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Abstract
Privacy is a fundamental challenge in many smart
applications that depend on data aggregation and
collaborative learning across different entities. In
this paper, we propose a novel privacy-preserved
architecture where clients can collaboratively train
a deep model while preserving the privacy of each
client’s data. Our main strategy is to carefully parti-
tion a deep neural network onto two non-colluding
parties. One party performs linear computation-
s on encrypted data utilizing a less complex ho-
momorphic cryptosystem, while the other executes
non-polynomial computations in plaintext but in
a privacy-preserved manner. We analyze securi-
ty and compare the communication/computation
complexity with the existing approaches. Our ex-
tensive experiments on different datasets demon-
strate not only stable training without accuracy
loss, but also 14 to 35 times speedup compared to
the state-of-the-art system, CryptoNets.

1 Introduction
Privacy is a fundamental challenge in many smart applica-
tions that depend on data aggregation and collaborative learn-
ing across different entities. Existing endeavors take different
directions to address the privacy issue. Two major direction-
s are differential privacy [Shokri and Shmatikov, 2015] and
fully homomorphic encryption [Gilad-Bachrach et al., 2016].
Differential privacy injects noise into query results to avoid
inferring information about any specific record. However, it
needs careful calibration to balance privacy and model usabil-
ity. Further, private attributes still remain in plaintext so users
may still have security concerns. A more promising solution
comes from the recent advance in fully homomorphic encryp-
tion (FHE) [Gentry, 2009]. It allows users to encrypt data
with the public key and offload computation to the cloud. The
cloud computes on the encrypted data and generates encrypt-
ed results. Without the secret key, cloud simply serves as a
computation platform but cannot access any user information.
This powerful technique has been integrated with deep learn-
ing in the pioneering work of [Gilad-Bachrach et al., 2016],
known as CryptoNets, which built a convolutional neural net-
work on FHE to process inference queries. However, it has

three fundamental problems: P1) FHE is extremely costly in
computation, thus unsuitable for large-scale neural networks;
P2) the (nonlinear) activation functions are not cryptograph-
ically computable, hence have to be approximated by poly-
nomials, leading to degraded model accuracy; P3) only in-
ference is supported, but training is unstable due to approx-
imated polynomial activation functions. Privacy-preserved
training is considered in [Yuan and Yu, 2014], which also
utilizes polynomial approximation (e.g., Taylor expansion) to
circumvent the hardness of activations. Thus, it suffers from
the same problems of CryptoNets such as accuracy loss and
training instability.

In this paper, we propose a novel privacy-preserved learn-
ing architecture that resolves the three problems of existing
FHE-based approaches such as CryptoNets. It is dubbed
Globally Encrypted, Locally Unencrypted Deep Neural Net-
work (GELU-Net). The intrinsic strategy is to split each
neuron into linear and nonlinear components and implement
them separately on non-colluding parties. Linear computa-
tions are conducted based on a partially homomorphic cryp-
tosystem, i.e., Paillier [Paillier, 1999]. It offers sufficient se-
curity strength to keep data globally encrypted, and at the
same time is significantly more efficient than FHE used in
CryptoNets. As such, it solves P1. Note that it would be
impossible to use Paillier without the novel design of sepa-
rating the two components, because Paillier does not support
nonlinear polynomials. The cryptographically incomputable
activations are resolved in a locally non-encrypted yet stil-
l privacy-preserved manner to retain the original accuracy,
which solves P2 and P3. GELU-Net can effectively perform
model training without the stability and accuracy loss issues.
We apply techniques such as random masking to surgically
inject privacy-preserving components into the backpropaga-
tion algorithm, at minimal computation/communication cost
while ensuring loss-free model accuracy.

Our contributions are summarized as follows: 1) we pro-
pose a novel privacy-preserved, computationally efficient, ho-
momorphic encryption based learning architecture, GELU-
Net, which successfully resolves the three major problems
of CryptoNets and other similar existing approaches; 2) we
carry out security analysis and compare the complexity of
GELU-Net with existing approaches; 3) we conduct exten-
sive experiments on common datasets and demonstrate that
GELU-Net achieves 14 to 35 times speed-up compared to



CryptoNets in different environments.

