 0.702 0.687 0.742 0.713

TL + BR
RGA 0.815 0.784 0.870 0.825 0.680 0.661 0.738 0.697
SGA 0.795 0.767 0.847 0.805 0.658 0.641 0.715 0.676

TL + SA
RGA 0.802 0.782 0.836 0.808 0.710 0.693 0.755 0.722
SGA 0.768 0.751 0.803 0.776 0.703 0.685 0.753 0.717

All together
RGA 0.940 0.923 0.960 0.941 0.852 0.798 0.942 0.864
SGA 0.920 0.894 0.953 0.923 0.825 0.780 0.906 0.838

DeepPOSE under all lighting/weather conditions. One may
note that the performance of DeepPOSE is similar under
all lighting conditions. This is because DeepPOSE utilizes
the data from motion sensors which are not affected by the
weather/lighting. One can also observe that the performance
of SEEK for SGA is only slightly lower than the one for
RGA. This demonstrates SEEK is robust to detect smart GPS
spoofing attacks such as SGA which carefully crafts a spoofing
trajectory that follows real road networks, speed limits, etc.,
and hence is actually a legitimate trajectory.

2) Performance impact of individual components of SEEK:
As discussed in Section III, to overcome the challenges
encountered in real-world driving scenarios, we have proposed
four schemes to transform the images, Trip Level matching
(TL) of dashcam images, Image Normalization (NR), Block-
age Removal (BR), and Season Alignment (SA). We present
how each of these proposed schemes improves the perfor-
mance of GPS spoofing detection. Table VI shows the results
of applying those schemes. In the table, the scheme “TL only”
means we only use the trip level matching. That is, we treat
a sequence of images on a trip in the last L = 20 seconds as
a basic unit for classification. As discussed in Section III, the
image matching accuracy using a single image is around 52%,
which would be closely relevant to the GPS spoofing detection
accuracy. On the other hand, Table VI indicates that using
the TL scheme significantly increases the performance, with
accuracy above 70% in the sunny weather/lighting condition
and about 60% even in the dark lighting condition.

Adding the NR (image normalization) technique to the TL
scheme further improves the performance. For instance, in the
low-lighting (dark) condition, the accuracy improves 12.2%
for RGA and 10.7% for SGA, respectively. The table also
indicates that NR brings higher performance lift for detection
in the dark lighting condition than in the better lighting
condition.

In contrast to the NR technique, the BR (blockage removal)
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(a) (b)

Fig. 8: Accuracy of SEEK with regard to sequence lenth L:
(a) for RGA, and (b) for SGA. α = 1.

technique brings a better improvement for the GPS spoofing
detection in good lighting conditions. For instance, it improves
the accuracy by 7.9 % and 6.1% (TL+BR vs. TL only) in low-
lighting conditions for RGA and SGA, respectively, whereas
the accuracy improvement is 9.2% and 8.4%, respectively,
in the sunny weather. This is because, in the latter case,
the objects in an image are easier to be identified, and thus
removed. Therefore, the quality of the image is critical before
applying block removal. Thus this observation guides the
design of SEEK, i.e., applies BR after NR in SEEK as shown
in Fig. 7.

Table VI also shows that the SA (season alignment) tech-
nique also effectively improves the performance of SEEK in
both low lighting and good lighting conditions. In the former
case, the accuracy of SEEK is improved by 10.9% and 10.7%
for RGA and SGA, respectively, while in the latter case, the ac-
curacy is improved by 7.9% and 5.7%, respectively. At last, as
a result of applying all four techniques, TL, NR, BR, and SA,
the generalization ability of SEEK is significantly improved to
address various lighting/weather conditions, seasonal changes,
and blockage to dashcam images.

3) Impact of feature extractor and sequence length: Fig. 8
shows the performance of SEEK in terms of the sequence
length (L), under the good lighting condition. We also ex-
amine the performance of SEEK under three different feature
extractors, VGG16 and two additional ones from L2LTR [30],
and TransGeo [33], respectively. Among the three feature
extractors, the ones from L2LTR and TransGeo have slightly
better performance than VGG16. While L2LTR and TransGeo
feature extractors result in a similar performance, the latter
is slightly preferred as it uses less GPU memory. With
regard to the sequence length, Fig. 8 indicates that a longer
sequence length improves the performance. SEEK approxi-
mately reaches the maximum accuracy when the sequence
length is 20 seconds. A longer sequence of 30 seconds can
slightly improve the performance, but it also makes the neural
network more complicated, taking more time to train the
model. At last, one can observe that in all scenarios, SEEK
outperforms DeepPOSE. Note that the sequence length, or
trip length, also affects DeepPOSE, which utilizes the motion
sensor data over a period of time to detect GPS spoofing.

Fig. 9: Accuracy of SEEK compared with DeepPOSE v.s. the
attack strength α, with L = 20, TransGeo feature extractor.

4) Resistance to Stealthy GPS Attacker: Next, we test the
performance of SEEK with the presence of stealthy attackers
who do not spoof the GPS signal until the vehicle drives on a
route that is similar enough to the spoofing route. To simulate
the stealthy GPS spoofing attack, we control the attack strength
α and change it from 0.2 to 1, which indicates the fraction
of the number of GPS locations in a vehicle trajectory to be
spoofed. Fig. 9 shows the accuracy of SEEK with different
values of α, assuming the sequence length L = 20s. From
the figure, when the attack strength is higher, the detection
accuracy of SEEK is also higher. When the attack strength is
lower, i.e., the target vehicle is lightly attacked, the detection
accuracy decreases. Nevertheless, a low attack strength would
also likely not succeed in achieving the objective of the
attackers, such as hijacking a target vehicle. We also compare
SEEK with DeepPOSE in Fig. 9. It is clear SEEK outperforms
DeepPOSE, especially when the attack strength is lower.

VI. CONCLUSION

In this paper, we have proposed a novel computer vision
based framework for GPS spoofing detection, SEEK, which
utilizes dashcam images for vehicle geo-localization and hence
detects GPS spoofing attacks. To address the challenges raised
by real world driving, such as the lack of panorama view,
complicated lighting conditions, large blockage in dashcam
images, and seasonal changes, we have proposed multiple
novel schemes to transform the images, including trip level
(TL) image matching, image normalization (NR), blockage re-
moval (BR), and season alignment (SA). We have extensively
evaluated the performance of SEEK compared with a recent
GPS spoofing detection scheme DeepPOSE in various settings.
The experiment results indicate that SEEK effectively detects
GPS spoofing and significantly outperforms DeepPOSE. It
achieves a detection accuracy of up to 94% in the good lighting
condition.
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