Scalable and Fully Distributed Localization with Mere Connectivity

Míao Jín¹, Su Xía¹, Hongyí Wu¹, and Xíanfeng Gu² 1. Uníversíty of Louísíana at Lafayette 2. Stony Brook Uníversíty

Presenter: Hongyi Wu

This work is supported in part by the NSF under grant CNS-1018306 and CNS-1016829.

MOTIVATION

Location information is imperative to a variety of applications in wireless sensor networks.

Location system based on mere connectivity is ideal for large-scale sensor networks, for costeffectiveness.

RELATED WORK

Previous connectivity-based localization methods: Multi-Dimensional Scaling (MDS) Low scalability Essentially centralized Neural network-based Numerically unstable Graph rigidity theory Low localization accuracy

OUR PROPOSED METHOD

- A planar sensor network is modeled as a discrete surface with the distance between two nodes approximated by hop counts.
- □ Due to the approximation error, the surface is curved and cannot be embedded directly on a flat plane.
- We compute the provably optimal flat metric which introduces the least distortion from estimated metric to isometrically embed the surface to plane.

MAIN CONTRIBUTIONS

Fully distributed: each node only requires information from its direct neighbors

Scalable

- Computation and communication cost are both linear to the size of the network
- 🗆 Límíted error propagation
- Theoretically sound: provably optimal
- Numerically stable : free of the choice of initial values and local minima with theoretical guarantee

TALK OUTLINE

Theory of flat metric

Distributed algorithm for sensor networks

Discussions on cost and error propagation

Símulations and comparison

DISCRETE METRIC AND DISCRETE GAUSSIAN CURVATURE

Triangulation mesh

INFOCOM'11: "A Distributed Triangulation Algorithm for Wireless Sensor Networks on 2D and 3D Surface"

DISCRETE METRIC AND DISCRETE GAUSSIAN CURVATURE

 Díscrete metríc: edge length of the triangulation
 Díscrete Gaussían curvature: induced by metríc, measured as angle deficit

CIRCLE PACKING METRIC

 $\Box \text{ A vertex is associated with a circle with radius of } Y_i$ $\Box \text{ Two circles have an intersection angle of } \Phi_{ij}$ $\Box \text{ Circle packing metric induces discrete metric}$

FLAT METRIC

 Flat metric: a set of edge lengths which induce zero Gaussian curvature for all inner vertices such that the triangulation is isometrically embedded to plane.
 Infinite number of flat metrics for a given connectivity-based triangulation.

OPTIMAL FLAT METRIC

- Question: given a triangulation mesh, which flat metric introduces the least distortion from the estimated discrete metric?
- □ Theory (Theorem 2): the flat metric with the least distortion is unique and satisfies:

$$u_j = const, \forall v_j \in \partial M$$

where $u_j = \log Y_j$ and v_j is a boundary vertex

TOOL TO COMPUTE OPTIMAL FLAT METRIC

Discrete Ricci flow

- □ [Hamílton 1982]: Ríccí flow on closed surfaces of non-posítive Euler characterístic
- IChow 1991]: Ríccí flow on closed surfaces of positive Euler characteristic
- IChow and Luo 2003]: Discrete Ricci flow including existence of solutions, criteria, and convergence.
- ☐ [Jín et al. 2008]: a unified framework of computational algorithms for discrete Ricci flow

COMPUTE OPTIMAL FLAT METRIC

Díscrete Ríccí flow is an efficient tool to decide metrics based on user predefined curvature

$$\frac{du_i(t)}{dt} = (\bar{K}_i - K_i)$$

where u_i is the circle packing metric, deforming according to the difference between the target Gaussian curvature and the current Gaussian curvature.

TALK OUTLINE

Theory of flat metric

Distributed algorithm for sensor networks

Discussions on cost and error propagation

Experiments and comparison

DISTRIBUTED ALGORITHM (I) PRE-PROCESSING

Build a triangulation from network graph

INFOCOM'11: "A Distributed Triangulation Algorithm for Wireless Sensor Networks on 2D and 3D Surface"

DISTRIBUTED ALGORITHM (2) COMPUTE FLAT METRIC

- All edge lengths initialization: unit
 The curvature of a vertex is nonzero
 The initial triangulation surface can't be embedded on a plane.
- Find the flat metric, such that
 - The triangulation surface can be isometrically embedded on a plane
 - The introduced localization error is minimal

DISTRIBUTED ALGORITHM (2) COMPUTE FLAT METRIC

- Determine flat metric based on Ricci flow
 - Set the target Gaussian curvature of all inner nodes to zero
 - Update the circle packing metric u_i on vertex v_i by the difference of v_i's target and current Gaussian curvature

$$u_i = u_i + \delta(\bar{K}_i - K_i)$$

□ Stop until the curvature error is less than €. The final circle packing metric induces flat metric

CONVERGENCE RATE

 \Box Number of iterations: $O(-log \in \delta)$

(3) ISOMETRIC EMBEDDING

- Start embedding from one vertex
- Continuously propagate to the whole triangulation

COST

- Step 1: Preprocessing step building triangulation
 - Time complexity: O(n)
 - Communication cost: O(n)
- Step 2: Compute flat metric
 - \Box Time complexity: $O(-\log \epsilon/\delta)$
 - \Box communication cost: $O(-glog \in /\delta)$
- Step 3: compute isometric embedding
 - Time complexity: O(m)
 - Communication cost: O(m)

ERROR PROPAGATION

□ The impact of error to our proposed scheme can be modeled as a discrete Green function:

$$G(p,q) = \frac{1}{|p-q|}$$

where p and q are two points far away from the boundary.

The impact of a measurement error at Point p to Point q decreases quickly with their distance.

TALK OUTLINE

Theory of flat metric

Distributed algorithm for sensor networks

Discussions on cost and error propagation

Experiments and comparison

ERROR COMPARISON

Scenario	C-CCA	D-CCA	MDS-MAP	MDS-MAP(P)	Ricci
Topology 1 (Fig. 6 a(1)-e(1))	2.10	0.88	2.52	0.89	0.29
Topology 2 (Fig. 6 a(2)-e(2))	0.71	0.69	0.56	0.68	0.32
Topology 3 (Fig. 6 a(3)-e(3))	0.72	0.64	0.62	0.75	0.48
Topology 4 (Fig. 6 a(4)-e(4))	0.78	0.70	1.18	0.61	0.55
Topology 5 (Fig. 6 a(5)-e(5))	1.17	0.8	1.27	0.99	0.63

DISTRIBUTION OF LOCALIZATION ERRORS

VARIANT DENSITY

DIFFERENT TRANSMISSION MODELS

0.34

0.42

0.43

Localization error 0.25

SUMMARY AND FUTURE WORK

Mere connectivity-based localization method

Theoretically guaranteed and numerically stable

Fully distributed and highly scalable with linear computation time and communication cost and local error propagation

□ Future work: localization for sensor nodes deployed on general 3D surface

Your answer to Question 3 was for too specific. You must be more Vague Try to generalize a little more) recommend overusage of the "generally" QUESTIONS ?