2 Preliminaries
2.1 DNN Training
We first revisit the backpropagation algorithm in DNN. For
simplicity, the following discussion is based on fully con-
nected network. It can be readily extended to Convolutional
Neural Networks as shown in our experiments. The prob-
lem is to classify data samples x into multiple classes. For
an n-layer network, wi and bi are the weights and bias-
es corresponding to the i-th layer. The forward propaga-
tion calculates weighted-sumswiai−1 + bi for the i-th layer,
where ai−1 is the activation from the (i − 1)-th layer and
a0 = x. The output layer adopts the softmax function to
map high-dimensional vectors into prediction probabilities,
i.e., y. Once the forward propagation generates y, the dis-
tance between the prediction and the true label t is calculated
as the cost. The weight and bias are then updated based on
the backpropagationwi = wi − η∆wi and bi = bi − η∆bi,
where η is the learning rate. The gradients ∆wi and ∆bi are
calculated as follows:

∆wi = ai−1δi,∆bi = δi, (1)

where δi = δi+1wi+1ai (1− ai) for sigmoid activation and
δn−1 = y − t for cross-entropy loss.

2.2 Paillier Homomorphic Encryption
Homomorphic encryption allows secure computation over
encrypted data. To cope with operations in DNN (mainly
multiplication and addition), we adopt a well-known partial-
ly homomorphic encryption system called Paillier [Paillier,
1999]. Paillier supports unlimited number of additions be-
tween ciphertext, and multiplication between a ciphertext and
a scalar constant. Given ciphertext {[[M1]], [[M2]], · · · , [[Mg]]}
and scalar constants {s1, s2, · · · , sg}, we can calculate
([[M1]] ⊗ s1) ⊕ ([[M2]] ⊗ s2) ⊕ · · · ⊕ ([[Mg]] ⊗ sg) without
knowing the plaintext message. Here, [[Mg]] represents the
ciphertext. ⊕ is the homomorphic addition with ciphertext
and ⊗ is the homomorphic multiplication between a cipher-
text and a scalar constant. Cryptosystems are defined over
integers ZN whereas model parameters in machine learning
are typically implemented in floating point (FP) numbers for
high accuracy. To bridge such gap, FP is encoded into inte-
gers before encryption and decoded to FP after decryption.

3 Overview of GELU-Net Architecture
In this research, we adopt the semi-honest model, which is a
standard adversary model that many state-of-the-art privacy-
preserving designs have built upon [Chen and Zhong, 2009;
Zhang et al., 2017]. In such model, each participant follows
the protocol but is free to use what it sees to learn private
information from others. It is a natural fit for many smart ap-
plications since each participant wants to benefit from each
other’s data so they would follow the protocol in order to ob-
tain correct results. We assume the participants are authenti-
cated and do not attempt to maliciously disrupt the learning
process, e.g. add adversarial samples [Papernot et al., 2017].

Consider a centralized server and multiple clients with pri-
vate data. We assume the clients also have certain compu-
tation power. The server runs a neural network model that is
shared by all clients for collaborative learning. Similar to pre-
vious work including CryptoNets, the model parameters are
usually kept in plaintext on the server for efficiency.

In CryptoNets, the entire neural network is implemented
on the server based on FHE operations. The private data are
encrypted by the clients using FHE. Each client sends the en-
crypted data to the server, which runs the model and returns
encrypted inference result to the client.

In GELU-Net, the overall neural network model is still im-
plemented on the server. However, the nonlinear activation
is securely outsourced and resolved in a non-encrypted for-
m. More specifically, each client uses Paillier to encrypt its
private data. Similar to CryptoNets, the encrypted data are
sent to the neural network model on the server. The server is
able to perform most computation based on the partially ho-
momorphic encrypted data. However, it cannot compute the
activation function, which is non-polynomial and thus unsup-
ported by the Paillier cryptosystem. To this end, the input for
the activation (i.e., the intermediate weighted-sum in encrypt-
ed form) is sent back to the client, which, as the correspond-
ing data owner, has the key and thus can decrypt the inputs,
execute the activation, re-encrypt the result, and send it to the
server for the next layer.

