Border Landmark Selection and Applications in Self-Configurable Wireless Networks

Chong Wang and Hongyi Wu

September 29, 2008

・ 回 と ・ ヨ と ・ ヨ と

Outline

Problem Formation Landmark Selection Algorithms Applications of Landmarks Conclusion

Problem Formation

Landmark Selection Algorithms

Applications of Landmarks

Conclusion

(日) (同) (目) (日) (日) (日)

Problem Formation

Definition

The border landmarks are a set of K nodes in the network, which form a polygon with the maximum area.

< 日 > < 四 > < 回 > < 回 > < 回 > <

Lemma

Given a set of N points in a planar space, the polygon formed by K out of these N points must overlay with the convex hull of the point set, if the polygon has the maximum area among all polygons formed by any K out of N points and the maximum is unique.

Figure: Illustration of Lemma.

A (1) A (

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Convex Hull-based (CHB) Algorithm

(a) Note *i* inside current (b) Tail extremal node. (c) Head extremal node. polygon.

Figure: Illustration of Algorithm CHB.

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Examples of CHB

(b) No distance estimation errors. N = 400.

(c) With distance estimation errors. N = 100.

(ロ) (同) (E) (E) (E)

Figure: Results of the convex hull-based algorithm.

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Center Node Elimination (CNE) Algorithm

 $\begin{array}{l} \Psi=\emptyset,\\ \text{for }i=1:N \text{ do}\\ \text{ if node }i \text{ has required stability and computing}\\ \text{power then}\\ \Psi=\Psi+i,\\ \text{ end if}\\ \text{end for}\\ \text{for all }i\in\Psi \text{ do}\\ C_i=\sum_{j=1,j\neq i}^N \frac{1}{S_{i,j}^2},\\ \text{ end for}\\ \text{Search for node }i, \text{ with } C_i\leq C_j \ (j\in\Psi \text{ and }j\neq i),\\ \Psi=\Psi-i,\\ S_{i,j}=\infty, \text{ for }1\leq j\leq N.\\ \text{ end for} \end{array}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Examples of CNE

(b) N=100, K=4.

(c) N=400, K=4.

Chong Wang and Hongyi Wu

Border Landmark Selection and Applications in Self-Configurab

э

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Hierarchy-Structured (HS) Algorithm

- Basic Ideas
- HS Algorithm

イロト イポト イヨト イヨト

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Examples of HS Algorithm

Figure: Examples of hierarchy-based approach. N = 400, K = 4.

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Coverage Ratio

Figure: Coverage Ratio under different algorithms.

・ロン ・回と ・ヨン・

Convex Hull-based (CHB) Algorithm Center Node Elimination (CNE) Algorithm Hierarchy-Structured (HS) Algorithm Simulation Results

Impact of hierarchical layers

Figure: Impact of hierarchical layers

イロト イポト イヨト イヨト

æ

Coordinates Calculation Border Detection Landmark-based Routing

Coordinates Calculation

(b)

Figure: Coordinates errors.

・ロト ・回ト ・ヨト ・ヨト

Coordinates Calculation Border Detection Landmark-based Routing

Border Detection

Figure: K = 64

Figure: K = 128

< 日 > < 四 > < 回 > < 回 > < 回 > <

Coordinates Calculation Border Detection Landmark-based Routing

Landmark-based Routing

- Greedy Forwarding Routing Algorithm
- Virtual Coordinates

$$V_{i} = [S_{il_{1}}, S_{il_{2}}, \cdots, S_{il_{k}}, \cdots],$$
(1)

where $I_k \in \Phi_0$. Based on the virtual coordinates, the virtual distance from Node *i* to Node *j* is defined in a way similar to Mahalanobis distance:

$$D_{ij} = ||V_i - V_j|| = \sqrt{\sum_{l_k \in \Phi_0} (\frac{S_{il_k} - S_{jl_k}}{S_{jl_k}})^2}.$$
 (2)

イロン イ部 とくほど イヨン 二日

Coordinates Calculation Border Detection Landmark-based Routing

Routing Success Rate

Figure: Routing success rate in regular network.

Figure: Routing success rate in irregular networks.

イロン イヨン イヨン ・ ヨン

- ▶ We proposed three algorithms for border landmark selection.
- There are pros and cons for different algorithms.
- Applications in border detection, routing and positioning algorithms.

イロン イ部 とくほど イヨン 二日