The proposed GELU-Net has two prominent advantages as
summarized below. The first advantage of this design is to
enable activation without approximation, because it is now
computed by the client in plaintext form. This ensures free
of accuracy loss and the desired stability in training, thus
addressing problems P2 and P3 introduced in Sec. 1. The
second advantage is the significantly improved computation
efficiency. The neural network runs much faster than Cryp-
toNets, solving problem P1.

While the first advantage is obvious, the second seems anti-
intuitive at the first glance. Given the proposed GELU-Net
requires communication between server and client as well
as decryption and encryption for computing each activation,
would it become a performance bottleneck? Surprisingly,
it not only is not the performance bottleneck, but also con-
tributes significant performance gain. To fully understand
such potential, we conduct a set of initial experiments on a
commodity desktop using the Paillier package1, and compare
it with FHE implemented by Microsoft’s SEAL Library2. Ta-
ble 1 shows the different computation times of an activation
function, approximated by square (that is used in CryptoNet-
s and involves FHE multiplication between two ciphertext),
5-th order Taylor expansion (a better approximation using
FHE), and our proposed approach where the activation is se-
curely outsourced. The results show that, despite the cost
paid for communication and encryption/decryption, the com-
putation of an activation in GELU-Net is 10 times faster than

1Paillier Cryptosystem (in Python),
https://github.com/n1analytics/python-paillier

2Simple Encrypted Arithmetic Library,
https://www.microsoft.com/en-us/research/project/simple-
encrypted-arithmetic-library



Algorithm 1: Privacy Preserved Forward Propagation
Input: Client: Data x, set gradient/random accumulator

∆wc
i ,∆b

c
i , r

wc
i , rbci to 0. Server: Initialize model,

training bound dmax. Record initial parameterswI
i and

bIi (Section 4.4)
Output: Softmax output y

1 for d = 1, 2, 3, · · · , dmax do
2 Client: a0 ← xd
3 for i = 1, 2, · · · , n− 1 do
4 Client: Encrypt ai−1 with PKc as [[ai−1]]c and send

it to server
5 Server: Compute [[z̃i]]c ← (w̃i ⊗ [[ai−1]]c)⊕ b̃i and

send [[z̃i]]c to client
6 Client: Decrypt [[z̃i]]c with SKc, call Algorithm 4 to

remove randomness in z̃i
7 if i = n− 1 then
8 Client: y ← ezi/

∑
j e

zi (softmax)

9 else
10 Client: ai ← f(zi) (next layer)

11 Call Algorithm 2 for backpropagation

the square approximation used in CryptoNets and about 180
times faster than the 5-th order approximation.

Scheme Communication Crypto Activation Total
Square 0 0 90.6 90.6

5-th order 0 0 1619.6 1619.6
GELU-Net 5 3.7 0.2 8.9

Table 1: Comparison of activation under different schemes (ms).
The above discussion is based on activation only. As to

be discussed in Sec. 5, the overall performance gain is even
higher, because other functions of GELU-Net are also im-
plemented by Paillier, which enjoys significantly lower com-
plexity than FHE as shown in [Morris, 2013; Hu, 2013]. To
this end, our motivation is to avoid FHE as long as Paillier
is sufficient to meet privacy requirement. This would signifi-
cantly improve computation efficiency and accordingly boost
the overall performance. It is worth mentioning that running
the entire neural network model on a client is not an option
since we aim to perform collaborative learning, i.e., building
a model utilizing the data from all clients.

4 Privacy-Preserved Learning Algorithms
In this section, we elaborate the proposed privacy-preserved
learning algorithms. For lucid presentation, the following de-
scription is based on training between a client and a serv-
er. The same process repeats for all clients. In Paillier,
given a public key pair (PKu, SKu), a vector of ciphertext
is denoted as [[xi]]u encrypted by public key PKu. Initial-
ly, the client and server generate key pairs (PKc, SKc) and
(PKs, SKs) respectively and publish their public keys. The
proposed scheme consists of privacy-preserved forward prop-
agation (Algorithm 1) and backpropagation (Algorithm 2) as
described below.

4.1 Privacy-Preserved Forward Propagation
The forward propagation is summarized in Algorithm 1. The
client first encrypts the data with PKc and sends it to the

Algorithm 2: Privacy Preserved Backpropagation
1 Server: Encrypt 1

η
with PKs as [[ 1

η
]]s and send it to client

2 Client: For the last layer (n− 1), compute δn−1 ← y − t,
∆wn−1 ← an−2δn−1, ∆bn−1 ← δn−1,

3 ∆wc
n−1 ← ∆wc

n−1 + ∆wn−1,∆b
c
n−1 ← ∆bcn−1 + ∆bn−1

4 for i = n− 2, n− 3, · · · , 1 do
5 Client: Encrypt δi+1 with PKc as [[δi+1]]c and send it to

server
6 Server: Compute [[q̃i+1]]c ← [[δi+1]]c ⊗ w̃i+1, and send it

to client
7 Client: Decrypt [[q̃i+1]]c with SKc, call Algorithm 4 to

remove randomness in q̃i+1 ,and calculate
δi ← δi+1wi+1ai(1− ai), ∆wi ← ai−1δi, ∆bi ← δi.

8 Update ∆wc
i ← ∆wc

i + ∆wi,∆b
c
i ← ∆bci + ∆bi

9 if d < dmax then
10 Client: Call Algorithm 3 to mask ∆wi and ∆bi as

[[∆w̃i]]s and [[∆b̃i]]s, send to server
11 Server: Decrypt [[∆w̃i]]s and [[∆b̃i]]s with SKs, and

update w̃i = w̃i − η∆w̃i and b̃i ← b̃i − η∆b̃i

12 Call Algorithm 1 for the next iteration or call Algorithm 5 to
update model parameter on server when finish

server. The weighted sum is homomorphically calculated by
the server, [[z̃i]]c = (w̃i ⊗ [[ai−1]]c) ⊕ b̃i, which can be car-
ried out by Paillier, since only one quantity is in the encrypted
form. To prevent the server from inferring activations and da-
ta during the backpropagation (which will be discussed next),
random masks are applied onwi and bi (denote by w̃i and b̃i,
respectively). The encrypted weighted-sum [[z̃i]]c with ran-
dom masks is sent back to the client for computing activation.
The client calls Algorithm 4 to remove randomness in z̃i and
compute the activation for the next layer. The process repeats
until the final layer is reached.

Note that in each layer i, the client can accumulate ai−1
and zi over several iterations to solve the linear equation
wiai−1 + bi = zi for wi and bi. In an iteration, a num-
ber of m linear equations can be established (where m is the
number of neuron in the layer). There are m2 +m unknown-
s including m2 weighted connections and m biases. In the
next iteration, an additionalm equations are established while
there is only one more unknown, i.e., the learning rate η. This
is becausewi = wi−η∆wi and ∆wi is known by the clien-
t during backpropagation. Thus, the client can extract the
model after m + 2 iterations, which can accordingly cause
leakage of the training data [Tramèr et al., 2016]. To address
this problem, the server imposes a bound dmax randomly s-
elected between (1,m + 2) that a client can be continuously
trained. If dmax is reached, the next client is selected. The
server can always return to the same client for training at a
later time, but not continuously exceeding dmax (see Section
4.5 for detailed analysis).

4.2 Privacy-Preserved Backpropagation
As illustrated in Algorithm 2, backpropagation starts from the
last layer i = n− 1 to compute the error δi between softmax
prediction y and true label t. Note that Paillier can be used as
all computations involve at most one quantity in the encrypted



Figure 1: Server reconstructs training data via activations.

form. Then the error is propagated backward throughout the
network via gradients ∆wi and ∆bi for all the layers. In
order to correctly update weights on the server, the client must
sent private gradients to the server. Revealing such private
gradients to the server can cause privacy leaks. To this end,
the client calls Algorithm 3 to protect the gradients by random
masking before sending them to the server.

On the other hand, the random mask should be removed by
the client before the nonlinear activation; otherwise, it would
be difficult to recover the original value after activation. To
achieve this, the client calls Algorithm 4 to recover qi from
masked q̃i = δiw̃i. The client does this in each iteration so
the error does not accumulate and there is no need to keep
track of it. The client only needs to track the sum of the cor-
rect gradients ∆wc

i and ∆bci , as well as the sum of inject-
ed randomness rwci and rbci in each gradient update for final
model update in Algorithm 5 when training finishes.

4.3 Secure Gradient Updates
The gradients should be protected during backpropagation.
Otherwise, the server can similarly establish ∆wi = ai−1δi,
∆bi = δi from the received gradients and quickly derive
the activations. From those private activations, the serv-
er can further invert the neural network to reconstruct us-
er data [Mahendran and Vedaldi, 2015]. Fig. 1 shows an
example to reconstruct private data of handwritten digits.
For fully connected networks, the server can simply utilize
the Moore−Penrose inverse [Campbell and Meyer, 2009] to
estimate data x by, x̂ = wT

1(w1w
T
1)−1(z1 − b1), where

z1 = f−1(a1) is the inverse of the activation function from
the first layer. To protect the gradients, random vectors are
introduced to prevent the server from deriving activation and
user data. For layer i, random vectors rwi and rbi (uniform-
ly distributed over ZN ) are generated by the client. Using
the learning rate encrypted by the server [[ 1η ]]s, the client in-
jects the randomness into the encrypted gradients by homo-
morphically computing [[∆w̃i]]s = ∆wi ⊕ ([[ 1η ]]s ⊗ rwi ) and

[[∆b̃i]]s = ∆bi ⊕ ([[ 1η ]]s ⊗ rbi ) for weights and biases. The
server decrypts the masked gradients by SKs and blindly up-
dates the parameters as,

w̃i = w̃i − η(∆wi + rwi /η) = w̃i − η∆wi − rwi ,
b̃i = b̃i − η(∆bi + rbi /η) = b̃i − η∆bi − rbi . (2)

In this way, the server is oblivious of the actual weights
so has no way to figure out the activations (detailed proofs
in Section 4.5). Note that random errors are accumulated at
the server in each iteration. To perform activation on the ac-
tual weighted-sum, the client needs to remove those random-
ness in [[z̃i]]c during forward propagation and [[δi+1]]c⊗ w̃i+1

in backpropagation. Eq. (2) shows that the actual weight-
s/biases on server are wi − rwci and bi − rbci after each

Algorithm 3: Protect Gradients on Server
Input: ∆wi, ∆bi, [[ 1

η
]]s, rwi and rbi ∈ ZN

Output: [[∆w̃i]]s, [[∆b̃i]]s, rwci , rbci
1 [[∆w̃i]]s ← ∆wi ⊕ ([[ 1

η
]]s ⊗ rwi )

2 [[∆b̃i]]s ← ∆bi ⊕ ([[ 1
η

]]s ⊗ rbi )
3 rwci ← rwci + rwi , rbci ← rbci + rbi

Algorithm 4: Randomness Cancellation
1 if Forward propagation then

Input: z̃i, ai−1, rwci , and rbci
Output: zi

2 zi ← z̃i + rwci ai−1 + rbci
3 return zi
4 if Backpropagation then

Input: q̃i+1, δi+1, and rwci+1

Output: qi+1

5 qi+1 ← q̃i+1 + δi+1r
wc
i+1

6 return qi+1

update. In forward propagation, to recover zi from z̃i =
(wi−rwci )ai−1+bi−rbci , the client adds rwci ai−1+rbci to z̃i.
Similarly, in backpropagation, it adds δi+1r

wc
i+1 to [[q̃i+1]]c.

These steps are summarized in Algorithm 4.

4.4 Final Parameter Update
Once the training is completed, the final weights are updated
on the server in one shot by subtracting the cumulative sum
of actual gradients as shown in Algorithm 5.

While the above discussion is based on fully connected net-
works, a convolutional neural network (CNN)-based GELU-
Net can be implemented in a similar way, since convolution
is a linear operation and thus can be computed homomorphi-
cally. Max pooling can be adapted by mean pooling, thus
handled by the server. Feature activations are returned to the
clients and gradients are securely updated. Due to space limit,
we skip the details but present its results in Sec. 5.

4.5 Security Analysis
In this section, we perform security analysis of GELU-Net in
the semi-honest model.

Proposition 1. (Gradients protection in backpropagation)
The server cannot learn true values of ∆wi and ∆bi in order
to reconstruct activations and private user data.

Algorithm 5: Final Parameter Updates
Input: Final values of ∆wc

i ,∆b
c
i , initial weightswI

i and bIi
Output: Final weightswF

i and bFi
1 for i = 1, 2, 3, · · · , n− 1 do
2 Client: Encrypt ∆wc

i ,∆b
c
i with PKs as [[∆wc

i ]]s and
[[∆bci ]]s and send them to server

3 Server: Decrypt [[∆wc
i ]]s and [[∆bci ]]s with SKs, update

wF
i = wI

i − η∆wc
i and bFi = bIi − η∆bci



Proof. The prove follows the simulation method [Goldreich,
2009]. The basic idea is to construct simulators given the
input to a party and global output, and show that it learn-
s nothing except the final result. During training, the server
attempts to remove the randomness from the received gradi-
ents. Given a value rj selected by the client and an attempt
rk from the server, both in the space of ZN , the probability
that rj equals rk is Pr{rj = rk} ≤ 1 − e−2/|ZN | [Schneier,
2007]. |ZN | is the size of a finite field identical to the cipher
space of Paillier. Since the elements of the random mask is
independent, the server can correctly yield matrices of rwi and
rbi with probabilities Pr{r = rwi } ≤ (1 − e−2/|ZN |)m

2

and
Pr{r = rbi } ≤ (1 − e−2/|ZN |)m. Because |ZN | is a large
number, the probability that server can successfully derive the
gradients is close to zero.

Proposition 2. (Model protection in forward propagation)
The accumulated function groups {zi = wiai−1 + bi}d re-
veal nothing but the subspaces of weights and bias from which
the matrices wi and bi cannot be reconstructed by client.

Proof. Let z(i)m×1 = w
(i)
m×ma

(i−1)
m×1 + b

(i)
m×1 denote the func-

tion group obtained by client after one forward propagation.
Since a client is continuously trained for d = dmax (less than
the bound of m + 2 in Section 4.1), the function group does
not reveal any information regarding the actual values of the
matrices wi and bi but the subspaces linearly combined by
infinitely many possible matrices solutions. Hence, model
weights wi and bi cannot be successfully reconstructed by
the client with d = dmax.

Proposition 3. (Gradients protection in final model up-
date) The accumulated parameter update groups {wF

i =
wI
i − η∆wc

i , b
F
i = bIi − η∆bci}i reveal nothing but the sub-

spaces of gradients from which the matrices ∆wi and ∆bi in
the previous backpropagations cannot be reconstructed.
Proof. In the final model update, the client sends ∆wc

i and
∆bci to server. Since the client is allowed for dmax train-
ing iterations, the server ultimately obtains dmax − 1 pairs
of randomized gradients ∆w̃i and ∆b̃i. For each element
in weight/bias matrices, there are totally dmax linear equa-
tions with 2dmax−1 unknown parameters (dmax−1 random
numbers and dmax gradients for each backward propagation).
Since dmax > 1 and there is no way the server can add ex-
tra equations, the function group does not reveal any infor-
mation regarding the actual values of ∆wi and ∆bi but the
subspaces linearly combined by infinitely many possible ma-
trices solutions. Therefore, the intermediate gradients cannot
be reconstructed by the server.

Fig. 2 shows an example when gradient protection is in
place. We can see that the server can no longer reconstruct
training data during backpropagation.

Figure 2: With/without gradient protection.

Table 2: Complexity comparison (per iteration).

Approach Computation Communication
GELU-Net O(nm2p) O(nm2)
BGN-Net O(Cnmb) O(nm2)

ElGamal-Net O(Z2m3ne) O(Z2m2n)

4.6 Complexity Analysis
Communication Cost: The communication cost is ana-
lyzed as the total number of messages transmitted between
the client and server. We assume a unit message size for en-
crypted data. For an n-layer network, in the forward prop-
agation, the communication cost is 2m(n − 1), where m is
the number of activations in a layer. This is because total
m ciphertexts need to be transmitted by the client and the
server, for the sum of inputs zi and activations ai, respec-
tively, at each layer. In the backpropagation, the client needs
m2 + m + 1 messages for model updates between two con-
secutive layers. Except the final layer, the client interacts with
the server to calculate the gradients, which requires transmit-
ting encrypted error [[δi+1]]c in m messages between client
and server for each layer. Summing up cost from the forward
and backpropagation, the entire network requires O(nm2)
communication messages for an iteration.
Computation Cost: Arithmetic multiplications and addi-
tions are mapped to modular exponentiations and modular
multiplications over ciphertext, respectively. Here, we denote
such cost of conducting homomorphic arithemtics in Paillier
by p. For n layers, both forward and backpropagations take
O(nm2p) so the total computation cost is O(nm2p).
Numerical Comparison: Two previous studies have con-
sidered privacy-preserved training for DNN. [Yuan and Yu,
2014] uses a doubly homomorphic encryption called BGN
[Boneh et al., 2005] that supports one multiplication between
ciphertext and unlimited additions. We call this scheme BGN-
Net henceforth. [Chen and Zhong, 2009] adopts ElGamal for
homomorphic encryption [ElGamal, 1985], which support-
s either additive or multiplicative computation but not both.
The arithmetic costs of BGN and ElGamal are denoted by b
and e, respectively. Our tests show that the running time is
e ≤ p� b. BGN is at least 15 times slower than Paillier and
Paillier is comparable with ElGamal. Note that CryptoNets
do not support training, and thus is not comparable here.

Table 2 compares the complexity between differen-
t schemes in terms of computation and communication for an
n-layer fully connected network. GELU-Net achieves over
an order of magnitude improvements in the computation cost
compared to ElGamal-Net, which requires all Z parties to
participate in each iteration. In BGN-Net, since the 5-th
order polynomial is employed to approximate activation, a
large number of C homomorphic computations (C > 30) is
needed using BGN. This actually gives GELU-Net a lever-
age. As long as the number of neurons per layer (m) is less
than 450, GELU-Net is faster. Furthermore, a drawback of
both schemes is that they are built on vertically divided data
among users where the partial update of plaintext parameter-
s will involve global activation values, from which the data
distribution of other users can be derived.



5 Experiments
To evaluate the performance of GELU-Net, we use commod-
ity workstations to implement the clients and server. The
workstations have 2.8 GHz Intel Core i7 CPU and 8GB RAM
connected by 1 Gbps LAN. The Paillier package is integrat-
ed with Numpy and Theano to build the neural network. We
run experiments based on Iris, Diabetes, kr-vs-kp and MNIST
datasets to compare with CryptoNets (implemented in Mi-
crosoft’s SEAL library) and BGN-Net in terms of training
stability, accuracy and computation speed.

5.1 Training Stability and Accuracy
Inspired by [Livni et al., 2014], polynomial activation is
adopted by cryptography experts. It proposes square activa-
tion to train a convex objective and injects hidden neurons in a
gradual manner. CryptoNets uses square function and BGN-
Net uses the 5-th order polynomial (Taylor expansion) to ap-
proximate the activation. However, polynomials may incur
instability on non-convex objectives. Our results indicate that
they make the network hard to train. In contrast, GELU-Net
leaves the activation function unscathed so model parameters
are still learnable in a privacy-preserved manner.

To compare the training stability of the three approaches,
we adopt the BGN-Net network architecture of 1 densely con-
nected hidden layer with 5, 12, 15, 300 neurons for the four
datasets respectively. As shown in Fig. 3, the square activa-
tion of CryptoNets fails immediately. A higher order approx-
imation (e.g., 3rd or 5th order) used by BGN-Net is better,
but still unsuccessful as training terminates prematurely.
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Figure 3: Training stability of different schemes.

Next we compare the accuracy of these approaches in Ta-
ble 3. Since CryptoNets and BGN-Net are unstable in train-
ing, they are pre-trained with plaintext data. Encrypted data
are used for inference only. GELU-Net is able to retain the o-
riginal model accuracy while other two approaches suffer an
accuracy loss from 2%∼7%. This makes GELU-Net espe-
cially appealing in many smart applications on large datasets
when model accuracy is the key consideration.

5.2 Computation Speed
We compare the computation speed between GELU-Net and
CryptoNets on MNIST. Note that our testing shows that BGN

Table 3: Comparison of accuracy.

Datasets GELU-Net CryptoNets BGN-Net
Iris 0.986±0.004 0.966±0.012 0.96±0.007

Diabetes 0.760±0.011 0.741±0.023 0.723±0.028
kr-vs-kp 0.967±0.008 0.948±0.015 0.944±0.014
MNIST 0.969±0.004 0.919±0.0009 0.901±0.006

encryption is even slower than FHE so we only compare
GELU-Net with CryptoNets here. First, we adopt the CN-
N architecture used in CryptoNets (denoted by Conv-1) and
then stack more convolutional layers to form an architecture
identical to LeNet-5.
• Conv-1: Conv(5×5, stride 2, 5 filters)-ReLU (square)-Mean

Pooling-ReLU (square)- Softmax.

• LeNet-5: Conv(5×5, stride 1, 6 filters)-Mean Pooling-ReLU
(square)-Conv(5×5, stride 1, 16 filters)-Mean Pooling-ReLU
(square)-Dense(120)-Dense(84)- Softmax.

Since CryptoNets only supports inference, the model is load-
ed with pre-trained weights on MNIST. Table 4 shows the
computation time (for one inference) and the accuracy. We
observe that GELU-Net achieves 18 to 35x speed-up over
CryptoNet with no accuracy loss. The performance gain is
more obvious when the network gets deeper because more
expensive homomorphic multiplications over ciphertext (for
square activations) are required in CryptoNets.

Table 4: Computation speed in different networks (s).

Architecture Time (s) Accuracy
GELU-Net (Conv-1) 67.5±2.8 0.936±0.006
CryptoNets (Conv-1) 1271.8±1.9 0.909±0.002
GELU-Net (LeNet-5) 85.5±2.1 0.989±0.001
CryptoNets (LeNet-5) 3009.6±1.7 0.967±0.003

Since the network communication is an integral part of
GELU-Net, we further evaluate its performance in two differ-
ent environments. We first deploy the server in a cloud com-
puting infrastructure with local workstations in a different
network domain. This scenario is denoted as Cloud-Local.
Then we put both the server and clients inside the cloud on
virtual machines, denoted as Cloud-Cloud. Table 5 shows the
computation time for one inference. We observe that GELU-
Net achieves optimal performance in the data center since
the propagation delay is minimal. The communication cost
increases once the client and server reside at different net-
work domains. In the worst case, GELU-Net still achieves
14x speed-up compared to CryptoNets.

Table 5: GELU-Net speed in different environments (s).

Architecture Cloud-Local Cloud-Cloud Local-Local
Dense(12) 0.381±0.002 0.156±0.005 0.281±0.01

Dense(300) 147.5±9.8 59.7±1.9 107.4±3.5
Conv1 91.3±5.4 37.5±1.6 67.5±2.8

LeNet-5 126.7±6.3 47.5±1.2 85.5±2.1

6 Conclusion
We have proposed a privacy-preserving deep neural network
architecture based on a partially homomorphic cryptosystem.
The novel design has ensured the neural network to be free
of accuracy loss and achieve the desired stability in training.
We have analyzed its security and complexity, and carried out
extensive experiments that demonstrate 14 to 35 times speed-
up compared to the state-of-the-art solutions.
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